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Abstract—A multi-patch configuration of probe-fed rectangu-
lar microstrip antennas mounted on a cylindrical body, with
electrically small radius, with an arbitrary number of substrate
and superstrate layers is investigated in this paper. A full-wave
analysis and a moment-method calculation are employed. A uni-
fied procedure for creating proper matrices for the investigated
geometry of the structure is outlined here. Numerical results for
the input impedances and radiation patterns are calculated and
verified by comparing them with results from the literature and
our own measurements of manufactured prototypes.

Index Terms—Microstrip antenna arrays, cylindrical antenna,
probe feed, input impedance, antenna radiation patterns.

I. INTRODUCTION

C
ONFORMAL antennas are interesting due to the pos-

sibility of their merging into curved surfaces. They find

many practical applications in airplanes, spacecraft, speedboats

and other high-speed vehicles where aerodynamic or hydrody-

namic considerations necessitate their use. They can also be

used on the facade of historic buildings, towers or columns

as a part of a mobile communications system of a wireless

base station, which is dictated by aesthetic considerations

and the need to integrate the antenna with local architecture.

Another advantage of utilizing conformal antennas arises

from electromagnetic consideration and the need to obtain

the specific performance of radiation characteristics. Antennas

with curved surfaces provide a higher visible range relative to

planar antennas. An example of such a structure is a circular

antenna array or an array of radiators located on the surface of

a cylinder, which provide omni-directional radiation patterns in

the azimuth plane or else provide, in this plane, the possibility

of beam control [1].

There are many different methods for analyzing antennas

with cylindrical geometry. In the conformal antenna analysis,

the methods are commonly divided according to the point of

view of antenna dimensions (i.e., electrically small and electri-

cally large antennas). The choice of the right method depends

on the complexity of the structure geometry. Electrically small

antennas are often analyzed using orthogonalization and mode-

matching methods [2]- [6], the method of moments combined
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with integral equations [7]- [20], the finite element method,

often combined with other approaches [21], [22], and the

finite difference time domain method [23]- [25]. Although,

the aforementioned solutions work well for electrically small

cylinders, a closed-form solution for the analysis of a cylindri-

cal microstrip antenna based on the spectral-domain method

of moments, which works for an arbitrary radius of a cylinder,

was proposed in [12]. The large antennas are often analyzed

with the use of a high frequency approach, which uses various

asymptotic techniques to find approximate solutions. In these

approaches the antennas must be smooth and electrically large.

The most popular and effective method is the uniform theory

of diffraction, which uses the concept of light and describes the

behavior of the wave propagating on curved surfaces. To take

into account small details in the antenna structure geometry,

this method is often combined with the method of moments

[26]- [29].

In this paper, a configuration of probe-fed cylindrical-

rectangular microstrip patch antennas mounted on electrically

small-radius cylinders with an arbitrary number of substrate

and superstrate layers is investigated. Single antenna config-

urations have been investigated in the past for a particular

number of substrates and superstrates. The complex resonant

frequency problem was studied, e.g., in [14], for a single

substrate antenna, in [17] for a structure with an air gap under

the substrate, and in [16] for a structure with a superstrate

layer. The input impedance and radiation pattern of a probe-fed

cylindricalrectangular microstrip patch were analyzed in [15]

for a single substrate structure and in [19] for a superstrate-

loaded antenna. The aforementioned analyses are valid only

for the considered structures. In [13], an antenna with an

arbitrary number of substrate and superstrate layers was inves-

tigated where real resonance frequencies and radiation patterns

were calculated.

Here, we utilize a full-wave analysis and a moment-method

calculation and propose a unified procedure of creating proper

matrices for a multi-layer configuration of the probe-fed

cylindrical-rectangular microstrip patch antennas. The proce-

dure for the investigated configuration is outlined in section

II and studied in detail in the appendix. In contrast to the

aforementioned works of others, which are valid only for the

specific antenna structures, the presented procedure allows

to investigate the structures with any number of substrate

and superstrate layers and any number of radiators localized

within these layers. The procedure allows constructing proper

matrices only by defining the structure geometry (number of
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substrate and superstrate layers, number and localization of

radiators). Calculating the proper matrices for the antenna

structure with, e.g., additional superstrate cover or an air

gap in the substrate layer can be performed, with proposed

procedure, automatically without the need to perform addi-

tional mathematical transformations. Therefore, the presented

procedure can be utilized, e.g., in simulators for fast redefining

the structure. The input impedances and radiation patterns for

the chosen examples are calculated and the results are verified

by comparing them with those presented in the literature and

our own measurements of manufactured prototypes.

II. FORMULATION OF THE PROBLEM

The investigated structure is composed of Ξ (ξ = 1, . . . ,Ξ)

patch antennas located on Ψ (ψ = 1, . . . ,Ψ) cylindrical

surfaces with a cylinder axis along the~iz direction, as schemat-

ically illustrated in Fig. 1. Each patch is of length Lξ (along

the z axis) and width Wξ (along the φ axis), and is located

arbitrarily on the cylindrical surface, i.e., between φξ and φ′ξ
along the φ axis and between zξ and z′ξ along the z axis

on the surface with a radius rκψ. There can be several patch

antennas on each surface and the antennas can be located

above several dielectric substrates and covered by several

dielectric superstrates with a total number of K layers with

permittivities εrκ (κ = 1, . . . ,K).

The patch antennas are excited by probe feeds located at

(φfξ, zfξ), pointing along the~iρ direction and extending from

ρ = r1 to ρ = rκξ. With a very small radius of the probe

(in comparison to the wavelength), the probe feed can be

approximately treated as a line source with a current density:

J(ρ) =
Ifξδ(φ− φfξ)δ(z − zfξ)

ρ
~iρ, r1 ≤ ρ ≤ rκξ (1)

where Ifξ is the amplitude of the input current. It is assumed

that the patches are made of an ideal conductor and, therefore,

on the patch surfaces the tangential components of the electric

field are zero. Utilizing this condition the unknown surface

currents on the patches can be found. On the patches, the total

electric field can be written as a superposition of the electric

field due to the current distribution on the patches ~Epatch and

due to the probe currents ~Efeed with the patch being absent

[15]. The z components of the electric and magnetic fields, due

to the current distribution on the patch in each region, have

the following form (suppressing e−iωt time dependence):

F patchz (ρ, φ, z) =
1

2π

∞
∑

ν=−∞

eiνφ
∞
∫

−∞

dkze
ikzz ×



















(

Hρ
ν1 − βζ1J

ρ
ν1

)

Aζν1 r1 ≤ ρ ≤ r2

Hρ
νκA

ζ
νκ + JρνκA

′ζ
νκ rκ ≤ ρ ≤ rκ+1

κ = 2, . . . ,K − 1,

Hρ
νKA

ζ
νK rK ≤ ρ

(2)

where F patch = {Epatch, Hpatch}, ζ = {e, h} Aζνκ and

A
′ζ
νκ are unknown coefficients of the harmonic order ν.

βe1 = Hr1
ν1/J

r1
ν1 and βh1 = H

′r1
ν1 /J

′r1
ν1 . The abbreviations

Hρ
νκ = H

(1)
ν (kκρρ) and Jρνκ = Jν(kκρρ) are Hankel and

Bessel functions, respectively, of the first kind with an order

ν and k2κρ = ω2µ0ε0εrκ − k2z for κ = 1, 2, . . . ,K . In the

above expressions, the boundary condition on the tangential

components of the electric field (Ez and Eφ) at ρ = r1 have

already been imposed.

As for the z components of the electric and magnetic

fields due to a point source inside the substrate layers (κ =
1, 2, . . . , κψ − 1) for the ξth antenna placed at rκψ the

expressions in each layer have the following form:

F feed,ξz (ρ, φ, z) =
dρ′

8π

∞
∑

ν=−∞

eiνφ
∞
∫

−∞

dkze
ikzz ×























































(

Hρ
ν1 − Jρν1β

ζ
1

)

Bζν1 r1 ≤ ρ ≤ ρ′
(

Hρ
ν1 − Jρν1β

ζ
1

)

Bζν1 + β
′ζ
1 ρ′ ≤ ρ ≤ r2

βζκβ
′ζ
κ J

ρ
νκ +Hρ

νκB
ζ
νκ + JρνκB

′ζ
νκ rκ ≤ ρ ≤ ρ′

βζκβ
′′ζ
κ Hρ

νκ +Hρ
νκB

ζ
νκ + JρνκB

′ζ
νκ ρ′ ≤ ρ ≤ rκ+1

κ = 2, . . . , κψ − 1,

Hρ
νκB

ζ
νκ + JρνκB

′ζ
νκ rκ ≤ ρ ≤ rκ+1

κ = κψ, . . . ,K − 1,

Hρ
νKB

ζ
νK rK ≤ ρ

(3)

where F feed = {iEfeed, Hfeed}, β
′e
1 =

αξkzk1ρ
ωε1

(Hρ
ν1J

′ρ′

ν1 −

H
′ρ′

ν1 J
ρ
ν1), β

′h
1 =

ναξ
ρ′

(Hρ
ν1J

ρ′

ν1 − Hρ′

ν1J
ρ
ν1), β

e
κ =

αξkzkκρ
ωεκ

,

βhκ =
ναξ
ρ′

, β
′e
κ = H

′ρ′

νκ , β
′h
κ = Hρ′

νκ, β
′′e
κ = J

′ρ′

νκ , β
′′h
κ = Jρ

′

νκ,

and αξ = Ifξe
−i(νφfξ+kzzfξ). Bζνκ and B

′ζ
νκ are unknown

coefficients of the harmonic order ν to be determined by the

boundary conditions. The total electric and magnetic fields due

to point sources for the structure with Ξ antennas are then the

superposition of the fields:

F feedz (ρ, φ, z) =

Ξ
∑

ξ=1

F feed,ξz (ρ, φ, z) (4)

From z components of the electric and magnetic fields, the

φ and ρ components can easily be obtained. By imposing the

boundary conditions of transverse electric and magnetic fields

across all boundaries ρ = r2, r3, . . . , rK , the unknown coeffi-

cients can be obtained and the expressions for the transverse

fields of Epatchz,φ and Efeedz,φ on all patch surfaces and can be

written as follows [15], [19]:

Epatch =
1

2π

∞
∑

ν=−∞

eiνφ
∞
∫

−∞

dkze
ikzzGν(kz)J̃ν(kz) (5)

Efeed =
1

2π

∞
∑

ν=−∞

eiνφ
∞
∫

−∞

dkze
ikzz

1

4
Sν(kz) (6)

with

Sν(kz) = Tν(kz)Rν(kz) +Oν(kz) (7)

where the electric vectors E = {Epatch,Efeed}, the vector of

the patch surface current densities J̃ν(kz), the Green matrix

Gν(kz), the matrix Tν(kz) and the vectors Rν(kz) and

Oν(kz) have the following form:

E = (Eφ,1(·), . . . , Eφ,Ψ(·), Ez,1(·), . . . , Ez,Ψ(·))
T

J̃ν(·) = (J̃φν,1(·), J̃φν,Ψ(·), . . . , J̃zν,1(·), J̃zν,Ψ(·))
T
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Fig. 1. The geometry of an investigated antenna structure - a probe-fed multi substrate and superstrate cylindrical–rectangular microstrip antennas

Gν(·) =

[

Gφφ,ν(·) Gφz,ν(·)
Gzφ,ν(·) Gzz,ν(·)

]

Tν =

[

Tee,ν Teh,ν

The,ν Thh,ν

]

,Rν =

[

Re,ν

Rh,ν

]

,Oν =

[

Oφ,ν

Oz,ν

]

where:

G(·),ν =







G11
(·),ν · · · G1Ψ

(·),ν

...
. . .

...

GΨ1
(·),ν · · · GΨΨ

(·),ν







T(·),ν =









T 11
(·),ν T

′11
(·),ν · · · T 1Ψ

(·),ν T
′1Ψ
(·),ν

...
...

TΨ1
(·),ν T

′Ψ1
(·),ν · · · TΨΨ

(·),ν T
′ΨΨ
(·),ν









R(·),ν =
(

R1
(·),ν , R

′1
(·),ν, . . . , R

Ψ
(·),ν, R

′Ψ
(·),ν

)T

O(·),ν = (O1
(·),ν , . . . , O

Ψ−1
(·),ν , 0)

T

If the structure does not have any superstrates, (i.e., if there

are patches placed on the layer ρ = rK ), matrix T(·),ν does

not have the last column and vector R(·),ν does not have the

last element.

The patch surface current densities in the spectral domain

are defined as follows:

[

J̃φν(kz)

J̃zν(kz)

]

=
1

2π

π
∫

−π

dφe−iνφ
∞
∫

−∞

dze−ikzz
[

Jφ(φ, z)
Jz(φ, z)

]

(8)

Matrix Gν(kz) and vector Sν(kz) can be obtained for any

number of substrates and superstrates and any localization

of patch antennas in the investigated structure, utilizing the

straightforward formula presented in appendix A.

Summing the fields (5) and (6), we obtain the integral

equation in the following form:

∞
∑

ν=−∞

eiνφ
∞
∫

−∞

dkze
ikzzGν(kz)J̃ν(kz) =

= −
∞
∑

ν=−∞

eiνφ
∞
∫

−∞

dkze
ikzz

1

4
Sν(kz) (9)

Note that due to the orthogonality properties of eigenfunc-

tions eiνφ the above problem can be solved for each eigen-

value ν separately. The integral equation (9) is solved using

Galerkin’s moment method. Following Galerkin’s procedure,

the surface current densities on the patch are expanded in terms

of a linear combination of known basis functions:

~J(φ, z) =

Nξ
∑

n=1

I(ξ)n

(

J
(ξ)
φn (φ, z)

~iφ + J (ξ)
zn (φ, z)~iz

)

(10)

where I
(ξ)
n denotes unknown coefficients for the nth mode

of the basis functions for the ξth patch. The most common

choice of the basis functions is the cavity-model function with

or without the edge-singularity condition for the tangential

component of the surface current at the patch edge. The

basis functions without the edge-singularity condition has the

following form:

J
(ξ)
φn (φ, z) =

nφπ

k2cWξ

sin
nφπ(φ− φξ)

φ′ξ − φξ
cos

nzπ(z − zξ)

z′ξ − zξ
(11)

J (ξ)
zn (φ, z) =

nzπ

k2cLξ
cos

nφπ(φ− φξ)

φ′ξ − φξ
sin

nzπ(z − zξ)

z′ξ − zξ
(12)

with kc =

√

(

nφπ

Wξ

)2

+
(

nzπ
Lξ

)2

where nφ, nz = 0, 1, . . . ,∞

and their combination denotes the mode number of the basis

function. The spectral amplitudes of the current distribution
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are calculated from:

J̃u(kz) =
1

2π

φ′

ξ
∫

φξ

dφe−iuφ

z′ξ
∫

zξ

dze−ikzzJ(φ, z) (13)

Substituting the calculated spectral components of the cur-

rent distributions into (9) and then using the chosen basis

functions as testing functions and integrating the obtained

equation over the patch area, the following matrix equation

is obtained:

(Zφφ + Zφz + Zzφ + Zzz) I = (Vφ +Vz) (14)

where I = [I
(1)
1 , . . . , I

(1)
N1
, . . . , I

(Ξ)
1 , . . . , I

(Ξ)
NΞ

]T (Nξ - number

of modes for the ξth patch antenna). When the patch antennas

are placed on the Ψ layers and when on each layer there are

Ξψ (ψ = 1, . . . ,Ψ) patches, the matrix Z(·) and vector V(·)

are constructed as follows:

Z(·) =







Z11
(·) · · · Z1Ψ

(·)

...
. . .

...

ZΨ1
(·) · · · ZΨΨ

(·)






, V(·) =







V1
(·)

...

VΨ
(·)






(15)

The dimensions of each submatrix Z
pq

(·) and the length of the

subvector V
p

(·) (p, q = 1, . . . ,Ψ) depend on the number of

patch antennas located on each layer. If we assume that the

surface current density for ξth patch antenna has a different

number of expansion terms, the total number of considered

modes for the entire structure equals N , defined as follows:

N =

Ψ
∑

ψ=1

Mψ, Mψ =

Ξψ
∑

ξ=1

Nψ
ξ (16)

where Mψ is a total number of modes on ψth layer and Nψ
ξ is

a number of surface current density expansion terms for the ξth

antenna on the ψth layer, with Ξψ being a number of antennas

on the ψth layer. With this assumption, the submatrix Z
pq

(·)

and the subvector V
p

(·) (p, q = 1, . . . ,Ψ) are of dimensions

Mp ×Mq and Mp × 1, respectively, and have the form:

Z
pq

(·) =









Z
pq,11
(·) · · · Z

pq,1Ξq
(·)

...
...

Z
pq,Ξp1

(·) · · · Z
pq,ΞpΞq
(·)









, V
p

(·) =









V
p,1
(·)

...

V
p,Ξp
(·)









(17)

The terms of the submatrices Z
pq,st

(·) and subvectors V
p,s

(·) (s =
1, . . . ,Ξp, t = 1, . . . ,Ξq) are defined as follows:

(Zpq,stx,y )vw =

∞
∫

−∞

dkz

∞
∑

u=−∞

J̃p,sxv,−u(−kz)G
pq
xy,u(kz)J̃

q,t
yw,u(kz) (18)

(Vp,s

(·) )v =

∞
∫

−∞

dkz

∞
∑

u=−∞

J̃p,sxv,−u(−kz)S
p
u(kz) (19)

where x, y = (φ, z) Spu(·) is pth element of vector Su(·)
defined in (7). Note that the elements of matrix Z in (14)

allows the determination of the coupling between the patch

antennas.

The procedure for constructing the Green matrix G and the

vector S is presented in appendix A.

III. IMPEDANCE OF THE PATCH ANTENNA AND THE

RADIATION PATTERN

In order to calculate the impedance ZD, of a single probe-

fed patch antenna placed on layer κ′ in the structure, we can

use the following formula [15]:

ZD = −
1

2πIf

κ′
−1

∑

κ=1

rκ+1
∫

rκ

dρ

∞
∑

ν=−∞

eiνφf ×

∞
∫

−∞

dkze
ikzzfG

′κ
ν (kz)J̃ν(kz) (20)

with vector G
′κ
ν (·) defined in appendix B.

The far-zone radiated fields in the spherical coordinates are

given by [15]:

[

Eθ
Eφ

]

∼=
1

sin θ

[

−1 0

0
√

µ0

ε0

]

−ieik0r

πr

∞
∑

ν=−∞

eiνφ ×

(−i)ν

H
(1)
ν (k0rK sin θ)

Γν(k0 cos θ)J̃ν (k0 cos θ) (21)

where the elements of matrix Γν depend on the location of

the patch antennas in the structure. Matrix Γν is defined in

appendix B.

IV. RESULTS

In this section the numerical results of several chosen an-

tenna configuration are presented. The calculations of the input

impedances of single antenna configurations and the radiation

patterns for chosen single antennas and antenna arrays are

performed and the obtained results are compared with those

presented in the literature and our own measurements.

Fig. 2. Deformed integration path.

Along the original path of integration, branch-point singu-

larities and pole singularities are encountered [30], [31], which

makes the integrals (18) and (19) not-integrable along the

real axis on the complex kz plane. To avoid these branch-

point singularities, a deformed path, proposed in [31] and

shown in Fig. 2, is chosen. The points P1, P2 and P3 are

defined as follows: P1 = k0(1 − iT1), P2 = k0
√

1 + T 2
2 ,

P3 = k0
√

1 + T 2
3 , where parameters T1, T2, and T3 need

to be chosen properly to obtain accurate results. From the

performed calculations and according to [31], for the presented

examples the values of these parameters are as follows:

T1 = (0.2− 0.5), T2 = (20− 30), and T3 = (1.1− 5)T2. For

the presented examples of input impedance calculation, it was

sufficient to select 30 terms for the convergence of u-series of

(18) and (19). In the case of radiation pattern calculation 10
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terms were found to be sufficient for the convergence of these

series.

The first example is a single patch structure proposed in

[32]. The antenna is situated on a single dielectric substrate.

The schematic representation of the structure with its dimen-

sions is illustrated in Fig. 3 along with the calculated real

and imaginary parts of the antenna input impedance versus

frequency. The obtained results are compared with calculations

presented in [19], [12] and measurement results from [32],

and good agreement is achieved, which validates the proposed

approach.

Fig. 3. The geometry of the antenna and calculated input impedance of
the HE01 mode versus the frequency for the antenna with the dimensions:
r1 = 5 cm; εr = 2.32; h = 0.795 mm; L = 3 cm; W = 4 cm; φf = 0,
zf = 1 cm.

Next, the influence of the superstrate thickness on the

antenna input impedance is investigated. The dimensions of the

structure are the same as in the first example, and a superstrate

layer with a different thickness t is assumed. The calculated

real and imaginary parts of the antenna input impedance

versus the frequency with the structure geometry are presented

in Fig. 4. The existence of the superstrate layer lowers the

resonant frequency of the antenna. The results are consistent

with those presented in [19].

Fig. 4. The geometry of the antenna and calculated input impedances of the
HE01 mode versus the frequency for the different values of the superstrate
thickness. Structure dimensions: r1 = 5 cm, εr1 = 2.32, εr2 = 2.32,h =
0.795 mm, L = 3 cm, W = 4 cm; probe feed φf = 0, zf = 1 cm. Solid
line - resistance, dashed line - reactance.

The third example is a single patch antenna situated on a

dielectric substrate and an air gap between the substrate and

the ground cylinder with a thickness s. The input impedance

characteristics for different air gap thicknesses s are presented

in Fig. 5. The obtained results are compared with those pre-

sented in [17]. As the considered structure was investigated in

[17] as the resonance problem, only the resonance frequencies

are marked in Fig. 5. From the obtained results, it is seen that

the resonant frequency increases as the air gap thickness is

increased, until the thickness reaches a value of 5 mm, for

the considered case, when the resonant frequency starts to

decrease. This is due to the effective permittivity of the region

under the patch, which lowers with the increasing thickness

of the air gap. With high values of the air gap thickness,

the effective permittivity of the region varies slightly and the

thickness of the region under the patch starts to dominate the

effect, which reduces the resonant frequency. The obtained

results agree well with those presented in [17]. It can be

seen that the half-power bandwidth of the structure increases

considerably due to the existence of an air gap which is also

consistent with the calculations presented in [17].

Fig. 5. The geometry of the antenna and calculated input impedances of the
HE01 mode versus the frequency for different air gaps (εr1 = 1) of thickness
s; ground cylinder radius r1 = 20 cm; substrate permittivity εr2 = 2.32 and
thickness h = 2.4 mm; antenna dimensions: L = 8 cm, W = 16.8 cm; probe
feed φf = 0, zf = 2 cm. Solid line - resistance, dashed line - reactance.

(a) (b)

Fig. 6. Calculated radiation pattern around the resonance of the rectangular
patch on a single substrate εr1 = 2.3 for the HE10 mode (|Eφ|) and the
HE01 mode (|Eθ|) at f = 1.2 GHz, and the HE11 mode at f = 1.7
GHz. Structure dimensions: r1 = 10 cm, h = 2 mm. L = W = 8 cm.
(a) Radiation pattern versus φ, in the plane θ = 90◦ . (b) Radiation pattern
versus θ in the plane φ = 0◦ .

Next, the radiation patterns for single and multiple antenna

configurations are investigated. Fig. 6 shows the radiation

pattern around the resonance of a single rectangular patch
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on a single substrate, as proposed in [15], for the HE10

and HE01 modes at f = 1.2 GHz and the HE11 mode at

f = 1.7 GHz. The obtained results agree well with those

presented in [15], except for the HE01 modeEθ . Note, that the

results calculated for the HE01 mode strongly depend on the

calculation of the spectral amplitude of the current distribution

from (13) for the case where nφ = 0. From the performed

calculations, we found out that the results presented in [15]

were obtained by wrongly calculating the spectral amplitude

of the current distribution for the case where nz = 0 and

nφ = 0. Substituting (11) and (12) to (13), the values of these

spectral amplitudes in this case take the form:

J̃u=0,φ(nφ=0,nz)(kz) = 0

J̃u=0,z(nφ=0,nz)(kz) =
1

2π

φ′

ξ
∫

φξ

dφ

z′ξ
∫

zξ

dze−ikzz ×

nzπ

k2cLξ
sin

nzπ(z − zξ)

z′ξ − zξ

If one assumes that both of these spectral amplitudes in the

considered case equal 0, the results will be consistent with

inaccurate patterns presented in [15]. The authors in [13] have

also analyzed this example comparing their results with those

presented in [15], however, they have omitted the case for the

HE01 mode calculated versus φ in the plane θ = 90◦.

To additionally check the validity of the proposed proce-

dure, single and double antenna configurations were manufac-

tured and measured, and the obtained results were compared

with the calculated ones. The photo of the manufactured

configuration is presented in Fig. 7. The antennas were realized

on the Taconic RF-35 substrate.

Fig. 7. Photograph of the manufactured antenna configuration in the anechoic
chamber.

The calculated and measured input impedances of a single

antenna configuration for different substrate thicknesses are

illustrated in Fig. 8. Next, the superstrate of different thickness

t was added to the antenna and the obtained results are

depicted in Fig. 9. However, the manufactured antennas

produce lower resistance values than the calculated ones the

satisfactory agreement between results is achieved.

The radiation patterns of the antenna configurations were

also measured. Fig. 10 illustrates the radiation patterns around

the resonance of a single rectangular patch on a single

Fig. 8. Calculated and measured input impedances of the HE01 mode versus
the frequency for the single antenna structure with the dimensions: r1 = 5.5
cm, εr1 = 3.57, h = (0.508, 1.016) mm, L = 4 cm, W = 5 cm; probe
feed φf r2 = 4.22 cm, zf = 3.37 cm. Solid line - resistance, dashed line -
reactance.

Fig. 9. Calculated and measured input impedances of the HE01 mode versus
the frequency for different superstrate thicknesses t = (1h, 2h, 3h) for the
structure with the dimensions: r1 = 5.5 cm, εr1 = 3.57, εr2 = 10.2,
h = 0.508 mm, L = 4 cm, W = 5 cm; probe feed φf r2 = 4.22 cm,
zf = 3.37 cm. Solid line - resistance, dashed line - reactance.

substrate for the HE10 mode at f = 1.58 GHz and the

HE01 mode at f = 1.98 GHz. Fig. 11 shows the radiation

patterns around the resonances, as in Fig. 10 for a double patch

configuration on a single substrate. The antennas are located

on the same z level and are placed symmetrically around the

x axis (symmetrically, around φ = 0) with a circumferential

distance 15 cm between their centers. In the next example,

the antennas were located on different substrate layers and are

schematically presented in Fig. 12. Both layers are made with

the same dielectric material. Adding a superstrate layer to one

antenna and doubling the thickness of the substrate layer in the

other slightly lowered their resonance frequencies. However,

for both antennas the new resonance frequencies - and in

consequence the matching frequency - were the same, which

allowed the measurement of the manufactured configuration.

The obtained results are presented in Fig. 12.

As can be seen from the obtained results a satisfactory

agreement between the results was obtained. The discrepancies

may result from the manufacturing process of antennas and

the fact that the dielectric material did not surround the entire

cylinder, creating a gap on one side of the structure.

As the last example the array of rectangular patches along
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Fig. 10. The calculated and measured radiation patterns around the resonance
of the rectangular patch on a single substrate εr1 = 3.57 for: (a) the HE10

mode (|Eφ|) at f = 1.58 GHz; (b) the HE01 mode (|Eθ|) at f = 1.98 GHz.
Structure dimensions: r1 = 5.5 cm, h = 0.508 mm. L = 4 cm, W = 5 cm.
Radiation pattern versus φ, in the plane θ = 90◦. Solid line - calculation,
circle line - measurement.

Fig. 11. The calculated and measured radiation patterns around the resonance
of two rectangular patches on a single substrate εr1 = 3.57 for: (a) the HE10

mode (|Eφ|) at f = 1.58 GHz; (b) the HE01 mode (|Eθ|) at f = 1.98
GHz. Structure dimensions: r1 = 5.5 cm, h = 0.508 mm. L1 = L2 = 4
cm, W1 = W2 = 5 cm. The patches are located on the same z level and
the circumferential distance between their centers is 15 cm (symmetrically
around the x axis). Radiation pattern versus φ, in the plane θ = 90◦ . Solid
line - this method, dashed line - HFSS, circle line - measurement.

z axis is investigated. The radiation patterns of the equidistant

antenna arrays of 5, 9 and 13 patches with the same excitation

were calculated and presented in Fig. 13(a). The more antennas

in the array the narrower main lobe of the pattern. The

results well agree with the calculation of linear array of

planar patches. The equidistant array of 17 patches producing

cosecant beam extending from θ = 90◦ to θ = 135◦ (with

excitations form [33]) is calculated and its radiation pattern

is presented in Fig. 13(b). The results were compared with

those obtained from HFSS commercial simulator and good

agreement is achieved.

V. CONCLUSION

The unified procedure for creating proper matrices for a

multi-layer and multi-patch configuration of the antenna struc-

ture composed of probe-fed rectangular microstrip antennas

mounted on a cylindrical body was proposed. A full-wave

Fig. 12. The calculated and measured radiation patterns around the resonance
of two rectangular patches located on different layers of the substrate εr1 =
εr2 = 3.57 for: (a) the HE10 mode (|Eφ|) at f = 1.56 GHz; (b) the
HE01 mode (|Eθ|) at f = 1.97 GHz. Structure dimensions: r1 = 5.5 cm,
h1 = h2 = 0.508 mm. L1 = L2 = 4 cm, W1 = W2 = 5 cm. The patches
are located on the same z level and the circumferential distance between their
centers is 15 cm (symmetrically around the x axis). Radiation pattern versus
φ, in the plane θ = 90◦ . Solid line - this method, dashed line - HFSS, circle
line - measurement.

Fig. 13. The calculated radiation patterns of the HE10 mode (|Eφ|) for
the arrays of rectangular patches L = W = 5 cm, located on a single layer
of the substrate arranged along the axis of the cylinder r1 = 5 cm (for the
same φ angle) with distance λ/2: (a) arrays of 5, 9 and 13 patches located
on substrate εr1 = 3.5, h1 = 0.508 mm at f = 1.5 GHz with the same
excitation; (b) array of 17 patches located on substrate εr1 = 3.5, h1 = 2.5
mm at f = 1 GHz with the excitations form [33]. Solid line - this method,
dashed line - HFSS.

analysis and a moment-method calculation were employed.

Calculating the proper matrices for the antenna with modified

structure (e.g., additional superstrate cover or an air gap in the

substrate layer) can be performed, with proposed procedure,

automatically without the need to perform additional mathe-

matical transformations. The input impedances and radiation

patterns for several antenna examples were derived. The ob-

tained results were verified by comparing them with results

from the literature and our own measurements of manufactured

prototypes, and good agreement was achieved.

APPENDIX A

MATRIX G AND VECTOR S FOR MULTI-LAYER AND

MULTI-PATCH ANTENNA CONFIGURATION

Here, we describe a procedure for creating a Green matrix

G defined in (5) for the electric field due to the current

distribution on the patches, and vector S defined in (6) for

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

the electric field due to probe currents with the patches being

absent, for arbitrary number of substrates and superstrates and

arbitrary localization of antennas.

A. Creating the G matrix

For the structure presented in Fig. 1 composed of K − 1
dielectric layers, each with a relative permittivity εrκ (κ =
1, 2, . . . ,K−1) and a free space on the outside of the structure

εrK = 1, there are K − 1 interfaces (ρ = r2, r3, . . . , rK ),

where the boundary conditions between the tangential com-

ponents of electric and magnetic fields need to be satisfied.

Taking the field expressions in (2), the boundary condition on

the metallic surface at ρ = r1 is already imposed.

For the general case described above, the procedure can be

outlined as follows:

1) Write the boundary conditions for the tangential compo-

nents Ẽκz , Ẽκφ , H̃κ
z and H̃κ

φ in the spectral domain at each

interface in the form of a set of equations:

Ẽ1
(z,φ)(ρ = r2) − Ẽ2

(z,φ)(ρ = r2) = 0

H̃1
(z,φ)(ρ = r2) − H̃2

(z,φ)(ρ = r2) = 0

...

Ẽ
κψ−1

(z,φ) (ρ = rκψ ) − Ẽ
κψ
(z,φ)(ρ = rκψ ) = 0

H̃
κψ−1

(z,φ) (ρ = rκψ ) − H̃
κψ
(z,φ)(ρ = rκψ ) = ±J̃ψ(φ,z)(kz)

...

ẼK−1
(z,φ)(ρ = rK) − ẼK(z,φ)(ρ = rK) = 0

H̃K−1
(z,φ) (ρ = rK) − H̃K

(z,φ)(ρ = rK) = 0

2) Rewrite the set of equations in matrix form, which for a

chosen number ν takes the following form:

XνAν = Fν (22)

where Xν is a square matrix of dimension 4(K − 1), the ele-

ments of which are the expressions standing next to unknown

coefficients. Aν is a vector of length 4(K − 1):

Aν =
[

Aeν1, A
h
ν1, A

e
ν2, A

h
ν2, A

′e
ν2, A

′h
ν2, . . . ,

Aeνkψ , A
h
νkψ

, A
′e
νkψ

, A
′h
νkψ

, . . . , AeνK , A
h
νK

]T

Fν is a vector of length 4(K − 1) of the following form:

Fν =
[

0, . . . , J̃1
φν(kz),−J̃

1
zν(kz), . . . ,

J̃ψφν(kz),−J̃
ψ
zν(kz), . . . , J̃

Ψ
φν(kz),−J̃

Ψ
zν(kz), . . . , 0

]T

where elements J̃ψφν(kz) and −J̃ψzν(kz) for ψ = 1, . . . ,Ψ
are located in the 4(κψ − 1) − 1 and 4(κψ − 1) positions,

respectively.

3) In the next step, the matrix relation between the 2Ψ spectral-

domain patch surface current densities and the 2Ψ chosen

field amplitudes needs to be obtained. It is possible to pick

any arbitrary amplitudes. Keeping in mind that the aim of the

analysis is to find the electric field on the patch the best choice

is to pick the amplitudes of the fields in regions located above

or below the patches. Let us choose Ψ pairs of amplitudes

(Aeνκψ , A
h
νκψ

) of the field in regions κψ (above the patches).

With this assumption, we rearrange the matrix equation (22)

so that the chosen amplitudes are moved to the top of the

amplitude vector, and the discontinuity equations with current

densities are written first. The resultant matrix equation has

the following form:
[

X′

1,ν X′

2,ν

X′

3,ν X′

4,ν

] [

Acν

Arν

]

=

[

J̃ν
0

]

(23)

which can be easily rewritten into two separate matrix equa-

tions, as follows:

X′

1,νAcν +X′

2,νArν = J̃ν (24)

X′

3,νAcν +X′

4,νArν = 0 (25)

where the matrices X′

jν (j = 1, . . . , 4) are composed from

matrix Xν by rearranging its rows and columns, and are of the

dimensions: X′

1ν - (2Ψ×2Ψ), X′

2Ψν - (2×(4(K−1)−2Ψ)),
X′

3ν - ((4(K−1)−2Ψ)×2Ψ) and X′

4ν - ((4(K−1)−2Ψ)×
(4(K−1)−2Ψ)). Vector Acν contains the chosen amplitudes

from the κψ regions Acν =
[

Aeνκ1
, Ahνκ1

, . . . , AeνκΨ
, AhνκΨ

]T

and vector Arν contains all the other amplitudes. The current

densities vector is arranged as:

J̃ν =
[

J̃1
φν(kz),−J̃

1
zν(kz), . . . , J̃

Ψ
φν(kz),−J̃

Ψ
zν(kz)

]T

and vector 0 is a zero vector of length (4(K − 1)− 2Ψ).
4) From (25), the relation between the coefficients Arν and

Acν is obtained:

Arν = −X′−1
4,νX

′

3,νAcν = X′

43,νAcν (26)

where X′

43,ν is a ((4(K−1)−2Ψ)×2Ψ) matrix. Substituting

(26) to (24) the following relation is derived:

Acν = (X′

1,ν +X′

2,νX
′

43,ν)
−1

J̃ν = X′′

ν
−1

J̃ν (27)

5) In order to relate the spectral-domain transverse components

of the electric fields on the patches (in regions κψ) and

the patch surface current densities, the rest of the unknown

coefficients of the fields in regions κψ (A
′e
νκψ

, A
′h
νκψ

) need to

be related to the chosen coefficients. From vector Arν and

matrix X′

43,ν , we can select rows related to the coefficients

A
′e
νκψ

and A
′h
νκψ

, and based on (26) we obtain the following

relation:

Ac2ν = X′′

43,νAcν (28)

where Ac2ν =
[

A
′e
νκ1

, A
′h
νκ1

, . . . , A
′e
νκΨ

, A
′h
νκΨ

]T

and X′′

43,ν is

a 2Ψ× 2Ψ matrix, which is composed from the X′

43,ν matrix

by selecting rows (4(κψ − 1)− 1) and (4(κψ − 1)).
6) The relation between the spectral-domain transverse com-

ponents of the electric field on the patch (in region κ) and the

patch surface current densities can be written by the following

matrix equation:
[

Ẽ
patch
φν (kz)

Ẽpatchzν (kz)

]

=
[

Y1ν Y2ν

]

[

Acν

Ac2ν

]

=

=
(

Y1ν +Y2νX
′′

43,ν

)

Acν =

=
(

Y1ν +Y2νX
′′

43,ν

)

X′′

ν
−1

J̃ν (29)
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where Y1ν and Y2ν are 2Ψ × 2Ψ matrices, the elements

of which are the expressions standing next to the unknown

coefficients in the κψ regions.

The resultant Gν matrix, which for a given ν is of the

dimension (2Ψ × 2Ψ), is then evaluated from the following

equation:

Gν =
(

Y1ν +Y2νX
′′

43,ν

)

X′′

ν
−1

(30)

B. Creating the S vector

Similar to the procedure for calculating the G matrix,

the procedure for calculating the S vector for the structure

with an arbitrary number of superstrates and substrates can

be derived. To derive the electric fields, tangential to the

patches, due to the probe with the patch being absent, we

need to impose the continuity conditions on the tangential

components of the electric and magnetic fields at the interfaces

ρ = r2, r3, . . . , rK . The field expressions in (3) satisfy the

boundary condition on the metallic surface at ρ = r1.

The procedure can be outlined as follows:

1) Write the boundary conditions for the tangential compo-

nents Ẽκz , Ẽκφ , H̃κ
z and H̃κ

φ (κ = 1, . . . ,K− 1) in the spectral

domain at each interface in the form of a set of equations:

Ẽκ(z,φ)(ρ = rκ+1) − Ẽκ+1
(z,φ)(ρ = rκ+1) = 0

H̃κ
(z,φ)(ρ = rκ+1) − H̃κ+1

(z,φ)(ρ = rκ+1) = 0

2) Rewrite the set of equations in matrix form, which for a

chosen number ν takes the following form:

PνBν = Qν (31)

where Pν is a square matrix of dimension 4(K − 1), the ele-

ments of which are the expressions standing next to unknown

coefficients. Bν is a vector of length 4(K − 1) of the form:

Bν =
[

Beν1, B
h
ν1, B

e
ν2, B

h
ν2, B

′e
ν2, B

′h
ν2 . . . ,

Beνκ, B
h
νκ, B

′e
νκ, B

′h
νκ, . . . , B

e
νK , B

h
νK

]T

Qν is a vector of length 4(K − 1), the elements of which are

the integral expressions concerning the probe excitation. Since

the field expressions depend on the ρ′ value, the elements of

matrix Qν also have a different form and have to be derived for

particular cases of the ρ′ value. In each region, in the substrate

layers, the fields are defined by function 1 (for rκ ≤ ρ ≤ ρ′) or

function 2 (for ρ′ ≤ ρ ≤ rκ+1) for κ = 1, 2, . . . , κΨ − 1. The

value of the Qν matrix elements are calculated by integrating

the appropriate expression over the probe length (from r1
to rκψ ). Considering above, the integrated functions have to

change when integration path crosses substrate layers. For

example, while integrating the expression in the range (r1, r2)
the continuity condition at interface ρ = r2 has to consider

function 2 in both regions. Next, while integrating in the range

(r2, r3), the continuity condition at interface ρ = r2 has to

consider function 1 in both regions.

3) In the next step, we pick the layers for which the unknown

coefficients are to be calculated in the function of the coef-

ficients in the other layers. Since the aim of the analysis is

to calculate the electric fields in the layers where the patches

are located, the most reasonable choice is to pick layers above

the patches (layers κψ) or below the patches (layer κψ − 1).

Let us choose the layers located above the patches. In this

case, equation (31) needs to be rearranged so that the unknown

amplitudes from the chosen layers are moved to the top of the

amplitude vector. With these assumptions, the following set of

matrix equations is obtained:

P′

1νBcν +P′

2νBrν = Q1ν (32)

P′

3νBcν +P′

4νBrν = Q2ν (33)

where vector Bcν contains the amplitudes from the κψ layers

in the form:

Bcν =
[

Beνκ1
, B

′e
νκ1

, . . . , BeνκΨ
, B

′e
νκΨ

,

Bhνκ1
, B

′h
νκ1

, . . . , BhνκΨ
, B

′h
νκΨ

]T

and vector Brν contains all the other amplitudes. Matrices

P′

jν (j = 1, . . . , 4) are composed from matrix Pν by

rearranging its rows and columns, and are of dimensions: P′

1ν

- (4Ψ× 4Ψ), P′

2ν - (4Ψ× (4(K− 1)− 4Ψ)), P′

3ν - ((4(K−
1)−4Ψ)×4Ψ), and P′

4ν - ((4(K−1)−4Ψ)×(4(K−1)−4Ψ)).
4) From (33), the relation between the coefficients Brν and

Bcν is derived, and substituting it to (32) the amplitude vector

in the chosen layer is obtained in the form:

Bcν = P′′−1
ν Rν (34)

where:

P′′

ν = P′

1ν −P′

2νP
′−1
4ν P

′

3ν

Rν = Q1ν −P′

2νP
′−1
4ν Q2ν

5) In order to calculate the spectral-domain transverse compo-

nents of the electric fields in regions κψ, the following matrix

equation is derived:

[

Ẽ
feed
φν (kz)

Ẽfeedzν (kz)

]

= MνBcν +Oν =

= MνP
′′−1
ν Rν +Oν = TνRν +Oν = Sν (35)

where Mν is a 2Ψ × 4Ψ matrix of which the elements are

the expressions standing next to the unknown coefficients in

the κψ regions, and Oν is a vector of length 2Ψ containing

integral expressions concerning the probe excitation. Note that

in region Ψ there are no probes and therefore the elements of

vector Oν corresponding to this region are equal to zero.

APPENDIX B

MATRICES FOR ANTENNA IMPEDANCE AND RADIATION

PATTERN

Vector G
′κ
ν (·) from (20) has the following form:

G
′κ
ν =

(

[

Dρ,κ
1,ν Dρ,κ

2,ν

]

+
[

Dρ,κ
3,ν Dρ,κ

4,ν

]

W
′′κ
43ν

)

W
′′κ
ν

−1
(36)
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where

Dρ,κ
1,ν =

{

kz
k1ρ

(

H
′ρ
ν1 −

H
r1
ν1

J
r1
ν1

J
′ρ
ν1

)

, κ = 1
kz
kκρ

H
′ρ
νκ, κ = 2, . . . , κ′ − 1

Dρ,κ
2,ν =







iωµ0ν

k2
1ρ
ρ

(

Hρ
ν1 −

H
′r1
ν1

J
′r1
ν1

Jρν1

)

, κ = 1

iωµ0ν
k2κρρ

Hρ
νκ, κ = 2, . . . , κ′ − 1

Dρ,κ
3,ν =

kz
kκρ

J
′ρ
νκ, κ = 2, . . . , κ′ − 1

Dρ,κ
4,ν =

iωµ0ν

k2κρρ
Jρνκ, κ = 2, . . . , κ′ − 1 (37)

and matrices W
′′κ
ν and W

′′κ
43ν are of dimensions 2×2, and are

calculated in similar way as matrices X
′′

ν in (27) and X
′′

43ν in

(28) by selecting the chosen amplitudes Acν = [Aeνκ, A
h
νκ]

T

for κ = 1, . . . , κ′ − 1. Note that for the first layer (κ = 1)

matrix W
′′1
43ν and elements Dρ,1

3,ν and Dρ,1
4,ν do not exist.

The elements of matrix Γν from (21) depend on the location

of the patch antennas in the structure. In the case of patch

antennas located only on the top layer at ρ = rK :

Γν(·) = X′′−1
ν (·)

where X′′

ν is defined in (27), and in this case is of dimension

2 × 2. If the patch antennas are located on the top layer at

ρ = rK and other Ψ− 1 layers at ρ = rκψ (κψ < K), matrix

Γν is of dimension 2×2Ψ and is composed from matrix X′′−1
ν

by selecting those rows related to the coefficients Aeν,K and

Ahν,K . In the case when the patches are covered by superstrate

layers (there are no patch antennas on the top layer), matrix

Γν is defined as follows:

Γν(·) = X′′′

43,ν(·)X
′′−1
ν (·)

where X′′′

43,ν is a 2 × 2Ψ matrix composed from matrix

X′′

43,ν by selecting those rows related to the coefficients Aeν,K
and Ahν,K .
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