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Abstract A Schrödinger particle on an N-dimensional (N � 2) hypersphere of radius R is considered. The particle is subjected
to the action of a force characterized by the potential V (θ ) � 2mω2

1R
2 tan2(θ/2) + 2mω2

2R
2 cot2(θ/2), where 0 � θ � π is the

hyperlatitude angular coordinate. In the general case when ω1 �� ω2, this is a model of a hyperspherical analogue of the Pöschl–Teller
anharmonic oscillator. Energy eigenvalues and normalized eigenfunctions for this system are found in closed analytical forms. For
N � 2, our results reproduce those obtained by Kazaryan et al. (Physica E 52:122, 2013). For N � 2 arbitrary and for ω2 � 0,
the results of Mardoyan and Petrosyan (J. Contemp. Phys. 48:70, 2013) for their model of an isotropic hyperspherical harmonic
oscillator are recovered. The Euclidean limit for the anharmonic oscillator in question is also discussed.

1 Introduction

The search for closed-form analytical solutions to quantum-mechanical wave equations in spherical geometry dates back at least to
the early 1940s. It was then that Schrödinger [1] and Stevenson [2] considered an analogue of the Schrödinger–Coulomb energy
eigenvalue problem on the hypersphere S

3
R , with the potential V (θ ) � V0 cot θ , where 0 � θ � π is the hyperlatitude angle on S

3
R .

At the end of the 1970s, Higgs [3] and Leemon [4] solved the spherical Schrödinger equation for the hemispherical analogue of the
isotropic harmonic oscillator with the latitudinal potential V (θ ) � V0 tan2θ (V0 � 0, 0 � θ � π/2). The two systems mentioned,
like their counterparts in the Euclidean space, possess hidden dynamical symmetries. For this reason, they appeared to be attractive
objects of research and in the following years their various properties were comprehensively studied in a number of works. The
most important results obtained in the course of research conducted up to the mid- and late-2000s were reviewed in the monographs
by Shchepetilov [5] and by Redkov and Ovsiyuk [6], respectively.

In 2013, a paper by Mardoyan and Petrosyan [7] was published, in which they found analytical solutions to the energy eigenproblem
on the hypersphere S

N
R for a Schrödinger particle in the latitudinal potential V (θ ) � V0 tan2(θ/2), (V0 � 0, 0 � θ � π). These

authors also showed that in the Euclidean limit the system considered by them, similarly to the one discussed earlier by Higgs [3]
and Leemon [4], passes into an N-dimensional isotropic harmonic oscillator.

Also in 2013, Kazaryan et al. [8] considered a Schrödinger particle moving on a two-dimensional sphere S
2
R , in the potential

V (θ ) � V1 tan2(θ/2) + V2 cot2(θ/2), (V1 � 0, V2 � 0, 0 � θ � π), and found analytical solutions to the corresponding energy
eigenproblem. In the case of V2 � 0 and V1 > 0 (and, due to the invariance of the potential in question with respect to the combined
transformations θ ↔ π − θ and V1 ↔ V2, also in the case of V1 � 0 and V2 > 0), the system considered in Ref. [8] evidently
reduces to the two-dimensional example of a spherical isotropic harmonic oscillator of Mardoyan and Petrosyan [7]. On the other
hand, in the case when both V1 and V2 are different from zero, the system from Ref. [8] may be seen as a kind of a (two-dimensional)
spherical analogue of the anharmonic Pöschl–Teller oscillator [9].

The purpose of this work is to generalize the results from Ref. [8] to the case when the domain is an N-dimensional hypersphere
S
N
R , (N � 2). The paper is structured as follows. In Sect. 2, we recall the basic relevant facts from the methodology of treating

the Schrödinger equation in the spherical geometry. In particular, we give a quasi-radial Schrödinger equation for potentials which
depend on the hyperlatitudinal angle only. In Sect. 3, the Sturm–Liouville problem involving such an equation with a potential
describing a spherical analogue of the Pöschl–Teller anharmonic oscillator is solved, yielding energy eigenvalues and associated
normalized quasi-radial eigenfunctions in closed analytical forms. Some special cases are then considered in more detail in Sect.
4. In Sect. 5, we study the Euclidean limit for the oscillator in question by stereographically projecting the system onto a suitably
chosen tangent space and then by going with the radius of the sphere to infinity. The main results of the work are summarized in
Sect. 6.
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2 The Schrödinger equation in a spherical geometry

Let S
N
R ⊂ R

N+1 be an N-dimensional hypersphere with its center at the point 0 � (0, . . . , 0) ∈ R
N+1 and of radius R. Its equation

is

N+1∑

n�1

x2
n � R2, (2.1)

where {xn}N+1
n�1 are coordinates in some Cartesian system in R

N+1 with its origin at 0. The position of a point on S
N
R may be uniquely

determined by giving its hyperspherical angular coordinates {θn}Nn�1 related to the Cartesian coordinates {xn}N+1
n�1 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 � R sin θN sin θN−1 . . . sin θ3 sin θ2 cos θ1,
x2 � R sin θN sin θN−1 . . . sin θ3 sin θ2 sin θ1,
x3 � R sin θN sin θN−1 . . . sin θ3 cos θ2,
x4 � R sin θN sin θN−1 . . . cos θ3,
...
xN � R sin θN cos θN−1,
xN+1 � R cos θN ,

(2.2a)

with

0 � θ1 < 2π (2.2b)

and

0 � θn � π (2 � n � N ). (2.2c)

The coordinate θN is termed the hyperlatitude or the quasi-radial variable. The points for which θN � 0 or θN � π are sometimes
called the north or the south poles of the hypersphere, respectively. In what follows, the set of the coordinates {θn}Nn�1 as an entity
will be denoted as �N ; similarly, hereafter the symbol �N−1 will stand for the set {θn}N−1

n�1 .
The Laplace–Beltrami operator on S

N
R is related to its counterpart on the unit sphere S

N simply through

�
S
N
R

� 1

R2 �SN . (2.3)

The latter operator may be conveniently defined by the chain of recurrence relations

�Sn � 1

sinn−1θn

∂

∂θn
sinn−1θn

∂

∂θn
+

1

sin2θn
�Sn−1

� ∂2

∂θ2
n

+ (n − 1) cot θn
∂

∂θn
+

1

sin2θn
�Sn−1 (2 � n � N ), (2.4a)

with

�S1 � ∂2

∂θ2
1

. (2.4b)

The time-independent Schrödinger partial differential equation for a particle moving on the sphere S
N
R , (N � 2), under the action

of a force derivable from the potential V (�N ), is
[
− �

2

2mR2 �SN + V (�N )

]
�(�N ) � E�(�N ). (2.5)

In the special case when the potential V is a function of the hyperlatitude only, i.e., when it holds that

V (�N ) � V (θN ), (2.6)

Equation (2.5) is separable and admits particular solutions that are of the form

�Lη(�N ) � FL (θN )Y (N−1)
Lη (�N−1). (2.7)

Here Y (N−1)
Lη (�N−1) are the hyperspherical harmonics, i.e., the eigenfunctions of the Laplace–Beltrami operator on S

N−1,

�SN−1Y (N−1)
Lη (�N−1) � −L(L + N − 2)Y (N−1)

Lη (�N−1), (2.8)
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which are normalizable in the sense of
∮

SN−1
dN−1�N−1 |Y (N−1)

Lη (�N−1)|2 � 1. (2.9)

We take L ∈ Z for N � 2 and L ∈ N0 for N � 3. If N � 2, then η is redundant and is to be suppressed, while if N � 3, then
η stands collectively for all quantum numbers necessary to distinguish between the hyperspherical harmonics that belong to the
(degenerate for L �� 0) eigenvalue −L(L + N − 2) of �SN−1 . The function FL (θN ) obeys the quasi-radial Schrödinger equation

{
− �

2

2mR2

[
d2

dθ2
N

+ (N − 1) cot θN
d

dθN
− L(L + N − 2)

sin2θN

]
+ V (θN ) − E

}
FL (θN ) � 0. (2.10)

On the following pages, we shall derive and analyze solutions to Eq. (2.10) with arbitrary N � 2 and with the potential

V (θN ) � 2mω2
1R

2 tan2 θN

2
+ 2mω2

2R
2 cot2 θN

2
(0 � θN � π), (2.11a)

where, for definiteness, we shall be assuming that ω1 � 0, ω2 � 0. The system characterized by the above potential is essentially a
hyperspherical analogue of the Pöschl–Teller [9] anharmonic oscillator. This is justified by the fact that after a bit of trigonometry
Eq. (2.11a) may be rewritten in the form

V (θN ) � 2mω2
1R

2

cos2(θN /2)
+

2mω2
2R

2

sin2(θN/2)
− 2m(ω2

1 + ω2
2)R

2 (0 � θN � π). (2.11b)

Once Eq. (2.11b) is plugged into Eq. (2.10) and the formal replacements N �→ 1, L �→ 0 and E �→ E − 2m(ω2
1 + ω2

2)R2 are made
therein, the resulting equation is found to coincide, up to notational differences, with the one-dimensional Schrödinger equation
following from Eqs. (2a) and (3) of Ref. [9].

Before moving on, it should be emphasized that the spherical analogue of the Pöschl–Teller oscillator considered in this work
differs from the system with the potential

V (θN ) � 1

2
mω2

1R
2 tan2 θN +

1

2
mω2

2R
2 cot2 θN

� mω2
1R

2

2 cos2 θN
+

mω2
2R

2

2 sin2 θN
− 1

2
m(ω2

1 + ω2
2)R

2 (0 � θN � π/2), (2.12)

which also admits analytical solutions to the quasi-radial Schrödinger equation (2.10), albeit on a different domain, and which in
turn can be viewed as a hemispherical analogue of the Pöschl–Teller oscillator.

For the sake of notational clarity, from now on we shall be dropping the index N at θN .

3 Energy levels and normalized eigenfunctions for the potential (2.11a) on an N-dimensional sphere

The quasi-radial Eq. (2.10) with the potential (2.11a) is
[

d2

dθ2 + (N − 1) cot θ
d

dθ
− L(L + N − 2)

sin2θ
− 4m2ω2

1R
4

�2 tan2 θ

2
− 4m2ω2

2R
4

�2 cot2 θ

2
+

2mR2

�2 E

]
FL (θ ) � 0.

(3.1)

We wish to solve it under the constraint that FL (θ ) remains bounded as θ → 0 + 0 and as θ → π − 0, considering the energy
parameter E as an eigenvalue.

In the first step, we switch from the variable θ to the new one:

ρ � cos θ (−1 � ρ � 1) (3.2)

and make the substitution

FL (θ ) ≡ FL (ρ) � fL (ρ)

(1 − ρ2)N/4−1/2 (3.3)

This casts Eq. (3.1) into the following one:
[

d

dρ
(1 − ρ2)

d

dρ
+ λ(λ + 1) − μ2

L2

2(1 − ρ)
− μ2

L1

2(1 + ρ)

]
fL (ρ) � 0, (3.4)
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with

λ � −1

2
+

1

2

√

(N − 1)2 +
16m2(ω2

1 + ω2
2)R

4

�2 +
8mR2

�2 E (3.5)

and

μLk �
√(

L +
N

2
− 1

)2

+

(
4mωk R2

�

)2

(k � 1, 2). (3.6)

Equation (3.4) is the generalized associated Legendre equation [10–12]. Its general solution is

fL (ρ) � AL P
−μL2,μL1
λ (ρ) + BL P

μL2,μL1
λ (ρ), (3.7)

where

Pμ,ν
λ (ρ) � 1

(1 − μ)

(1 + ρ)ν/2

(1 − ρ)μ/2 2F1

(
−λ − μ − ν

2
, λ + 1 − μ − ν

2
; 1 − μ;

1 − ρ

2

)
(3.8)

is the generalized associated Legendre function of the first kind, while AL and BL are arbitrary constants. Combining Eqs. (3.3),
(3.7) and (3.8) yields the quasi-radial function FL (ρ) in terms of the hypergeometric function 2F1:

FL (ρ) � A′
L (1 − ρ)μL2/2−N/4+1/2(1 + ρ)μL1/2−N/4+1/2

× 2F1

(
−λ +

μL1 + μL2

2
, λ + 1 +

μL1 + μL2

2
; 1 + μL2;

1 − ρ

2

)

+ B ′
L (1 − ρ)−μL2/2−N/4+1/2(1 + ρ)μL1/2−N/4+1/2

× 2F1

(
−λ +

μL1 − μL2

2
, λ + 1 +

μL1 − μL2

2
; 1 − μL2;

1 − ρ

2

)
, (3.9)

with A′
L and B ′

L being arbitrary constants. The presence of the factor (1 − ρ)−μL2/2−N/4+1/2 implies that the second term on the
right-hand side of Eq. (3.9) diverges as ρ → 1 − 0. To get rid of this term, we set B ′

L � 0, thus obtaining

FL (ρ) � A′
L (1 − ρ)μL2/2−N/4+1/2(1 + ρ)μL1/2−N/4+1/2

× 2F1

(
−λ +

μL1 + μL2

2
, λ + 1 +

μL1 + μL2

2
; 1 + μL2;

1 − ρ

2

)
. (3.10)

The hypergeometric function in Eq. (3.10) diverges as ρ → −1 + 0 unless we stipulate that

−λ +
μL1 + μL2

2
� −nθ (nθ ∈ N0). (3.11)

Merging this condition with the definition (3.5) of λ gives the quantized energy levels for the system under the consideration:

Enθ L � �
2

2mR2

⎡

⎣nθ +
N

2
+

1

2

√(
L +

N

2
− 1

)2

+

(
4mω1R2

�

)2

+
1

2

√(
L +

N

2
− 1

)2

+

(
4mω2R2

�

)2
⎤

⎦

×
⎡

⎣nθ − N

2
+ 1 +

1

2

√(
L +

N

2
− 1

)2

+

(
4mω1R2

�

)2

+
1

2

√(
L +

N

2
− 1

)2

+

(
4mω2R2

�

)2
⎤

⎦

− 2m(ω2
1 + ω2

2)R2, (3.12a)

or equivalently

Enθ L � �
2

2mR2

{(
nθ +

N

2

)(
nθ − N

2
+ 1

)
+

1

2

(
L +

N

2
− 1

)2

+

(
nθ +

1

2

)⎡

⎣
√(

L +
N

2
− 1

)2

+

(
4mω1R2

�

)2

+

√(
L +

N

2
− 1

)2

+

(
4mω2R2

�

)2
⎤

⎦

+
1

2

√√√√
[(

L +
N

2
− 1

)2

+

(
4mω1R2

�

)2
][(

L +
N

2
− 1

)2

+

(
4mω2R2

�

)2
]}

. (3.12b)

For N � 2, either of Eqs. (3.12) may be shown to reduce, up to notational differences, to Eq. (25) in Ref. [8].
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To obtain the most suitable form of the quasi-radial eigenfunctions associated with the eigenenergies (3.12), we observe that
insertion of Eq. (3.11) into Eq. (3.10) gives

Fnθ L (ρ) � A′
L (1 − ρ)μL2/2−N/4+1/2(1 + ρ)μL1/2−N/4+1/2

2F1

(
−nθ , nθ + μL1 + μL2 + 1; μL2 + 1;

1 − ρ

2

)
. (3.13)

The function 2F1 appearing in the above equation is closely related to the Jacobi polynomial [13, p. 212]:

P (μL2,μL1)
nθ

(ρ) � (nθ + μL2 + 1)

nθ ! (μL2 + 1)
2F1

(
−nθ , nθ + μL1 + μL2 + 1; μL2 + 1;

1 − ρ

2

)
(3.14)

[not to be confused with the generalized associated Legendre function of the first kind defined in Eq. (3.8)]. Hence, we may write

Fnθ L (ρ) � A′′
L (1 − ρ)μL2/2−N/4+1/2(1 + ρ)μL1/2−N/4+1/2P (μL2,μL1)

nθ
(ρ), (3.15)

where A′′
L is a nonzero constant. We choose the value of the latter as to have the complete wave function (2.7) normalized to unity

in the sense of

RN
∮

SN
dN�N |�nθ Lη(�N )|2 � 1, (3.16)

where dN�N is an infinitesimal surface element of the unit hypersphere S
N . By virtue of the identity

dN�N � sinN−1θ dθ dN−1�N−1 (3.17)

and the normalization condition (2.9) for the hyperspherical harmonics, Eq. (3.16) yields the integral constraint

RN
∫ π

0
dθ sinN−1θ |Fnθ L (θ )|2� 1. (3.18)

On plugging Eq. (3.15) into the left-hand side of Eq. (3.18) and invoking the formula [13, p. 212]
∫ 1

−1
dx (1 − x)α(1 + x)β P (α,β)

n (x)P (α,β)
n′ (x)

� 2α+β+1(n + α + 1)(n + β + 1)

n! (2n + α + β + 1)(n + α + β + 1)
δnn′ (α > −1, β > −1),

(3.19)

we finally obtain that, up to an arbitrary phase factor which we set equal to unity, the normalized quasi-radial eigenfunctions,
expressed in terms of the Jacobi polynomials, are

Fnθ L (θ ) �
√
nθ ! (2nθ + μL1 + μL2 + 1)(nθ + μL1 + μL2 + 1)

RN2μL1+μL2+1(nθ + μL1 + 1)(nθ + μL2 + 1)

× (1 − cos θ )μL2/2−N/4+1/2(1 + cos θ )μL1/2−N/4+1/2P (μL2,μL1)
nθ

(cos θ ), (3.20a)

or equivalently

Fnθ L (θ ) �
√
nθ ! (2nθ + μL1 + μL2 + 1)(nθ + μL1 + μL2 + 1)

RN2N−1(nθ + μL1 + 1)(nθ + μL2 + 1)

×
(

sin
θ

2

)μL2−N/2+1(
cos

θ

2

)μL1−N/2+1

P (μL2,μL1)
nθ

(cos θ ). (3.20b)

If Eqs. (3.20b) and (3.14) are combined to yield the normalized Fnθ L (θ ) in terms of the hypergeometric function 2F1 rather than in
terms of the Jacobi polynomial, in the case of N � 2 the resulting expression may be shown to coincide, up to notational differences
and up to the factor R−1 due to slightly different normalization conditions used, with what follows from Eqs. (22) and (24) of Ref.
[8].

4 Special cases

With the solutions corresponding to the general form of the potential (2.11a) being found, we proceed to the analysis of some
particular cases when the functional form of V (θ ) simplifies.
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4.1 The case of ω1 � ω and ω2 � 0

The potential V (θ ) is then

V (θ ) � 2mω2R2 tan2 θ

2
(0 � θ � π) (4.1)

and is the one considered by Mardoyan and Petrosyan [7]. From Eqs. (3.12), we obtain

Enθ L � �
2

2mR2

⎡

⎣nθ +
L

2
+

3N

4
− 1

2
+

1

2

√(
L +

N

2
− 1

)2

+

(
4mωR2

�

)2
⎤

⎦

×
⎡

⎣nθ +
L

2
− N

4
+

1

2
+

1

2

√(
L +

N

2
− 1

)2

+

(
4mωR2

�

)2
⎤

⎦− 2mω2R2, (4.2a)

or equivalently

Enθ L � �
2

2mR2

[(
nθ +

L

2
+

3N

4
− 1

2

)(
nθ +

L

2
− N

4
+

1

2

)
+

1

4

(
L +

N

2
− 1

)2

+

(
nθ +

L

2
+
N

4

)√(
L +

N

2
− 1

)2

+

(
4mωR2

�

)2
]
. (4.2b)

Save for notational differences, the expression for Enθ L given in Eq. (4.2b) is identical to the one displayed in Eq. (8) of Ref. [7].
Furthermore, in the case discussed here our Eq. (3.20b) simplifies to

Fnθ L (θ ) �
√√√√nθ !

(
2nθ + L + N

2 + μL
)

(
nθ + L + N

2 + μL
)

RN2N−1
(
nθ + L + N

2

)
(nθ + μL + 1)

×
(

sin
θ

2

)L(
cos

θ

2

)μL−N/2+1

P (L+N/2−1,μL )
nθ

(cos θ ), (4.3)

with

μL �
√(

L +
N

2
− 1

)2

+

(
4mωR2

�

)2

. (4.4)

After being combined with Eq. (3.14), the quasi-radial eigenfunction in Eq. (4.3) coincides, again up to notational differences, with
the corresponding expression resulting from Eqs. (7) and (9) in Ref. [7].

4.2 The case of ω1 � 0 and ω2 � ω

This case corresponds to the potential V (θ ) of the form

V (θ ) � 2mω2R2 cot2 θ

2
(0 � θ � π). (4.5)

The expressions for Enθ L resulting from Eqs. (3.12) are the same as in Eqs. (4.2), whereas Eq. (3.20b) yields

Fnθ L (θ ) �
√√√√nθ !

(
2nθ + L + N

2 + μL
)

(
nθ + L + N

2 + μL
)

RN2N−1
(
nθ + L + N

2

)
(nθ + μL + 1)

×
(

sin
θ

2

)μL−N/2+1(
cos

θ

2

)L

P (μL ,L+N/2−1)
nθ

(cos θ ). (4.6)

Since Eq. (4.5) results from Eq. (4.1) after the replacement θ → π − θ is made in the latter, the function (4.6) coincides, up to an
unimportant phase factor, with the one that emerges once the same replacement is made on the right-hand side of Eq. (4.3) and then
the use is made of the identity [13, p. 210]

P (α,β)
n (−x) � (−1)n P (β,α)

n (x). (4.7)
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4.3 The case of ω1 � ω2 � ω

In this case the potential (2.11) reduces to the form

V (θ ) � 8mω2R2

sin2θ
− 4mω2R2 � 8mω2R2 cot2 θ + 4mω2R2 (0 � θ � π). (4.8)

Then the energy eigenvalues (3.12) become

Enθ L � �
2

2mR2

⎡

⎣nθ +
N

2
+

√(
L +

N

2
− 1

)2

+

(
4mωR2

�

)2
⎤

⎦

×
⎡

⎣nθ − N

2
+ 1 +

√(
L +

N

2
− 1

)2

+

(
4mωR2

�

)2
⎤

⎦− 4mω2R2, (4.9a)

or equivalently

Enθ L � �
2

2mR2

[(
nθ +

N

2

)(
nθ − N

2
+ 1

)
+

(
L +

N

2
− 1

)2

+ (2nθ + 1)

√(
L +

N

2
− 1

)2

+

(
4mωR2

�

)2
]

+ 4mω2R2. (4.9b)

The quasi-radial eigenfunctions (3.20) are

Fnθ L (θ ) �
√
nθ ! (2nθ + 2μL + 1)(nθ + 2μL + 1)

RN22μL+12(nθ + μL + 1)
(sin θ)μL−N/2+1P (μL ,μL )

nθ
(cos θ ), (4.10)

with μL defined as in Eq. (4.4). By virtue of the relationship [13, p. 219]

P (μ,μ)
n (x) � 22μ(μ + 1

2 )(n + μ + 1)√
π (n + 2μ + 1)

Cμ+1/2
n (x), (4.11)

linking the Jacobi polynomial P (μ, μ)
n (x) to the Gegenbauer polynomial Cμ+1/2

n (x), Fnθ L (θ ) may be cast into the form

Fnθ L (θ ) �
√

22μL−1nθ ! (2nθ + 2μL + 1)2(μL + 1
2 )

RNπ (nθ + 2μL + 1)
(sin θ)μL−N/2+1CμL+1/2

nθ
(cos θ ). (4.12)

In the limit ω → 0, corresponding to the case of a free particle on S
N
R , Eqs. (4.9) and (4.12) go over, as they should, into

Enθ L � �
2

2mR2 (nθ + L)(nθ + L + N − 1) (4.13)

and

Fnθ L (θ ) �
√

22L+N−3nθ ! (2nθ + 2L + N − 1)2(L + N−1
2 )

RNπ (nθ + 2L + N − 1)
sinLθ CL+N/2−1/2

nθ
(cos θ ), (4.14)

respectively.

5 The Euclidean limit (R → ∞)

5.1 General considerations

Consider a Schrödinger particle moving on the hypersphere S
N
R in a reasonably arbitrary longitudinal potential V (θ ). On the route

to the Euclidean limit for this system, we first project stereographically the hypersphere S
N
R from its south pole onto the hyperplane

tangent to S
N
R at the north pole [with regard to the nomenclature used here, cf. the pertinent remark under Eq. (2.2c)]. In this tangent

hyperplane, we introduce the hyperspherical coordinates r , θN−1, . . . , θ1. The angles {θn}N−1
n�1 are defined as in Sect. 2, whereas

the radial variable r is related to the hyperlatitude θ ≡ θN on S
N
R through

r � 2R tan
θ

2
⇒ θ � 2 arctan

r

2R
. (5.1)
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Clearly, it holds that

θ
R→∞→ r

R
. (5.2)

Next we define

U (r ) � V (θ ) (5.3)

and put1,2

Fnθ L (θ ) �
(

1 +
r2

4R2

)N/2−1

fnr L (r ), (5.4)

where for convenience we define nr ≡ nθ . On inserting Eqs. (5.3) and (5.4) into the quasi-radial Schrödinger equation (2.10) (with
E identified with the energy eigenvalue Enr L ), we find that the radial function fnr L (r ) solves the equation

{
− �

2

2m

[
d2

dr2 +
N − 1

r

d

dr
− L(L + N − 2)

r2

]

+

(
4R2

r2 + 4R2

)2[
U (r ) − �

2N (N − 2)

8mR2 − Enr L

]}
fnr L (r ) � 0, (5.5)

the normal (i.e., without the first derivative) form of which is
{

− �
2

2m

d2

dr2 +
�

2
(
L + N−3

2

)(
L + N−1

2

)

2mr2

+

(
4R2

r2 + 4R2

)2[
U (r ) − �

2N (N − 2)

8mR2 − Enr L

]}
r (N−1)/2 fnr L (r ) � 0. (5.6)

It is easy to see from Eqs. (5.4) and (5.1) that if Fnθ L (θ ) is forced to obey the normalization constraint

RN
∫ π

0
dθ sinN−1θ |Fnθ L (θ )|2 � 1 (5.7)

[a special case of which, for the potential (2.11), has been given in Eq. (3.18)], then fnr L (r ) is normalized in the sense of
∫ ∞

0
dr r N−1

(
4R2

r2 + 4R2

)2

| fnr L (r )|2 � 1. (5.8)

The presence of the weight function
(

4R2

r2+4R2

)2
in Eqs. (5.5), (5.6) and (5.8) is a manifestation of the fact that we still remain outside

the realm of the Euclidean geometry. The transition to the latter is achieved only in the next step, by going to infinity with the value
of the radius R of the hypersphere. On defining

Ũ (r ) � lim
R→∞U (r ), Ẽnr L � lim

R→∞ Enr L , f̃nr L (r ) � lim
R→∞ fnr L (r ) (5.9)

and making the limiting passage R → ∞ in Eqs. (5.5), (5.6) and (5.8), we find that they take the desired Euclidean forms
{
− �

2

2m

[
d2

dr2 +
N − 1

r

d

dr
− L(L + N − 2)

r2

]
+ Ũ (r ) − Ẽnr L

}
f̃nr L (r ) � 0, (5.10)

[
− �

2

2m

d2

dr2 +
�

2
(
L + N−3

2

)(
L + N−1

2

)

2mr2 + Ũ (r ) − Ẽnr L

]
r (N−1)/2 f̃nr L (r ) � 0 (5.11)

and
∫ ∞

0
dr r N−1| f̃nr L (r )|2� 1, (5.12)

respectively.

1 For the general potential V (θ ) considered here, the quasi-radial quantum number nθ equals the number of zeros of the eigenfunction Fnθ L (θ ) in the open
interval 0 < θ < π .
2 The function fnr L (r ) used in this section should not be confused with the function fL (ρ) that appeared in Eqs. (3.3), (3.4) and (3.7).
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5.2 Application to the hyperspherical Pöschl–Teller oscillator

In the case of the hyperspherical Pöschl–Teller oscillator, the procedure described above will certainly be well-defined if we assume
that of the two strength parameters characterizing the potential, the parameter ω1 is independent of the radius R, while the parameter
ω2 is inversely proportional to R squared. By making the adequate substitution

ω2 � �χ

4mR2 , (5.13)

where χ > 0 is independent of R, and dropping from now on, for clarity of notation, the index 1 at ω1, we get

V (θ ) � 2mω2R2 tan2 θ

2
+

�
2χ2

8mR2 cot2 θ

2
. (5.14)

Hence, with the use of Eqs. (5.3) and (5.1), as well as of the first of Eqs. (5.9), it follows that

U (r ) � mω2r2

2
+

�
2χ2

2mr2 � Ũ (r ). (5.15)

This potential describes the isotropic harmonic oscillator subjected to an additional centrifugal-like force. With Ũ (r ) in the form
(5.15), Eq. (5.11) becomes

[
− �

2

2m

d2

dr2 +
�

2�L (�L + 1)

2mr2 +
mω2r2

2
− Ẽnr L

]
r (N−1)/2 f̃nr L (r ) � 0, (5.16)

where

�L �
√(

L +
N

2
− 1

)2

+ χ2 − 1

2

(
� μL2 − 1

2

)
. (5.17)

Solving Eq. (5.16) subject to the boundary conditions

f̃nr L (r ) bounded for r → 0, f̃nr L (r )
r→∞−→0 (5.18)

belongs to the class of standard exercises in intermediate quantum mechanics (cf., for instance, Ref. [14, Problem 65]). One finds
that

Ẽnr L � �ω

⎡

⎣2nr + 1 +

√(
L +

N

2
− 1

)2

+ χ2

⎤

⎦ (nr ∈ N0) (5.19)

and, once the normalization constraint (5.12) is imposed and phase factors in f̃nr L (r ) are suitably adjusted, that3

f̃nr L (r ) �
√

2nr !


(
nr + �L + 3

2

)
(mω

�

)N/4
(
mωr2

�

)�L/2−N/4+3/4

e−mωr2/2�L (�L+1/2)
nr

(
mωr2

�

)
, (5.20)

where L (α)
n (x) is the generalized Laguerre polynomial [13, Sec. 5.5].

Of course, one should expect to be able to arrive at Eq. (5.19) also in another way, namely after combining Eqs. (3.12) and (5.13),
and taking then the limit R → ∞; it presents no difficulties to show that this is indeed the case. Similarly, Eq. (5.20) should follow
(possibly up to a sign factor) from Eqs. (5.4) and (3.20), after the aforementioned limit is taken. However, in this case the proof
appears to be a bit more complex. On exploiting Eqs. (5.4), (3.20b), (5.1) and (5.17), we may write

fnr L (r ) �
√√√√nr !

(
2nr + μL1 + �L + 3

2

)

(
nr + μL1 + �L + 3

2

)

RN2N−1(nr + μL1 + 1)
(
nr + �L + 3

2

)

×
( r

2R

)�L−N/2+3/2

(
1 +

r2

4R2

)μL1/2+�L/2+1/4 P
(�L+1/2,μL1)
nr

⎛

⎜⎜⎝
1 − r2

4R2

1 +
r2

4R2

⎞

⎟⎟⎠. (5.21)

Now, as it holds that

μL1
R→∞−→ 4mωR2

�
(5.22)

3 In Ref. [14, Problem 65] the radial wave functions were expressed in terms of the confluent hypergeometric function. In the present work, we prefer to
use the generalized Laguerre polynomials instead.

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


  361 Page 10 of 11 Eur. Phys. J. Plus         (2025) 140:361 

[cf. Eq. (3.6)], we obviously have

lim
R→∞

(
1 +

r2

4R2

)μL1/2+�L/2+1/4

� emωr2/2�. (5.23)

Furthermore, from Eq. (5.22) and from the following two asymptotic relationships:

(x + a)

(x + b)
x→∞−→ xa−b (5.24)

(cf. Ref. [13, p. 12]) and

lim
β→∞ P (α,β)

n

(
1 − 2x

β

)
� L (α)

n (x) (5.25)

(cf. Ref. [13, p. 247]), it follows that


(
nr + μL1 + �L + 3

2

)

(nr + μL1 + 1)
R→∞−→

(
4mωR2

�

)�L+1/2

(5.26)

and

lim
R→∞ P (�L+1/2,μL1)

nr

⎛

⎜⎜⎝
1 − r2

4R2

1 +
r2

4R2

⎞

⎟⎟⎠ � lim
R→∞ P (�L+1/2,μL1)

nr

(
1 − r2

2R2

)
� L (�L+1/2)

nr

(
mωr2

�

)
, (5.27)

respectively. On taking the limit R → ∞ on the right-hand side of Eq. (5.21) and employing then Eqs. (5.23), (5.26) and (5.27),
after some algebra one indeed arrives at Eq. (5.20).

6 Conclusions

In this work, we have arrived at analytical solutions to an energy eigenvalue problem for a Schrödinger particle moving on an (N � 2)-
dimensional hypersphere S

N
R in the field of the hyperlatitude-dependent potential V (θ ) � 2mω2

1R
2 tan2(θ/2) + 2mω2

2R
2 cot2(θ/2).

This system may be viewed as an N-dimensional generalization of the one-dimensional anharmonic trigonometric oscillator of
Pöschl and Teller [9].

In the special case of N � 2, our results coincide with those presented in Ref. [8] by Kazaryan et al. On the other hand, in the
limit ω2 � 0 our findings reproduce those derived by Mardoyan and Petrosyan [7] for their model of an isotropic harmonic oscillator
on S

N
R .

If the parameter ω2 in V (θ ) depends on the radius of S
N
R in the inverse-square manner and if ω1 is independent of R, then

the Euclidean limit for the system considered here does exist. This limit may be achieved by performing a suitable stereographic
projection of S

N
R onto a tangent space, followed by the passage withR to infinity. In result, our hyperspherical Pöschl–Teller oscillator

goes over into an isotropic harmonic oscillator in R
N perturbed by a centrifugal-type force.
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