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Abstract—An algorithm for enhancing the finite element
method with local model order reduction is presented. The
proposed technique can be used in fast frequency domain
simulation of waveguide components and resonators. The local
reduction process applied to cylindrical subregions is preceded
by compression of the number of variables on its boundary.
As a result,the finite element large system is converted into a
very compact set of linear equations which thus can be solved
extremely fast.

I. INTRODUCTION

Local model order reduction called a macromodeling [1]–
[4] is one of the most effective tools used to speed up the
finite element method analysis [5], [6]. This paper addresses
the issue of the efficiency of macromodel generation which is
introduced in the following concise problem statement. Let
us assume, that the subspace associated with subregion Ω
(enclosed by the boundary S) is subject to local model order
reduction. Due to that process the electromagnetic behavior
of Ω with respect to its boundary S is captured by a small
dense matrix called a macromodel (see [1] for details). The
macromodels are particularly useful when applied in the
subregions of the computational domain, which are required
to be finely discretized, near small features of the structure
causing rapid changes of the electromagnetic field distribution.
Two examples of such regions are shown in Fig. 1.

The size of macromodel (r×r) is determined by two factors:

Fig. 1. The two examples of subregions of the computational domain,
which are required to be finely discretized, due to the rapid changes of the
electromagnetic field distribution.

r = 2qns, (1)

where q is a reduction order and ns is a number of FEM
variables on the boundary S, associated with the number
of basis functions that approximate the distribution of the
electric field on S. In practical cases the value of q varies
between 5 and 10, whereas the number of variables on S
can reach hundreds or even thousands, especially if the three-
dimensional FEM formulation with higher-order vector FEM
basis functions is employed and dense discretization mesh is
required.

In such a case r reaches tens of thousands, which signifi-
cantly deteriorates the efficiency of macromodeling generation.
What is more, if the analysis requires to generate many macro-
models, it greatly increases memory usage, since macromodels
are stored as full matrices.

Therefore, it is necessary to create a technique, to reduce
r. Although one should not decrease the value of q, since it
would affect the accuracy of results, it is possible to limit the
value of nS prior to the local reduction. This can be achieved
by an operation in which the distribution of the electric field
on the boundary S is approximated by means of the set of n′S
functions, where n′S � nS .

In this paper the technique of compression the number of
FEM variables on the cylindrical boundary S is presented.
It is based on [7], [8], however in the proposed method the
reduced number of functions (n′S) used to approximate the
field distribution on S is chosen automatically, which prevents
from very time consuming repetitive trial simulations.

II. COMPRESSION OF THE NUMBER OF VARIABLES ON THE
BOUNDARIES

In order to compress the number of FEM variables on S, the
space of FEM basis functions (defined on S) is projected onto
a subspace spanned a much smaller the set of n′S orthogonal
functions, expressed as:

BS = {~eS1(x, y, z), ~eS2(x, y, z) . . . ~eSns′(x, y, z)}. (2)

They are defined analytically, using trigonometric functions
and Legendere polynomials, depending on the shape of S. The
distribution of the electric field on S is defined as follows:

Post-print of: G. Fotyga and K. Nyka, "An algorithm for enhancing macromodeling in finite element analysis of waveguide components," 2017 
IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 
Pavia, 2017, pp. 1-3, doi: 10.1109/IMWS-AMP.2017.8247351.

© 2017 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works.

https://doi.org/10.1109/IMWS-AMP.2017.8247351


~ES(x, y, z) ∼=
n′
S∑

i=1

ci~eSi(x, y, z). (3)

In order to project the FEM space from S onto a subspace
defined by (2), one has to represent BS as a set of discretized
functions spanned by a subspace of FEM basis functions. Note,
that S is a surface, therefore only two-dimensional FEM basis
functions are used. Each of the functions from (2) can be
approximated by the FEM expansion:

~eSk(x, y, z) ∼=
ns∑
i=1

ei ~TSi(x, y, z). (4)

where k ∈ {1, 2 . . . n′S}, ~TSi(x, y, z) are a FEM basis func-
tions, nS is a number of basis functions defined on S and ei are
expansion coefficients. Next, both sides of (4) are multiplied
by ~TSj(x, y, z), where j ∈ {1, 2, . . . ns} and integrated over
S:

ns∑
j=1

∫
S

~TSj(x, y, z) · ~eSk(x, y, z)dS ∼=

ns∑
j=1

ns∑
i=1

∫
S

~TSj(x, y, z) · ~TSi(x, y, z)dS ei. (5)

Note, that the right-hand side of equation (5) can be repre-
sented by a FEM mass matrix (denoted as C). Therefore, the
above equation can be rewritten as follows:

CSeSk = fSk, (6)

where vectors fSk and eSk ∈ CnS , whereas CS ∈ CnS×nS .
Each of the elements of CS and fSk is obtained in the
following manner:

CSji =

∫
S

~TSj(x, y, z) · ~TSi(x, y, z)dS,

fSkj =

∫
S

~TSj(x, y, z) · ~eSk(x, y, z)dS. (7)

The integrals in (7) can be solved by means of the Gauss
quadrature [5], [6].

Once the system of equations (6) is solved for k ∈
{1, 2 . . . n′S}, one obtains a discretized form of (2), which is
a projection basis of the size nS × n′S :

BS = [eS1, eS2 . . . eSns′ ] . (8)

Subsequently, the appropriate blocks in the original FEM
system of equations (which correspond to Ω1 - outer region,
S - boundary and Ω - subregion subject to local reduction)
are project on the subspace spanned by the vectors of BS:

 AΩ1 A′1 0

A′
T
1 A′S A′2

0 A′
T
2 AΩ

 ·
 eΩ1

e′S
eΩ

 =

 b
0
0

 . (9)

Fig. 2. Waveguide structure bounded by the two ports (P1 and P2), and
perfect electric conductor (PEC). The boundary S divides the computational
domain into Ω1 and Ω2.

where:

A′S = BT
SASBS

A′1 = A1BS

A′2 = BT
SA2

eS ≈ BSe
′
S . (10)

III. CYLINDRICAL BOUNDARY

The procedure presented in the previous section is now
adopted to compress the number of variables on the cylindrical
boundary S (Fig. 2).

If the local reduction is planned in subregion Ω2, a com-
pression of the number of variables has to be performed on
the boundary S. The distribution of the vectorial electric field
on S can be approximated by the series:

~ES(φ, z) = ~iz

Lm∑
m=1

Lk∑
k=0

aI
mk sin(mφ) cos(k

z

h
π) +

~iz

Lm∑
m=0

Lk∑
k=0

aII
mk cos(mφ) cos(k

z

h
π) +

~iφ

Lm∑
m=0

Lk∑
k=1

aIII
mk cos(mφ) sin(k

z

h
π) +

~iφ

Lm∑
m=1

Lk∑
k=1

aIV
mk sin(mφ) sin(k

z

h
π), (11)

where h is the height of a waveguide and aI
mk . . . a

VI
mk are the

expansion coefficients. Fig. 3 shows the ~iz component of the
electric field on S for the two example functions from (11).
The number of functions n′S in series (11) is equal to:

n′S = 4LmLk + 2Lm + 2Lk + 1. (12)

The values of Lm and Lm can be determined by the following
formulas:

Lm = L = b2πrτfmax
c

c, (13)
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Fig. 3. The ~iz component of the electric field on S for the two example
functions from (11). a) ~ES(φ, z) = ~iz cos(3φ) cos( z

h
π) b) ~ES(φ, z) =

~iz cos(5φ) cos( z
h
π)

Fig. 4. Dimensions in mm of a waveguide with discontinuity. Height of the
discontinuity: 6.16 mm. The length of the axes of the elliptical cross-section:
2 mm and 3 mm.

Lk = b2hτfmax
c

c, (14)

where fmax is the max frequency of the analysis, r is the
radius of the cylinder, c is the speed of light and τ ∈
{1, 2, 3 . . . }. Although τ is a heuristic parameter the number
of necessary trials is significantly lower than those needed
without equations (13) and (14).

In effect of the compression of the variables on S, the size
of the macromodel is much smaller, comparing to the original
one, assuming the same value of q:

(r′ = 2qn′s)� (r = 2qns). (15)

IV. NUMERICAL RESULTS

To investigate the accuracy of the proposed method, a
simple waveguide with a discontinuity is analysed (see Fig. 4.
for details). Firstly, as the reference results, S-parameters have
been computed by means of a standard FEM formulation
in a bandwidth: 12-15 GHz using 38002 FEM global un-
knowns and 2108 unknowns on the boundary S. Next, the
proposed technique has been employed, with r = 8 mm and
τ ∈ {1, 2, 3}, which gives a compression of variables on S:
n′S ∈ {15, 55, 119}. Fig. 5 shows the error plots of the analysis
comparing to the standard FEM formulation, where the error
is defined as follows:

eS11
(s) = 20 log10(|S11(s)− S11red(s)|),

eS21
(s) = 20 log10(|S21(s)− S21red(s)|). (16)

Fig. 5. The error plots of the proposed method comparing to the standard
FEM formulation.

It can be seen, that for τ = 2 the error below −80 dB,
which guarantees that the corresponding S-characteristics are
almost indistinguishable from each other. In this case the size
of macroelement is equal to 275 × 275.

V. CONCLUSION

A new algorithm for fast frequency simulation of waveguide
components and resonators is proposed. It is based on the
Finite element method combined with local model order
reduction, called macromodeling, and the projection of fields
on subdomain boundaries on properly constructed orthogonal
basis. In order to determine an optimal size of this basis
the analytical formulas are proposed to replace numerous
repetitive trial simulations.
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