
An empirical study on the impact of AspectJ
on software evolvability

Adam Przybyłek1

Published online: 6 December 2017
The Author(s) 2017. This article is an open access publication

Abstract Since its inception in 1996, aspect-oriented programming (AOP) has been believed
to reduce the effort required to maintain software systems by replacing cross-cutting code with
aspects. However, little convincing empirical evidence exists to support this claim, while
several studies suggest that AOP brings new obstacles to maintainability. This paper discusses
two controlled experiments conducted to evaluate the impact of AspectJ (the most mature and
popular aspect-oriented programming language) versus Java on software evolvability. We
consider evolvability as the ease with which a software system can be updated to fulfill new
requirements. Since a minor language was compared to the mainstream, the experiments were
designed so as to anticipate that the participants were much more experienced in one of the
treatments. The first experiment was performed on 35 student subjects who were asked to
comprehend either Java or AspectJ implementation of the same system, and perform the
corresponding comprehension tasks. Participants of both groups achieved a high rate of correct
answers without a statistically significant difference between the groups. Nevertheless, the
Java group significantly outperformed the AspectJ group with respect to the average comple-
tion time. In the second experiment, 24 student subjects were asked to implement (in a non-
invasive way) two extension scenarios to the system that they had already known. Each subject
evolved either the Java version using Java or the AspectJ version using AspectJ. We found out
that a typical AspectJ programmer needs significantly fewer atomic changes to implement the
change scenarios than a typical Java programmer, but we did not observe a significant
difference in completion time. The overall result indicates that AspectJ has a different effect
on two sub-characteristics of the evolvability: understandability and changeability. While
AspectJ decreases the former, it improves one aspect of the latter.

Empir Software Eng (2018) 23:2018–2050
https://doi.org/10.1007/s10664-017-9580-7

Communicated by: Sven Apel

* Adam Przybyłek
adam.przybylek@gmail.com

1 Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
Narutowicza 11/12, 80-233 Gdansk, Poland

http://orcid.org/0000-0002-8231-709X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9580-7&domain=pdf
mailto:adam.przybylek@gmail.com

Keywords Aspect-oriented programming . AOP.Maintainability . Understandability .

Separation of concerns . Controlled experiment

1 Introduction

The evolution of programming languages has been driven by the need to achieve better separation
of concerns (SoC). SoC is a fundamental principle that addresses the limitations of human cognition
for dealing with complexity (Chavez et al. 2011). It advocates that in order to master complexity,
one has to deal with one important issue at a time; it does not mean completely ignoring the other
issues, but temporarily forgetting them to the extent that they are irrelevant for the current topic
(Dijkstra 1976). Software engineering experts (Dijkstra 1976; Parnas 1972; Yourdon and Constan-
tine 1979) have suggested that the best way to achieve SoC is through decomposition of the system
into logically cohesive and loosely-coupled modules, which can be developed and maintained in
relative isolation. The expected benefits are improved understandability and traceability throughout
the development process, and increased potential for evolution and reuse (Arnaoudova et al. 2008;
Brito and Moreira 2004; Ossher and Tarr 2001).

Kiczales et al. (1997) found that the abstractions offered by traditional programming
paradigms are insufficient to express some issues of the problem as first-class entities in the
adopted language. If an issue cuts across the system’s basic functionality, its implementation
necessarily spreads over the program, causing code tangling and code scattering (Mens et al.
2004). Such an issue is called a cross-cutting concern. Efforts to deal with cross-cutting
concerns resulted in aspect-oriented programming (AOP). The first aspect-oriented (AO)
language was AspectJ developed as an extension to Java by Kiczales and his team (2001).
Nowadays, AspectJ is the most mature and most widely used representative of AOP. The
distinguishing characteristic of AO languages is that they provide quantification and oblivi-
ousness (Filman 2001). Quantification refers to the ability of aspects to affect multiple non-
local places in the program, whereas obliviousness states that the base code has no knowledge
of which aspects affect it where or when. Note, that there has been a debate on what are
fundamental characteristics of AOP, and some researchers have claimed that neither quantifi-
cation nor obliviousness is an essential ingredient of AOP (Rashid and Moreira 2006).

The idea behind AOP is to implement cross-cutting concerns as separate modules, called
aspects (Kiczales et al. 2001). In AspectJ, an aspect can declare new programming constructs
like pointcuts, advices, and intertype declarations. A pointcut is used to intercept well-defined
points in the execution of the program, which are referred to as join points. An advice is a
method-like construct providing behavior to be inserted at all join points picked out by the
associated pointcut. In turn, intertype declarations allow aspects to alter the static structure of
the system, e.g. by introducing new attributes or methods to a given class.

For a long time,AOPhas been presented as a paradigm that improves SoC (Hoffman andEugster
2009; Kulesza et al. 2006; Munoz et al. 2008; Sant’Anna et al. 2003; Tsang et al. 2004). However,
every new promising paradigm begins with hype – the claims about its capabilities are exaggerated
(Bezdek 1993). We were the first (Przybylek 2011) who pointed out that advocates of AOP often
wrongly identified the lexical SoC provided byAOPwith themeaning attributed to SoC byDijkstra.
Although classes are syntactically oblivious to aspects, their behavior cannot be adequately
understood in isolation, because they are not semantically oblivious to aspects (Dantas and Walker
2006; Kienzle and Guerraoui 2002; Przybylek 2011, 2013). Since semantic dependencies
are implicit, one needs to consider all aspects in the system when studying a class, because each

Empir Software Eng (2018) 23:2018–2050 2019

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

aspect can potentially change the class’s logic.Moreover, it has been indicated (Przybylek 2010;
Steimann 2006) that the paradigm that was proposed to “modularize the un-modularizable”
actually runs contrary to some fundamental modularity principles, such as low coupling,
information hiding, and explicit interfaces. Although several proposals have been developed
to restore modularity to AOP (a comprehensive review is presented by (Steimann et al.
2010)), none of them has received common acceptance among practitioners. Furthermore,
the new programming constructs that AOP provides to support software evolution, gives rise
to new evolution-related problems, such as the fragile pointcut problem and the aspect
composition problem (Mens and Tourwé 2008; Marot 2011). The question is when (and
indeedwhether) the gains obtained from the lexical separation of concerns outweighs the associated
costs. In this research, we address this question from the viewpoint of software evolution.
Accordingly, we perform two controlled experiments to determine if AspectJ improves software
evolvability as compared to Java. The first experiment was performed on 35 student subjects who
were asked to comprehend either Java or AspectJ implementation of the same system, and perform
the corresponding comprehension tasks. On average, the completion time was 29% longer for the
AspectJ version. In the second experiment, 24 student subjects were asked to implement (in a non-
invasive way) two extension scenarios to the system that they had already known. Each subject
evolved either the Java version using Java or the AspectJ version using AspectJ. On average, the
Java version required over twice as many atomic changes as the AspectJ version.

The rest of this paper is structured as follows. The next section motivates this work. Section
3 discusses considerations for experimental design and defines the GQM plan. Section 4
reviews related work on evaluation of maintainability of AO systems. Sections 5 and 6
describe our experimental designs. Section 7 presents the experimental results. Section 8
discusses threats to validity. Concluding remarks are given in Section 9.

2 Motivations

Changes to software are inevitable. Software systems change during their lifecycle to meet the
growing needs and changing requirements of users. According to Lehman and Belady (1976), the
functional content of a system must be continually increased or the system becomes progressively
less useful. Moreover, as a system evolves its modularity decreases unless extra work is done to
improve it. The modules become excessively loaded with responsibilities, while their interfaces
become polluted. This breakage in modularization lowers adaptability to new requirements and
increases the maintenance cost (Ponisio 2006).

The influence of AOP on software evolvability is unclear. On the one hand, replacing code
that is scattered across many modules with a single aspect simplifies the localization of the
relevant code during maintenance and potentially reduces the number of changes (Mortensen
2009; Tonella and Ceccato 2005). In addition, if a module does not tangle code from different
concerns, it is also potentially easier to evolve.

On the other hand, constructs such as pointcuts and advices can make the ripple effects in
AO systems far more difficult to control than in object-oriented (OO) systems. Mainstream AO
languages (e.g. AspectJ, AspectC++) rely on referencing structural properties of the program
such as naming conventions and package structure. These structural properties are used by
pointcuts to define intended conceptual properties about the program. Thus, maintenance
changes that conflict with the assumptions made by pointcuts introduce defects (Mortensen
2009; Tourwé et al. 2003). This phenomenon is called the pointcut fragility problem (Koppen

2020 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

and Störzer 2004). It occurs when a pointcut unintentionally captures or misses a given join
point as a consequence of seemingly safe modifications to the base code (Kellens et al. 2006;
Koppen and Störzer 2004). For instance, adding a new class may seem to be safe, but it
inevitably produces new join points that can be unintentionally intercepted. Kästner et al.
(2007) reported such silent changes during AO refactoring. Kellens et al. (2006) addressed the
fragile pointcut problem by declaring pointcuts in terms of a conceptual model of the base
program, rather than defining them directly in terms of how the base program is structured.
Hence, they transformed the fragile pointcut problem into the problem of keeping a conceptual
model of the program synchronized with that program, when the program evolves. Neverthe-
less, their proposal has not got through to the mainstream, because it was implemented as an
extension of CARMA, which is a barely known AO language for Smalltalk.

Moreover, the quantification and obliviousness properties of AO languages, which are the
very advantage offered by AOP, turned out to be a source of difficulties for reasoning about the
behavior of AO programs (Griswold et al. 2006; Munoz et al. 2008). Since aspects can modify
data structures or control flow in non-local places, they undermine a programmer’s ability to
reason locally about the behavior of the module (Dantas and Walker 2006). To exacerbate this,
since not all dependencies between the modules in AO systems are explicit, a maintainer has to
invest more effort to get a mental model of the program (Storey et al. 1999). He has to “weave”
all the modules that implement a given concern into a coherent unit in his mind. Creating a
mental model is crucial to comprehend a concern before attempting to modify it (Mancoridis et
al. 1998). Studies of software maintainers have shown that 30% to 50% of their time is spent
on program comprehension (Fjeldstad and Hamlen 1983; Standish 1984).

Furthermore, we demonstrated (Przybylek 2011) that the new kinds of dependencies
introduced by the AO constructs contribute to high coupling. Highly coupled systems have
long been recognized as hard to comprehend (Lieberherr and Holland 1989; Page-Jones 1980)
because their modules cannot be considered in separation from each other.

In addition, Hanenberg and Unland (2001) and Lopez-Herrejon et al. (2006) found that
step-wise development is not satisfactorily supported by AspectJ. In particular, concrete
aspects cannot be extended, while advices and concrete pointcuts cannot be overridden.
Hanenberg and Unland (2001) proposed four rules of thumb which allow one to build reusable
and incrementally modifiable aspects. However, enormous complexity is the price that has to
be paid for it. Several other works showed that ensuring a sound combination of aspects is a
challenging and difficult task. Kniesel et al. (2001) discussed weaknesses of AOP with regard
to independent extensibility. They found that there are no satisfactory means to safely combine
aspects that have been developed independently. In the general case, when aspects have not
been specifically designed for joint use and do not have intimate knowledge of their respective
implementation details, unwanted side effects may occur due to unexpected semantic interac-
tions between the aspects. McEachen and Alexander (2005) pointed out the problems resulting
from the unanticipated composition of aspects and base classes that arises when foreign
aspects are rewoven. An aspect is foreign if it is woven into a class with the resultant bytecode
being imported by another party which does not have access to the aspect source code. They
concluded that proper handling of unanticipated composition requires language extensions that
convey additional information to the aspect weaver. Furthermore, Arnaoudova et al. (2008)
demonstrated that AspectJ semantics is not intuitive in several cases.

To summarize, the question about the impact of AOP on software evolvability remains
open, and before AOP receives more acceptance in the industry, software engineers need
further evidence of the real benefits as well as the costs.

Empir Software Eng (2018) 23:2018–2050 2021

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

3 Considerations for Experimental Design and our GQM Model

3.1 Considerations for Experimental Design

A controlled experiment can be conducted with between-subjects design or within-subjects
design (Easterbrook et al. 2008). A within-subjects design is an experiment in which each
subject is exposed to more than one level of an independent variable. In a between-subjects
design, subjects are randomly assigned to groups and then each group is exposed to one and
only one level of each independent variable.

Several issues must be considered before choosing the appropriate experimental design. On
the one hand, there are two main advantages of a within-subjects design (Bordens and Abbott
2011): (1) most subject-related factors are literally identical across treatments, so they do not
obscure the effect of the independent variable; and (2) a relatively smaller number of subjects is
required in the experiment. On the other hand, a fundamental disadvantage of this research
design is the problem of “carryover effects”. Carryover effects occur when a previous treatment
alters the behavior observed in a subsequent treatment (Bordens and Abbott 2011). Further-
more, within-subject designs are also more prone to “demand effects”. A demand effect occurs
when participants in experiments interpret the researcher’s intentions and change their behavior
(either consciously or not) to satisfy the researcher (Charnessa et al. 2011).

The most problematic carryover effects with regard to experiments on program comprehen-
sion are learning effects. The subjects learn about the program each time they comprehend it.
Thus, the result of comprehending the second implementation might be better than the first,
simply because the subjects knowmore about the program and not because the implementation
is easier (Juristo andMoreno 2001; Kitchenham et al. 2002). In our comprehension experiment,
it would be easy for subjects to remember the findings. Therefore, we chose a between-subjects
design to avoid learning effect that otherwise would dominate the effect we want to measure.

In a true controlled experiments the researcher has to have control over all possible
extraneous variables. In some cases it may be impossible or undesirable to apply experimental
rigor so far as fully controlled settings, or random assignment. Providing the compromises and
limitations are stated, understood, and taken into account in all conclusions and interpretations,
such studies are referred to as quasi-experiments (Mauch and Park 2003).

Both between-subjects and within-subjects designs require that two or more groups of subjects
are exposed to the various treatments. Then, the differences among the groups are tested statistically
to determine whether these differences may be attributed to the effect of the independent variable
(Bordens and Abbott 2011). However, to detect the effect, if any, it is required to have a sufficiently
large number of subjects. Since it is very expensive and difficult to control a large number of
subjects for a long period of time, the length of a controlled experiment is often limited to a few
hours, which rules out realism in the experimental tasks (Harrison 2000; Fenton, 2001). To study
more realistic situations, many researchers forego rigorous experimental designs and act as both
experimenters and experimental subjects. This approach can be considered as a special case of the
single-subject experiment (Bordens andAbbott 2011; Harrison 2000), where single subject refers to
the participant or cluster of participants (e.g., a team) under investigation. Unfortunately, self-
experimentation is often a weak example favoring the proposed technology over alternatives
(Zelkowitz and Wallace 1998).

Many studies in software engineering rely on students as subjects. The reason for using students
is that they are easily available and willing to participate in studies as part of courses they attend
(Höst et al. 2000). If assessment is being performed on a new technology, experimenting with

2022 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

students is often the only reasonable possibility. Nevertheless, students are not necessarily repre-
sentative of professional programmers (Harrison 2000; Murphy et al. 1999). Professional program-
mers perform better than students if a technology used in the experiment is one that they use in their
daily work (Hanenberg and Endrikat 2013). The advantage of working with students is that their
prior knowledge is fairly homogeneous. Moreover, it would be extremely difficult to come by an
adequate pool of professional programmers who are experienced in AspectJ and organize them into
a set of experimental subjects.

3.2 Goal, Questions, and Metrics

We followed the Goal-Question-Metric (GQM) approach (Basili et al. 1994) to define a
measurement system for our research. An overview of the goal, questions, and metrics as
well as their interrelations is provided in Fig. 1. Our purpose is to compare Java and AspectJ
(the most prominent AO language) with respect to software evolvability.

Comparing the effort required to evolve the software system using two different program-
ming paradigms is a challenging task. If the programming experience of the subjects in one
paradigm is much higher than in the other, the experience effect can dominate the main factor
we want to observe. This is the typical situation when a new technique is compared to an
existing one (Juristo and Moreno 2001). To mitigate the influence of the experience effect, we
decomposed evolvability into understandability, which is not so prone to this effect, and
changeability, and then we measured each sub-characteristics in two separate controlled
experiments. The factor in each experiment was the programming language being used, which
is a categorical variable with two values, Java and AspectJ. In the changeability experiment,
subjects evolved a system that they had already known. In this way, we isolated the change-
ability effort from the understandability effort. Furthermore, the system incorporated two
change scenarios implemented during the laboratory sessions. Thus, subjects had hints on
how to use programming constructs to integrate new features with the existing code.

Following Bartsch and Harrison (2008), we consider a software system to be understand-
able if: (1) its output can be determined correctly by following the application’s control flow;
and (2) the identification of the output can be carried out in a short time. In turn, changeability
refers to the ease with which a change can be applied to a software system. We consider a

Fig. 1 GQM measurement plan

Empir Software Eng (2018) 23:2018–2050 2023

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

software system less changeable if: (1) it takes a long time to implement a new requirement;
and (2) this implementation requires a high volume of changes made to the source code.

Our measurement model conforms to maintenance models that have been proposed so far.
For instance, Boehm’s model (1987) consists of three major phases: understanding, modifying,
and revalidating the software. Generally, when a system is evolved, it follows a re-engineering
process that encompasses reverse engineering and forward engineering (Chikofsky and Cross
1992). Reverse engineering is the process of analyzing system modules and their relationships
in order to create a mental model of the source code (Margaret-Anne et al. 1999). Forward
engineering is the traditional process of moving from high-level designs to the physical
implementation of a system (Chikofsky and Cross 1992).

4 Related Work

4.1 Measuring Maintainability of AO Software

Although the term “software evolution” appeared in the software engineering literature in 1976
when Lehman and Belady (1976) started to formulate the laws of software evolution, it has not been
given a widely accepted definition yet. We prefer the view that software evolution occurs when
either reductive or enhancive maintenance (according to Chapin’s classification (2001)) is carried
out. These types of maintenance encompass activities that reduce, replace, add, or extend the
customer-experienced functionality (Chapin et al. 2001) and can be equated to software enhance-
ments in terms of the ISO/IEC 14764 standard (2006). Note that some authors of related work
(Bartsch and Harrison 2008; Kulesza et al. 2006) use the term “software maintenance” even though
they only perform enhancement maintenance, so, in fact, they evolve the system.

Analogically to how maintainability is perceived by the ISO/IEC 9126 standard (2001),
evolvability can be considered as both internal and external quality attributes. Correspond-
ingly, two groups of approaches for measuring it in the context of AO systems have been
proposed. The first group uses internal product metrics to predict the level of effort
required for evolving the software. Before AOP came into being, coupling and cohesion
were key principles when comparing design alternatives. The dogma was that good design
should exhibit high cohesion and low coupling (Coad and Yourdon 1991; Meyer 1989;
Yourdon and Constantine 1979) and numerous empirical studies confirmed that improve-
ments in coupling and cohesion are linked to improved maintainability (Briand et al. 1999,
2001; Hitz and Montazeri 1995). However, when we want to compare maintainability
between OO and AO software, lexical SoC must be considered as a third dimension of
modularity. Accordingly, Sant’Anna et al. (2003) defined three concern diffusion metrics
to measure lexical SoC. They also adapted the Chidamber-Kemerer metrics suite
(Chidamber and Kemerer 1994) to be applicable to AO software. Next, they developed
a framework to provide support for assessment of reusability and maintainability of AO
systems. Their framework includes measures of size, coupling, cohesion, and lexical SoC.
Then, a number of studies (Benestad et al. 2006; Greenwood et al. 2007; Hoffman and Eugster
2009; Katić et al. 2013; Kulesza et al. 2006; Lobato et al. 2008; Mguni and Ayalew 2013; Shen
et al. 2008) used those metrics as predictors of the maintenance effort. Unfortunately, using
Sant’Anna’s framework to compare evolvability between OO and AO software is problematic
due to several reasons. First, the framework does not explain how to combine multiple metrics
in order to provide a single view and allow the ranking of the examined implementations.

2024 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Second, there is no consensus on how to aggregate the measurements from the micro-level of
individual classes to the macro-level of the entire software system (Chatzigeorgiou and Stiakakis
2013; Serebrenik and van den Brand 2010). Third, as demonstrated by Przybylek (2011, 2013), the
coupling metric used in the framework does not cover all kinds of coupling dependencies in AO
software and thus favors AOP.

The second group of approaches for measuring software evolvability uses external metrics that
are focused on how much effort is required to evolve the system. Hanenberg et al. (2009), Tonella
and Ceccato (2005), Walker et al. (1999), and Hanenberg and Endrikat (2013) measured this effort
as the time required by subjects to implement a change scenario. The problemwith this approach is
that it does not take into account the quality of the solution. Well modularized code is usually more
challenging, so it requires more time to develop. Moreover, subjects can often work faster and less
carefully, reducing time, but also increasing the number of errors. Because of this tradeoff, some
researchers (e.g. Bartsch and Harrison (2008)) measured both completion time and correctness of
the solution. In turn, Hanenberg and Endrikat (2013), and Hanenberg et al. (2009) delivered test
cases to subjects and accepted the corresponding task as done only after all tests passed successfully.

In turn, Sant’Anna et al. (2003), Kvale et al. (2005), Kulesza et al. (2006), Greenwood et al.
(2007), Figueiredo et al. (2008), Lobato et al. (2008), Mortensen et al. (2012), and Mguni and
Ayalew (2013) measured evolution effort by counting the number of source code modifications
when going from one version to the next. The granularity of the change set differed among
studies from the coarser file or module level to the finer operation or statement level. A fair
balance among different granularity levels was obtained by Shen et al. (2008) who adapted the
approach introduced by Ryder and Tip (2001). At the core of this approach is the ability to
transform source code edits into a collection of atomic changes, which captures the semantic
differences between two successive releases of a program. Examples of such changes are adding
an empty module, adding an empty method/attribute, changing the body of a method, etc.

4.2 Experiments to Evaluate Maintainability of AO Software with External Product
Metrics

Several studies have been conducted to evaluate the impact of AOP on softwaremaintainability.
In general, findings from these studies are quite diverse and thus inconclusive. Studies closely
related to our work (these that use external product metrics) are summarized in Tables 1 and 2
and discussed further in this section (note that some of them additionally use internal product
metrics). They can be classified into two broad groups according to the dependent variable
under study. Studies in the first group measure the time spent to perform maintenance tasks,
while studies in the second group investigate the volume of changes made to the source code.
Note that all studies in the first group are controlled or quasi-controlled experiments, while all
studies in the second group are single subject experiments, and so do not employ statistical
inference. Although controlled experiments are considered more reliable because they reduce
internal validity threats to drawing scientifically valid inferences from the results, their exper-
imental objects often do not reflect the complexity observed in the industrial context. Indeed,
except the experiment by Tonella and Ceccato (2005), who actually did not compare Java with
AspectJ, but Java with a subset of AspectJ in a specific context, all programs under study in the
controlled or quasi-controlled experiments are representatives of small systems (see Table 2).
Similarly, we also used a small system, because we were constrained by the availability of the
subjects, which was limited to a few hours. Surprisingly, among the single subject experiments
only 2 out of 7 used notably larger (over 50 KLOC) systems.

Empir Software Eng (2018) 23:2018–2050 2025

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The other challenge of controlled experiments is to achieve realism regarding experimental
tasks. Our change scenarios are realistic for small systems and relatively big when compared to
maintenance tasks carried out in the prior controlled experiments (see Table 2). The average time
to accomplish our comprehension task was 49min for the Java version and 63min for the AspectJ
version, while the average time of implementing change scenarios using Java and AspectJ was
84min and 93min, respectively. In turn, maintenance tasks carried out by Figueiredo et al. (2008),

Table 1 Related studies investigating software maintainability

Authors Experimental
method

Experimental
subjects

Dependent variables Succeeded
paradigm

Walker et al. (1999) Quasi-experiment,
between

5 Students and
1 Professional

Completion time OOP?

Tonella and Ceccato (2005) CE, between 12 Students Completion time
(understanding)

AOP

Completion time (total) AOP?
Bartsch and Harrison (2008) Quasi-experiment,

between
11 Professionals Completion time OOP?

Structural changes OOP?
Hanenberg et al. (2009) CE, within 20 Students Completion time OOP
Hanenberg and

Endrikat (2013)
CE, within 15 Students Completion time OOP

Sant’Anna et al. (2003) SSE 1 Team Structural changes AOP
Kvale et al. (2005) SSE 1 Team Structural changes AOP
Kulesza et al. (2006)
Greenwood et al. (2007)

SSE 1 Team Structural changes AOP

Figueiredo et al. (2008) SSE 1 Team Structural changes –
Lobato et al. (2008) SSE 1 Team Structural changes AOP
Mortensen et al. (2012) SSE 1 Team Structural changes AOP
Mguni and Ayalew (2013) SSE 1 Team Structural changes AOP

CE controlled experiment; between between-subject design; within within-subject design; SSE single-subject
experiment;? results are not statistically significant

Table 2 Related studies – additional information

Authors Experimental objects Time* Granularity level of the
change set

OO AO

Walker et al. (1999) A distributed digital library, 1.5 kloc 95 136 N/A
Tonella and Ceccato (2005) java.awt package (jdk 1.4), 36 kloc 54 39 N/A
Bartsch and Harrison (2008) An online shopping system, 0.5 KLOC 49 60 LOC
Hanenberg et al. (2009) A game, 9 classes 124 183 N/A
Hanenberg and Endrikat (2013) A library system, 26 classes 88 167 N/A
Sant’Anna et al. (2003) Portalware, 1 KLOC N/A N/A LOC; operations; modules
Kvale et al. (2005) Java Email Server, 1.8 KLOC N/A N/A LOC; modules
Kulesza et al. (2006)
Greenwood et al. (2007)

Health watcher, 5.5 KLOC N/A N/A LOC; modules

Figueiredo et al. (2008) MobileMedia, 3 KLOC N/A N/A LOC; operations; modules
Lobato et al. (2008) MobiGrid framework, 0.7 KLOC N/A N/A operations; relationships;

modules
Mortensen et al. (2012) InstanceDrivers, 1.6 KLOC;

PowerAnalyzer, 13.9 KLOC;
ErcChecker, 51.6 KLOC

N/A N/A LOC; modules; files

Mguni and Ayalew (2013) Jasperreports, 137 KLOC;
OpenBravoPOS, 53 KLOC

N/A N/A LOC; operations; modules

* the average time of executing all experimental tasks (in minutes)

2026 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Kulesza et al. (2006), Kvale et al. (2005), and Mortensen et al. (2012) seem to be bigger than any
maintenance tasks carried out in a controlled setting. What is interesting, change scenarios
involved by Mguni and Ayalew (2013), who evolved the biggest systems, were smaller than
our change scenarios regarding the number of lines of code required to implement the change.

Although we leveraged experimental practices elaborated by others (mainly by Bartsch and
Harrison (2008), Hanenberg and Endrikat (2013)), our work differs from previous studies in
several respects. First of all, to reduce the experience effect, we divided evolvability into two
sub-characteristics, understandability and changeability, and then evaluated each separately
adjusting experimental settings. Moreover, contrary to Hanenberg and Endrikat (2013), we
think that within-subjects experiments in software maintenance are flawed due to learning
effects, and so we employed a between-subjects design. In turn, to reduce the problem of error
variance, we used many more subjects than the related between-subjects experiments. Indeed,
Bartsch and Harrison (2008) did not obtain statistically significant results, while Walker et al.
(1999) did not conduct hypothesis testing probably due to the limited number of subjects.

Furthermore, the studies in the second group used multiple metrics, each of which measures
different kinds of change (i.e. element added, modified or deleted) at different levels of granularity
(e.g. modules, operations, LOC). This approach makes it difficult or impossible to determine the
overall difference in evolution effort between theAOversus theOO code. For instance, compared to
its AspectJ counterpart, the Java implementation of MobileMedia (Figueiredo et al. 2008) required
34% fewer modules to be added, but 20% more modules to be modified as it evolved through all
change scenarios. It also required fewer LOC to be added andmodified, but more LOC to be deleted
(see Table 3). Thus, we can not say which paradigm performed better. To deal with these issues, our
metric combines different kinds of change into a single view. In addition, ourmetric differentiates the
significance of a particular change (e.g. multiple changes inside amethod body are counted the same
as a single change to a method signature), so it more accurately reflects the true evolution effort.

Finally, in contrast to the previous work, we provide what is called a “reproducible
package” (Torkar et al. 2017) to foster replication of our experiments. The package, which
is available at http://przybylek.wzr.pl/ESE/, includes the experimental materials, the raw data,
the processed dataset, and R scripts to plot data, test hypotheses, etc.

Walker et al. (1999) conducted one of the first experiments to understand how the
separation of concerns provided by AOP affects a programmer’s ability to accomplish system
modification tasks. A multi-threaded, distributed system (a digital library) was used in the
experiment. The system had two implementations; one was written in AspectJ and another in
Emerald (an OO language). Six participants (5 students and 1 professional) were allocated to
treatment groups based on their backgrounds (e.g. participants with previous knowledge of
Emerald were assigned to the Emerald group). Then, the participants individually performed
three change tasks using either AspectJ or Emerald. Among some other measurements, the
time needed to complete the tasks was measured. The AspectJ participants were slower at the

Table 3 Measures of changeability in MobileMedia (derived from the original study)

Modules Operations LOC

Added Deleted Changed Added Deleted Changed Added Deleted Changed

OO AO OO AO OO AO OO AO OO AO OO AO OO AO OO AO OO AO
45 68 9 9 66 55 284 360 105 100 109 145 3268 3513 1251 1111 176 382

Empir Software Eng (2018) 23:2018–2050 2027

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://przybylek.wzr.pl/ESE/
http://mostwiedzy.pl

change tasks, but statistical inference was not performed due to the lack of random assignment
and the small size of the groups.

Tonella and Ceccato (2005) focused on a specific kind of cross-cutting concerns, the
scattered implementation of methods declared by interfaces that do not belong to the principal
decomposition. They called such interfaces aspectizable, and migrated them to aspects in a
number of classes from the JDK 1.4 java.awt package (36 KLOC). Next, they designed a
controlled experiment to measure the maintenance and comprehension effort required to
complete two maintenance tasks. The independent variables were the source code being used
(either Java or AspectJ) and the task being executed. In both settings, execution of Task 1
required the modification of one file (2 lines of code), while Task 2 required changing seven
files (18 lines of code). The dependent variables were the maintenance time (total time
measured during the execution of a maintenance task) and the understanding time (time
measured while the programmer is comprehending the code structure or is determining the
code fragments to be changed). It turned out that aspectization of the aspectizable interface
implementations resulted in a significantly lower understanding time, while the differences in
the overall maintenance time were not statistically significant at the 5% level.

Bartsch and Harrison (2008) conducted a quasi-experiment in which 11 subjects were asked
to comprehend either Java or AspectJ version of an online shopping system (about 0.5 KLOC)
and carry out a maintenance task. They identified the following response variables to measure
maintainability: (1) the amount of time required to identify all modules in the system; (2) the
percentage of correctly identified modules; (3) the amount of time required to identify the
system output; (4) subjects’ opinions of software understandability; (5) the number of LOC
changed in order to implement a new requirement; and (6) the amount of time required to
implement the requirement. Since the subjects stayed at their home while participating in the
experiment, the researchers did not have control over extraneous variables. All experimental
materials and a questionnaire, which consisted of questions reflecting the response variables,
were sent via an email. The subjects were also asked to mail back their solutions. The result of
the experiment was that for none of the measurements a significant difference between the two
paradigms at the 10% level was found. Nevertheless, in the context of our research it is still
worth looking at the mean values for their third response variable, because we measured the
same variable using a similar approach. The average completion time for their AO group was
31% longer than for the OO group, while in our experiment, this difference amounts to 29%.

Hanenberg et al. (2009) found that the overall development time for cross-cutting concerns
using Java was shorter than the development time for such concerns using AspectJ. Never-
theless, for two tasks (logging and null-pointer-checks) subjects using AspectJ performed
better. Their study was performed on 20 students as a within-subject experiment. As a target
application, they used a game consisting of 9 classes. Using this application, nine tasks needed
to be completed, each one in Java as well as AspectJ whereby the order of the programming
language was randomly chosen. The programming tasks represented cross-cutting concerns
that were well suited to being implemented in AspectJ. Hanenberg and Endrikat (2013)
extended the research in new settings. They developed a simple Java application which
represented a library system (26 classes). Next, they defined 9 programming tasks to conduct
a new within-subject experiment. The tasks were designed in a way that subjects needed to
perform changes on aspect code that they previously wrote on their own. The AspectJ-based
solutions required significant more time than the Java solutions for 5 tasks. For the other 4
tasks there was no statistically significant difference. The experiment was performed with 15
student subjects who attanded an AOSD master course.

2028 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sant’Anna et al. (2003) conducted a quasi-controlled experiment to compare the use of
AspectJ and Java to implement Portalware (about 60 modules and over 1 KLOC). Portalware
is amulti-agent system (MAS) that supports the development andmanagement of Internet portals.
The experiment team (3 PhD candidates and 1 MSc student) developed two versions of the
Portalware system: an AO version and an OO version. Next, the same team simulated seven
maintenance/reuse scenarios that are recurrent in large-scale MAS. For each scenario, the
difficulty of maintainability was defined in terms of structural changes to the artifacts in the
AO and OO systems, such as number of modules added or changed, number of added or changed
LOC, and so forth. The total lines of code, that were added or copied to perform the maintenance
tasks, equaled 534 for the OO approach and 472 for the AO approach. The OO approach required
7 modules and 6 LOC to be modified, while the AO approach needed 3 modules and 10 LOC.

Kvale et al. (2005) compared AspectJ and Java in COTS-based development. They
refactored Java Email Server (1.8 KLOC) to AspectJ and then performed three maintenance
tasks on both versions. The number of LOC and modules that required to be changed (added,
modified or deleted) in the OO implementations were 235 and 15 respectively. The corre-
sponding values for the AO implementations were 221 and 3.

Kulesza et al. (2006) evolved AspectJ and Java implementations of a health complaint
system, called HealthWatcher (over 5.5 KLOC). The purpose of the system was to improve the
quality of the services provided by health care institutions. Some of the cross-cutting concerns
were refactored to aspect from the first release, while others were refactored as new versions
were released. In the maintenance phase of their study, they introduced a set of 8 new use cases.
It was found that more modules were needed to be modified in the AspectJ version. Surpris-
ingly, Greenwood et al. (2007), who refer to the same study, report that 111 modules needed to
be changed in the AspectJ implementation, and 143 modules in the Java implementation. In
turn, both papers report that more line of codes needed to be added in the Java implementation.

Figueiredo et al. (2008) assessed the impact of AspectJ on a number of changes applied to
MobileMedia (3 KLOC). MobileMedia is a software product line for applications that manip-
ulate photo, music, and video on mobile devices. The original release was available in both
AspectJ and Java (the Java version used conditional compilation as the variability mechanism).
Then, a group of five post-graduate students was responsible for implementing 7 successive
evolution scenarios. Each new release was created by modifying the previous release of the
respective version. The scenarios comprised of different types of changes involving mandatory,
optional, and alternative features, as well as non-functional concerns. Table 3 presents summa-
rized results over all change scenarios. Besides, it was found that AspectJ usually did not cope
with the introduction of mandatory features. Moreover, depending on the evolution scenario,
AspectJ pointcuts were more fragile than conditional compilation.

Lobato et al. (2008) applied 4 heterogeneous evolutionary changes to the MobiGrid
framework (0.7 KLOC). MobiGrid is a mobile agent system, which is employed to encapsu-
late and execute long processing tasks using the idle cycles of a network of personal
workstations. MobiGrid was originally implemented in Java, then refactored to AspectJ and
evolved in both versions by the researchers. Both paradigms gave the same results with respect
to the number of added/changed/removed components. The main difference was the number of
added operations that equaled to 10 for the AO implementation, and 17 for the OO counterpart.

Mortensen et al. (2012) adopted AOP in three proprietary VLSI CAD programs:
InstanceDrivers (1.6 KLOC), PowerAnalyzer (13.9 KLOC), and ErcChecker (51.6 KLOC).
They refactored 5 cross-cutting concerns as aspects in the first program, 8 in the second, and 7
in the third. Because the programs were originally implemented in C++, they used AspectC++.

Empir Software Eng (2018) 23:2018–2050 2029

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Then, they followed the evolution of the applications across several revisions for both
paradigms. They used 6 revisions in InstanceDrivers, 7 in PowerAnalyzer, and 3 in
ErcChecker. The AO revisions required 5.8%, 4.9%, and 2.3% fewer line changes in
InstanceDrivers, PowerAnalyzer, and ErcChecker, respectively. They also resulted in a
11.7%, 5.3%, and 1.6% reduction in the number of modules changed.

Mguni and Ayalew (2013) studied the maintainability of two COTS-based systems
originally implemented in Java. The first system was a reporting tool – Jasperreports
(137 KLOC). The second was OpenBravoPOS (53 KLOC), which provides functional-
ities for retail business. Mguni & Ayalew refactored both systems using AspectJ. Session
management, logging, and exceptional handling were moved into aspects in
OpenBravoPOS, while synchronization, object retrieval, and exceptional handling were
aspectized in Jasperreports. They also defined two maintenance tasks. Maintenance task I
referred to the introduction of a new feature to evaluate the execution time of SQL
statements. Maintenance task II referred to the replacement of the logging component
with another component of the same functionality. Next, they carried out maintenance
task I on both systems and maintenance task II on OpenBravoPOS. In the OO imple-
mentation of OpenBravoPOS, the change affected 12 operations and 9 modules, while in
the AO implementation, the change affected 2 operations and 2 module. For the
Jasperreports OO implementation, the change affected 10 operations in 2 modules, while
in the AO implementation, the change affected only 1 operation in 1 module.

4.3 Other Studies

Coady and Kiczales (2003) compared the evolution of two versions (C and AspectC) of four
crosscutting concerns in FreeBSD. First, they refactored the crosscutting concerns (page
daemon activation, prefetching for mapped files, quotas for disk usage, and tracing blocked
processes in device drivers) into aspects. These implementations were then rolled forward into
their subsequent incarnations. In each case the AspectC implementation better facilitated
independent development and localized change.

Kästner et al. (2007) evaluated the suitability of AspectJ to implement features in a software
product line. They used AspectJ to refactor the embedded database system Berkeley DB into
38 features. The resulting feature code was hard to understand and maintain due to strong and
implicit coupling and fragile pointcuts.

Munoz et al. (2008) showed that aspects offer efficient mechanisms to implement cross-
cutting concerns, but that aspects can also introduce complex errors in case of evolution. To
illustrate these issues, they implemented and then evolved a chat application. They found that
it is very hard to reason about the aspects impact on the final application.

Kouskouras et al. (2008) built an emulator of a telecommunications exchange,
allowing the user to configure it with commands and to emulate simple calls between
subscribers. They developed three different implementation alternatives. The first one
followed a simplistic solution applying OOP. The second made use of the Registry
pattern. The third applied AspectJ to implement the Registry pattern. Next, they inves-
tigated the behavior of the designs at a specific extension scenario. The extension
scenario involved the addition of several new commands and parameters. Since they
made the source code available for us, we could apply our metric. The differences in
Atomic Changes between various versions were less than 3%. Each version turned out to
be very extensible and reusable.

2030 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Katić et al. (2013) explored the educational benefits of introducing AOP into a program-
ming course. They separated 75 students into two groups: AO group (experimental group) and
OO group (control group). The AOP group was given a lecture and a tutorial demonstrating
AOP’s theoretical and technical topics. Both groups had the same laboratory assignment, with
the only difference being that the first group had to solve it using C#, while the second group
had to use PostSharp. On average, subjects in the AOP group required around 15% fewer lines
of code to implement the assignment.

Pereira et al. (2017) proposed a framework (AOF4OOP) to support semi-transparent
schema evolution for object-oriented databases. The framework uses AspectJ to modularize
the persistence concern of affected application. As a result, the class structure of the application
can be freely changed in its source code, being then incrementally reflected into the database.
To evaluate AOF4OOP, they developed a proof of concept application in two versions. One
version used AOF4OOP as a persistence layer, while the other used DB4O, which is an
embeddable object database for Java. Then, they defined a change scenario that required
updating the class structure of the application. It turned out that, the evolution of the
AOF4OOP-based version required fewer lines of code and modules to be added.

5 Experimental Design for Software Understandability

5.1 Objects

A flagship AspectJ application called Telecom was chosen to be used in this experiment.
Telecom is part of the AspectJ distribution (www.eclipse.org/aspectj/). It is a telephony system
simulator in which customers make, accept, merge and hang-up calls. In addition to these basic
operations, there is a timing concern which measures the total connection time per customer.
There is also a billing concern that charges customers for the calls they make, according to the
amount of time they used and the types of calls they made. Following maintenance tasks
proposed by Burrows et al. (2011), we also introduced another concern, which is responsible
for storing information about historical connections for each customer. We independently built
a Java and AspectJ implementations for each extension concerns. The details are provided in
the subsections below. According to the open-closed principle (Meyer 1989), which states that
“software entities should be open for extension but closed for modification”, at each stage we
tried to reuse the existing code using composition mechanisms and avoid invasive
modifications.

Telecom was chosen because (1) it was originally developed to demonstrate the power of
AOP; (2) it includes extension scenarios; (3) it is not overly complex and it can be
comprehended in less than 2 h; and (4) it has been used in several other experiments (e.g.
Burrows et al. 2011; Przybylek 2013; Rinard et al. 2004; Santos et al. 2016). Rinard et al.
(2004) implemented a tool that automatically classifies interactions between aspects and
methods. Then, they used Telecom to evaluate this tool. Burrows et al. (2011) analyzed how
faults are introduced during maintenance tasks in AspectJ programs. They planned 3 mainte-
nance tasks in Telecom. We took inspiration from these tasks when we defined our change
scenarios. Przybylek (2013) used Telecom to evaluate his approach that reduces coupling in
AspectJ programs and restores modular reasoning in case when the aspects are spectators.
Santos et al. (2016) used Telecom to analyze code pitfalls that are likely to lead programmers
to make mistakes in AspectJ refactoring.

Empir Software Eng (2018) 23:2018–2050 2031

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://www.eclipse.org/aspectj/
http://mostwiedzy.pl

5.1.1 Initial Release

Note that there are no aspects in the initial release, so Fig. 2 presents the share design for
both languages. Calls are initiated by a caller (the customer). The Connection class models
the physical details of establishing a connection between caller and receiver. If the caller
and receiver have the same area code then the call is established with a Local connection,
otherwise a LongDistance connection is required. Initially, only the connection between
the caller and receiver exists but additional connections may be added if calls are merged
to form conference calls. Moreover, a customer may be involved in many calls at one time.

5.1.2 Initial Release + Timing

In the AspectJ release, the Timing aspect declares that each Connection object has a timer.
A Timer object records the current time when it is started and stopped, and returns the
difference when asked for the elapsed time. A mechanism to start the timer when a
connection is completed and to stop the timer when the connection is dropped, is
implemented in two after advices. The Timing aspect also declares an inter-type field
totalConnectTime for Customer to store the total connection time. This field is updated by
the second advice.

In the Java release, the total connection time is stored in a subclass of Connection. To
measure how long a connection lasts, we could add startTime and stopTime attributes to the
Connection class. However, to avoid invasive modifications, we have to duplicate the same
attributes in two new subclasses that extend Local and LongDistance respectively. Moreover,
we have to extend Call to adjust the constructor (see its implementation in Fig. 2) to the new
types. What is worse, we cannot reuse the constructor from Call, but we have to re-write
almost the same in the subclass.

Fig. 2 Initial architecture of Telecom (class diagrams illustrating the successive releases are available at
http://przybylek.wzr.pl/ESE/)

2032 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://przybylek.wzr.pl/ESE/
http://mostwiedzy.pl

5.1.3 Initial Release + Timing + Billing

The Billing aspect uses the timer that is associated with a connection to calculate a charge per
connection and to add that charge to the appropriate customer’s bill. In detail, Billing declares
the inter-type methods callRate() for Local and LongDistance so that different types of
connection can be charged accordingly. The charge is calculated after the timer is stopped;
this is handled by after advice on the Timing::endTiming pointcut and relevant precedence
declaration. Finally, Billing declares inter-type methods and attributes for Customer to handle
the amount of money that customers are charged.

In the Java implementation, the charge is kept in a subclass of Customer, while the call rates
are kept in subclasses of Connection. Once again, we need to extend Call to adjust the
constructor to the new types. Note that the previous subclass of Call is useless at this stage.

5.1.4 Initial Release + Timing + Billing + Listing

The Listing aspect declares that each Customer has inter-types to store and list its connection history.
Connections are put into a linked list by the after advice on the Timing::endTiming pointcut.

Applying OO techniques, new properties to store and list historical connections are defined
in a subclass of Customer, while the add(Connection) method to put connections into the
underlying linked list is invoked from subclasses of Connection. Once again, we need to
extend Call to substitute instances of Customer, Local and LongDistance by instances of the
newly derived classes.

5.2 Subjects

Subjects in the comprehension experiment were 35 students from the OOSD course held in the
4th year of study in Computer Science. We managed to combine the learning objective of the
course with the research objective of the study. Before taking the course, all subjects had wide
experience with Java, since they had used Java as a primary language for their studies. The
course devoted 4 lectures (4 h) and 4 labs to AOP. The students were also assigned homework
(4 h estimated) that required them to use AspectJ. Although the participation in the experiment
was voluntary, almost all students who were enrolled in the course decided to participate,
because the successful completion of the experiment replaced the final exam.

5.3 Variables and Hypotheses

We identified the following response variables: (1) the time needed to comprehend the system;
and (2) the comprehension accuracy. The former was measured by the time (in minutes) taken
by subjects to complete comprehension tasks. The latter was the fraction of correct responses.
Two groups of hypotheses, one for each dependent variable were derived as follows:

H01: The average comprehension time for the Java implementation is the same as the
average comprehension time for the AspectJ implementation;
Ha1: The average comprehension time for the Java implementation differs from the
average comprehension time for the AspectJ implementation;
H02: Programmers who comprehend the Java implementation have the same distribution of
comprehension accuracy as programmers who comprehend the AspectJ implementation;

Empir Software Eng (2018) 23:2018–2050 2033

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Ha2: The distribution of comprehension accuracy differs between the two groups of
programmers.

We were not sure about the effect of AspectJ on the variables, so we used two-sided tests.
Furthermore, since we did not expect the distribution of comprehension accuracy to be normal,
we formulated corresponding non-parametric hypotheses.

5.4 Experiment Execution

First, the subjects were introduced to the overall format of the experiment. Then, they were
randomly assigned to two groups (G_OO, G_AO). Group G_OO had 18 members, and group
G_AO had 17 members. Next, each subject received either Java (9 pages) or AspectJ source code
(6 pages) of Telecom printed on paper, according to his/her group. Following the recommendation
by Hanenberg and Endrikat (2013) we decided to not provide any programming environment,
because we wanted to have all external factors under control and equal for both languages.

Along with the source code, each participant received the output of the program. However,
the order of the output lines was changed (Fig. 3). Moreover, results of six method calls were
replaced in the output with blank spaces. For each output line, the subjects had to write its
actual order according to the control-flow, while each gap had to be filled in. These tasks
require deep comprehension of the system under study. Subjects can achieve a maximum of 9
points. One point is awarded for each correctly filled gap. In turn, the order of the output lines
is regarded as one response. Thus, one point is awarded if all lines are correctly numbered.
Figure 3 shows the correct answers in highlighted text. The most tricky part of the output is
Line 17, because Crista’s bill has not been charged even though she has been connected for a
few seconds. Indeed, this Line accounts for most of the errors made by subjects regardless of
the group. We made the materials available at http://przybylek.wzr.pl/ESE/ for other
researchers who may be interested in replicating or further extending the experiment.

Fig. 3 Experimental materials: the output of the program

2034 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://przybylek.wzr.pl/ESE/
http://mostwiedzy.pl

The students were instructed that the shorter the completion time, the more bonus points are
given, but to get any points the solution must be 100% correct. They were also given a limit of
two hours, but they always completed the tasks much earlier.

5.5 Analysis Procedure

Figure 4 describes the procedure used for analyzing the data collected in the comprehension
experiment. In all statistical tests, we considered a significance level of 0.05, i.e. we decided to
accept a 5% probability of committing a type I error. Note that statistical hypothesis testing can
only detect the presence of a significant difference, but it does not provide any information
about the difference. Therefore, in case there is a significant difference, we also report a
corresponding confidence interval describing that difference. We employed the R environment
for statistical computing.

6 Experimental Design for Software Changeability

6.1 Objects and Subjects

Once again we used Telecom with the Timing and Billing concerns as the target application for
this evaluation.

Subjects in the changeability experiment were 24 students with the same characteristics as
those in the comprehension experiment, but enrolled in the next run of the OOSD course.
However, we used different training examples. In particular, the participants were trained on
Telecom. During the laboratory sessions, they had to implement the Timing and Billing

Fig. 4 Analysis procedure

Empir Software Eng (2018) 23:2018–2050 2035

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

concerns first using Java and then using AspectJ. We also discussed and shared with the
participants our reference implementations.

6.2 Variables and Hypotheses

The response variables used in the changeability experiment were: (1) the time (in minutes)
that the subjects spent to implement the change scenarios; and (2) the volume of changes made
to the source code. The second variable was measured by the number of atomic changes that
captured the semantic differences between two successive releases of a system. Our set of
atomic changes was as follows: add an empty module, delete a module, add an empty method,
change body of method, delete a method, add/delete an attribute, change an attribute initializer,
add an empty advice, change an advice body, delete an advice, add an empty pointcut, change
a pointcut body, delete a pointcut, introduce an empty method, change an introduced method
body, delete an introduced method, introduce an attribute, delete an introduced attribute,
change an introduced attribute initializer, add/delete a soften exception declaration, add/delete
an aspect precedence, add/delete a hierarchy declaration, change an access level modifier. This
set of atomic changes was adapted from Shen et al. (2008). Note that we took into account
changes to access modifiers and we considered the deletion of a whole non-empty element as
one atomic change.

Two sets of hypotheses analyzed in the experiment were as follows:

H01: The distribution of time required to implement the change scenarios does not differ
between Java and AspectJ programmers;
Ha1: The distribution of time required to implement the change scenarios differs between
Java and AspectJ programmers;
H02: The distribution of atomic changes does not differ between Java and AspectJ
programmers;
Ha2: AspectJ programmers need fewer atomic changes to implement the change scenarios
than Java programmers do need.

As for atomic changes, we used a one-sided hypothesis test, because before the experiment
we implemented the change scenarios ourselves and we needed significantly more atomic
changes for our Java implementations than for our AspectJ implementations. In turn, we did
not have a hypothesis about the direction of the effect of AspectJ on the completion time, so
we used a two-sided test.

6.3 Experiment Execution

The participants were informed about the experimental procedure and grading criteria
(existing modules cannot be modified; for each correctly implemented scenario students
obtain 7 points; in addition they may obtain up to 4 points for code quality, e.g.
adherence to the information hiding principle, reusing business logic; and up to 2 points
for the completion time). The aim of the grading criteria was to unify the coding style.
The experiment time was limited to 130 min. The development environment used by the
participants was Eclipse with the AJDT plugin. The participants were not allowed to use
any resources, except the AspectJ 5 Quick Reference that was provided to them in a
printed version.

2036 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Then, the participants were randomly assigned to two groups (G_OO, G_AO). Each group
had 12 members. Next, the participants were asked to download and import an Eclipse project
appropriate for their group. The project contained the Java or AspectJ implementation of
Telecom (with Timing and Billing) - the same that we had shared with the students during the
laboratory sessions. The project also included a couple of JUnit tests for both scenarios to be
implemented, which participants could execute to detect implementation defects. Therefore
participants were obliged to adhere to two method headers and one field declaration that we
specified in the scenario definitions (detailed instructions are provided at our website).

As we mentioned earlier, before a programmer starts to modify/extend a system, he has to
comprehend it. To isolate the effort associated with source code modifications from the effort
associated with source code comprehension, the participants were asked to evolve the system that
they had already known, i.e. Telecom. For the purpose of the experiment, on the top of Telecomwe
defined 2 new concerns, namely “Friend” and “Free Seconds” that subjects had to implement
independently in two scenarios. The Friend concern gives each customer the possibility to set one
other customer from the same area code as a friend. Then, a customer may call his friend for free.
The following is an example AspectJ implementation of the Friend concern:

public aspect Friend {
declare precedence: Friend, Billing;
public static final long FRIEND_RATE = 0;
private Customer Customer.friend;
public void Customer.setFriend(Customer f) {

if(localTo(f)) friend=f;
}
public boolean Customer.hasFriend(Customer customer) {

return friend==customer;
}
public long Local.callRate() {

if(this.caller.hasFriend(this.receiver))
return FRIEND_RATE;

else
return Billing.LOCAL_RATE;

}
}

The FreeSeconds concern makes that customers earn one free second for every two seconds
of an inbound call from a different area code. Then, the collected seconds are used to make free
outbound calls to non-friend customers from the same area code.

After all participants imported the project, the description of the first scenario was distributed in
a printed version and the timewas started. In order to complete a task, participants were required to
pass all corresponding test cases. However, the test cases did not check whether the participants
used the right programming paradigm or adhered to the open-closed principle. This check was
performed manually after the experiment and the participants had been aware about it. When a
participant finished the task the time was noted, the solution was copied into a pendrive and the
participant was given the description of the second scenario. During the experiment, wewere in the
laboratory to prevent collaboration among participants, and to oversee compliance with the
experimental procedure.

Empir Software Eng (2018) 23:2018–2050 2037

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7 Experimental Results

7.1 The Comprehension Experiment

7.1.1 Measurements

Table 4 presents the collected data. Only one subject in the G_OO group (#18) and two in the
G_AO group (#29, #32) failed to identify the correct order of the output lines. The remaining
errors come from incorrectly filled blank spaces. The data reveals that the i-th best subject from
the G_OO group always required less time to accomplish the experiment than the i-th best
subject from the G_AO group. We can also observe that the five fastest subjects in each group
did not commit any error.

7.1.2 Completion Time

We start by providing an overview of the results in Table 5 and Fig. 5. The descriptive statistics
and the box plot suggest that generally subjects working on the Java implementation required
less time to accomplish the comprehension task. However, to find out whether the difference is
significant, it is necessary to apply an appropriate statistical test.

Since the distributions of completion time for both groups can be assumed (1) to be normal
(the Shapiro–Wilk test gives a p-value of 0.72 for the G_OO group and a p-value of 0.84 for
the G_AO group); and (2) to have the same variance (the F-test of equality of variances gives a
p-value of 0.42), we perform an Independent Sample T-test to compare the means. Because the
obtained p-value is less than the significance level (p-value = 0.0004 < 0.05 =α), we reject the
null hypothesis and conclude that on average the G_AO group required significantly more
time than did the G_OO group. The two-sided 95% confidence interval for the difference in
average completion times between the G_AO and G_OO group is between 6.3 min and

Table 4 Results for individual subjects by group

G_OO G_AO

Subject Time Comprehension
accuracy

Subject Time Comprehension
accuracy

1 23 1.0 19 43 1.0
2 38.8 1.0 20 47 1.0
3 39 1.0 21 51 1.0
4 41.5 1.0 22 52.5 1.0
5 43.7 1.0 23 55.5 1.0
6 43.7 0.9 24 57.5 0.7
7 44.5 1.0 25 57.7 1.0
8 49.3 0.9 26 60.8 1.0
9 50 0.6 27 61 0.3
10 50.2 0.7 28 61.2 0.6
11 51 0.9 29 65.5 0.6
12 52.8 0.7 30 71.3 1.0
13 53 0.9 31 72.7 1.0
14 56 1.0 32 73 0.6
15 57.8 1.0 33 76.3 1.0
16 59.5 1.0 34 78 1.0
17 61.5 1.0 35 91.7 1.0
18 67.7 0.4

2038 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

22.1 min. Thus, we are 95% confident that the AspectJ implementation requires, on average,
between 6.3 and 22.1 min more to be effectively understood than the Java implementation.

7.1.3 Comprehension Accuracy

A summary of the descriptive statistics of comprehension accuracy is shown in Table 6. The
results indicate that most of the subjects in both groups did not have major difficulties in
understanding the system. The medians are the same, while the means are almost the same
regardless of the paradigm. Figure 6 gives a more intuitive representation of the data. The box
plot reveals that the distributions of scores for both groups are similar and heavily skewed to
the left. Accordingly, we perform a non-parametric Mann-Whitney U test to verify whether the
slight differences in scores between the G_OO and G_AO group could have been obtained by
chance. The resulting p-value is 0.7, which indicates that equality of the groups cannot be
rejected (we fail to reject the null hypothesis).

7.2 The Changeability Experiment

7.2.1 Measurements

Table 7 presents the collected data. Each row describes a single subject. For each change
scenario, we show the amount of time (in minutes) the subjects spent implementing it
(Columns 3 and 4) and the corresponding number of atomic changes (Columns 6 and 7).
Notice, that we are not going to compare the times taken to implement the second scenario.
Instead, we are going to analyze the total time spent in the execution of the experiment
(Column 5). We expected all subjects to provide correct solutions. However, the first scenario
was failed by one subject (#12) in the G_OO group and was implemented with a bug by two
subjects (#20 and #22) in the G_OA group, while the second scenario was failed by 5 subjects
in the G_AO group and 4 subjects in the G_OO group. Notice, that an artificial completion
time of 130 min was used for subjects (#12 and #20) in order to get a fair comparison between
the treatments. We used two-sided Fisher’s exact test to investigate whether Java and AspectJ
programmers are equally likely to complete the change scenario. For both change scenarios,
the calculated p-values were equal to 1, thus, regarding this issue, the equality of the groups

Table 5 Descriptive statistics for completion time (in minutes)

Group Min Max arith. Mean Median std. dev.

G_OO 23.0 67.7 49.1 50.1 10.3
G_AO 43.0 91.7 63.3 61.0 12.6

G
_A

O
G
_O

O

30 40 50 60 70 80 90

Fig. 5 Box plot of completion time by group

Empir Software Eng (2018) 23:2018–2050 2039

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

cannot be rejected. Furthermore, the data reveals an interesting fact – for both scenarios the
number of atomic changes was always much smaller in the G_AO group than in the G_OO
group. We believe that the G_OO group would have performed much better with respect to
completion time as well as number of atomic changes, if the participants had been allowed to
alter existing modules. However, in such a case, using AspectJ would be irrelevant, because
the initial classes could be refactored to avoid code scattering. Note, that the last two rows
represent our reference solutions that we implemented before conducting the experiment.

7.2.2 Completion Time

Table 8 and the box-plots in Fig. 7 summarize the time spent on scenario I (time1) and the total
time spent on both scenarios across groups. Concerning the mean and median values the
subjects from the G_OO group needed less time to implement the changes, but the differences
are not so much. Furthermore, the box-plots reveal that the distribution of time1 for the G_OO
group is right-skewed, while the distribution of totalTime for both groups are left-skewed.
Since the data violates the normality assumption, we perform Mann-Whitney U tests to verify
whether the distributions of time1 and totalTime statistically differ between Java and AspectJ
programmers. The obtained p-values are 0.49 for time1 and 0.38 for totalTime. Thereby, we
fail to reject the null hypothesis and we cannot claim that there is a significant difference
between Java and AspectJ programmers when it comes to the time they require to implement
the change scenarios.

7.2.3 Atomic Changes

Table 9 and the box-plots in Fig. 8 summarize the number of atomic changes required by each
group to implement each change scenario. They confirm the observation that AspectJ program-
mers needed much fewer atomic changes than Java programmers. Thereby, calculating p-values
is merely a formality. Since the data cannot be assumed normally distributed (as can be seen in
Fig. 9), we use Mann-Whitney U test. According to our expectation, the resulting p-values
(0.00002 for AC1 and 0.0007 for AC2) are much smaller than the significance level (0.05), so we
calculate corresponding confidence intervals. As forAC1, the one-sided 95% confidence interval
is (−∞, −9] and we conclude that a typical Java programmer needs at least 9 more atomic

Table 6 Descriptive statistics for comprehension accuracy

Group Min Max arith. Mean Median std. dev.

G_OO 0.43 1.00 0.88 1.00 0.17
G_AO 0.29 1.00 0.87 1.00 0.23

G
_A

O
G
_O

O

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 6 Box plot of comprehension accuracy by group

2040 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

changes to implement the change scenario I than a typical AspectJ programmer. Concerning
AC2, the one-sided 95% confidence interval is (−∞, −14] and the conclusion is analogous.

7.2.4 Qualitative Analysis

Generally, the quality of the solutions provided by the subjects was worse than the quality of
our reference solutions. Regardless of the group, the fundamental problem was that most
subjects re-implemented the business logic from previous versions instead of reusing it.
Moreover, some subjects did not adhere to the information hiding principle. In particular, they
directly accessed attributes that were defined in other modules. Paradoxically, this bad practice
resulted in lower values of the AC metric (indeed, an implementation of a single accessor
method requires two atomic changes). Nevertheless, no subject provided better solution than
we did, while top subjects provided a solution similar to ours.

Furthermore, regardless of the programming paradigm being used, differences in coding
style affected the number of atomic changes required to implement a given concern. For
instance, some subjects defined FRIEND_RATE= 0 as a static final attribute, while others

Table 7 Results for individual subjects

Subject Group Time1 Time2 Total time AC1 AC2

1 G_OO 20.7 25.3 45.9 22 26
2 G_OO 22.3 30.3 52.7 18 20
3 G_OO 47.0 30.7 77.7 18 20
4 G_OO 43.7 42.3 86.0 28 40
5 G_OO 34.8 52.5 87.3 20 28
6 G_OO 51.0 54.7 105.7 18 24
7 G_OO 40.3 65.7 106.0 20 26
8 G_OO 32.8 73.8 106.7 22 41
9 G_OO 79.0 – – 22 –
10 G_OO 85.0 – – 21 –
11 G_OO 107.5 – – 27 –
12 G_OO 130.0 – – – –
13 G_AO 13.8 33.3 47.2 9 10
14 G_AO 37.2 13.9 51.1 10 9
15 G_AO 34.2 27.9 62.1 10 6
16 G_AO 58.8 46.3 105.0 11 12
17 G_AO 40.3 69.7 110.0 11 8
18 G_AO 64.7 50.5 115.2 9 5
19 G_AO 84.0 41.2 125.2 9 6
20 G_AO 58.7 – 130.0 9 –
21 G_AO 59.2 – – 10 –
22 G_AO 91.5 – – 12 –
23 G_AO 118.0 – – 10 –
24 G_AO 125.0 – – 10 –
we G_OO N/A N/A N/A 20 24
we G_AO N/A N/A N/A 11 10

Table 8 Descriptive statistics for completion times (in minutes)

Time1 Total time

Group Min Max arith. Mean Median std. dev. Min Max arith. Mean Median std. dev.

G_OO 20.7 130.0 57.8 45.4 34.8 45.9 106.7 83.5 86.7 23.8
G_AO 13.8 125.0 65.5 59.0 33.8 47.2 130 93.2 107.5 34.1

Empir Software Eng (2018) 23:2018–2050 2041

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

hardcoded the rate value within methods. Besides, some subjects preferred to create a large,
complex method/advice rather than break it down into a few smaller methods.

Change Scenario I The main idea behind our reference AspectJ solution is to override the
callRate() inter-type declaration for the Local class that was introduced by the Billing aspect.
The new implementation of callRate() checks whether the callee is a friend of the caller and
then returns an appropriate rate. Subject #17 proposed a solution that is the same as ours and
requires the same number of atomic changes even though his implementations is slightly
different. Subjects #14, #23, and #24 also proposed an elegant solution in which calls to the
callRate() method are captured and if the callee is a friend of the caller, FRIEND_RATE is
returned. Nevertheless, their solution seems to be a bit more complex than ours and requires
one more atomic change. In turn, the implementation by subject #16 is ugly, but it is still based
on the same idea as ours. Subjects #13, #15, #18, #19, and #21 decided to charge the caller
twice but with the negative cost at the second time. The downside of their solution is that it was
implemented by cloning the after advice from Billing and multiplying the calculated cost by
minus 1, thus a part of the business logic is scattered through two aspects. Note that their
solution usually was implemented with two atomic changes fewer than ours because it did not
explicitly use FRIEND_RATE. Finally, subjects #20 and #22 provided incorrect
implementations even though their implementations passed the test cases. Nevertheless, their
implementations could be easily fixed without changing the number of atomic changes, thus
we did not exclude them from our estimation sample.

As for our reference Java solution, we still followed the same strategy as in previous
scenarios. Particularly, we defined a new subclass of BillingTimingLocal that overrides
getCost() to make it “friend-aware”. Subject #3 implemented the scenario in a similar way
and with the same number of atomic changes as we did. Subject #1 passed over
BillingTimingLocal at all and defined a new subclass of TimingLocal. Then he overrode the
drop() method to make it “friend-aware”. The problem with the new subclass is that it
duplicates much of the business logic from BillingTimingLocal. Subjects #2 and #7 defined
a new subclass of BillingTimingLocal and overrode drop() in this way that they charge the
caller twice but with the negative cost at the second time. Subjects #6 and #10 introduced a

G
_A

O
G
_O

O

20 40 60 80 100 120

time1

G
_A

O
G
_O

O

60 80 100 120

totalTime

Fig. 7 Box plots of completion times (in minutes) by group

Table 9 Descriptive statistics for atomic changes

AC1 AC2

Group Min Max arith. Mean Median std. dev. Min Max arith. Mean Median std. dev.

G_OO 18 28 21.45 21 3.39 20 41 28.12 26 8.15
G_AO 9 12 10 10 0.95 5 12 8 8 2.52

2042 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

new subclass of TimingLocal with a very simple implementation, i.e. its overridden getCost()
method just returns zero all the time. Thus, they use the new subclass just for addressing
connections to friends and still need two other subclasses of TimingLocal for other connec-
tions. A similar solution but with a bug in its implementations was provided by subjects #8 and
#9. They also overrode getCost() to return zero. However, their implementations charges the
caller twice, because they unnecessarily overrode drop(). Although the addCharge() method is
called twice, the final result is correct, because the argument of that method is zero. Finally,
subject #4 provided a very complex implementation with five new classes.

Change Scenario II In our reference AspectJ solution, we defined a new aspect that
introduces an inter-type field freeSeconds for Customer and two inter-typemethods that updates
this field. In addition, we defined an after advice on the Timing::endTiming() pointcut that,
when appropriate, stores and consumes free seconds by means of the inter-type methods. The
advice also calls addCharge() with a negative value to “cancel” the cost that was exchanged for
free seconds. Finally, we declared a precedence to ensure that the new advice is executed after
the advice defined in Timing. A similar solution was chosen by all subjects who accomplished
this stage. However, the quality of their code is worse than ours, even though they usually
needed less atomic changes. Particularly, subjects #18, #19, and #13 implemented a large
complex advice that accesses and updates the freeSeconds field introduced to Customer.
Besides, subjects #15 and #18 have a bug, even though their programs run correctly. They
did not specify the order of advice execution between the new aspect and Timing. By default the
order is undefined, while in our scenario it is essential that the Timing feature is executed first.

As for the reference Java solution, all inter-type declarations from our AO solution were
implemented as members of a new subclass of Customer. However, the main part of our
reference OO solution are two new subclasses for handling Local and LongDistance connec-
tions. The former overrides getCost() to consume free seconds from the caller when appro-
priate, while the latter overrides drop() to add free seconds to the callee. Subjects #2, #3, #4,
#5, and #7 provided similar implementations as we did, but a bit more complex. Moreover,
subjects #2 and #3 as well as #6 did not implement helper methods that updates the

G
_A

O
G
_O

O

10 15 20 25

AC1

G
_A

O
G
_O

O

5 10 15 20 25 30 35 40

AC2

Fig. 8 Box plots of atomic changes by group

AC1

18 20 22 24 26 28

0
1

2
3

4
5

AC2

20 25 30 35 40 45

0
1

2
3

4
5

Fig. 9 Histograms for atomic changes for the G_OO group

Empir Software Eng (2018) 23:2018–2050 2043

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

freeSeconds field in Customer, but they accessed this field directly from other classes. In this
way they saved a few atomic changes even though the quality of their source code is inferior.
The worst implementations were provided by subjects #1 and #8, who re-implemented much
of the business logic from previous scenarios.

8 Threats to Validity

It is necessary for the researcher to figure out the appropriate balance of construct validity,
internal validity, and external validity. Achieving high levels for all of these factors may not be
possible for new technologies (Murphy et al. 1999). Furthermore, it is impossible to conduct
controlled experiments with a reasonable budget at the scales that are seen in production
environments. Accordingly, in our study we trade external validity for internal validity.

8.1 Construct Validity

Evolvability, like other quality factors, is difficult to measure. The difficulty is even greater if
we have to compare the evolvability of two alternatives of a given system implemented in
different programming languages. Although several GQM models supporting such a compar-
ison have been elaborated, we proposed a new one that is suitable in the case when subjects are
less experienced in one of the language. The rationale for our approach and the choice of
metrics were explained. Nevertheless, we are aware that our metrics do not capture all
dimensions of evolvability and other metrics could return different results.

8.2 Internal Validity

A major challenge to internal validity is the difference in experience in the treatments (Java vs.
AspectJ). This problem concerns all experiments that compare a new technology with the
existing, well-established one. To mitigate this threat we employed appropriate experimental
designs and provided an extensive training program along with a motivational system encour-
aging students to learn AOP.

Another threat is the variability in participants’ skill. We minimized this threat by both
choosing participants who had a common educational background, and randomizing the
assignment of participants to the treatments.

The other important threat is related to the extent to which the implementation alternatives
used in the study constitute a “good” OO or AO design. We chose to use a system that was
implemented to demonstrate the strengths of AspectJ. Thus, we believe that it represents a
good usage of AOP. We also made our best effort to develop high quality corresponding Java
code. However, other programmers could choose different strategies for implementing the
system as well as change scenarios.

Another issue concerns the influence of the IDE. While IDEs play a relevant role for most
programming tasks, their influence on different programming paradigms is unknown (Hanenberg
and Endrikat 2013). This issue is especially relevant for program comprehension, since advanced
search tools and outlines of the program structure can significantly speed up an understanding of
the program behavior. Therefore, we eliminated the impact of tool support in our comprehension
experiment by using the paper versions of the program. However, we used Eclipse together with

2044 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the AJDT plugin to implement the change scenarios, because working without an intelligent code
completion would favor the programming language that is better known.

The last threat to the internal validity comes from the fact that our experiments involved
multiple participants in the same room. In such a case, participants might “follow the crowd”
and finish early simply because other participants are leaving.

8.3 External Validity

The most important threat to external validity concerns the representativeness of the experi-
mental object. Since Telecom was originally implemented by professionals to demonstrate the
power of the new paradigm, it is a representative for the usage of AspectJ. However, the size of
the system, regarding number of modules and lines of code, does not reflect the complexity
observed in the industrial software systems.

Another potential threat is related to the representativeness of the subjects. It is quite
common for experiments in software engineering to use students as subjects, because profes-
sionals are not easily available. Similarly, in our experiments, resorting to students was the
only pragmatic possibility. Although professional programmers perform better than students,
both groups are similar in their approach to developing software (Hanenberg and Endrikat
2013). Höst et al. (2000) suggested that results achieved with students are transferable and can
provide valuable insights into an analyzed problem domain. In turn, Scholtz and Wiedenbeck
(1992) demonstrated that experienced programmers exhibit a drop in performance and their
solution process is disrupted when using an unfamiliar programming language. Thus, in our
experiments, using professionals would be biased, since they would probably be much more
experienced with Java, but would not have prior knowledge of AspectJ.

9 Conclusions

In today’s dynamic business environment, frequent changes to information systems are
inevitable and impose a number of evolution tasks. Accordingly, software fulfilling business
needs is not only difficult to develop, but it is even harder to evolve. Thereby, software
engineers search for methods and techniques to support the evolution of software systems.
During the 2000s decade, notable expectations were put on AOP. However, although AOP has
gained substantial attention from the scientific community, it has not managed to become
widely adopted by industry. We believe that one of the reasons for this is the accumulation of
misleading catchwords over unbiased discussions of both the strengths and limitations of AOP.

In this paper, we report on an empirical evaluation of the impact of AspectJ on software
evolvability. So far, there has been no consensus on this issue. Our first experiment was
performed on 35 subjects who were asked to comprehend either Java or AspectJ implemen-
tation of the same system and perform the corresponding comprehension tasks. The average
completion time was 29% longer for the AO group than for the OO group and the difference
was statistically significant. However, quite surprisingly, we did not find evidence that AspectJ
had an effect on comprehension accuracy. Most participants in both groups completed the
tasks correctly. We can suppose that a majority of the AO group just concluded the weaving
order from the output without a deep analysis of the source code. Thereby, it would be
interesting to see how the participants would behave if we had made this order invalid. We
plan to investigate this issue in future work. Note, that in the comprehension experiment, we

Empir Software Eng (2018) 23:2018–2050 2045

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

did not allow for using IDE because our intention was not to measure the impact of IDEs, but
the impact of language features. Nevertheless, our approach can be considered artificial. In the
production environment, developers use various IDEs to navigate the complex dependencies
between program entities. As for AspectJ programs, an appropriate IDE support (e.g. AJDT
with the Cross References view in Eclipse) can help a programmer identify aspects that
augment the studied class and rebuild the global picture of how the aspects interact with the
base code. Thereby, in future work, we intend to replicate this experiment in different settings,
i.e. we want subjects to use Eclipse when comprehending a system.

Our second experiment was performed on 24 subjectswhowere asked to implement two change
scenarios for the system that they had already known (in this way we isolated the changeability
effort from the understandability effort). Each subject had to evolve in a non-invasive way either the
AspectJ version using AspectJ or the Java version using Java. Although subjects who evolved the
AspectJ version generally required more time, the difference was not statistically significant.
Besides, we found out that a typical AspectJ programmer needs significantly fewer atomic changes
to implement the change scenarios than a typical Java programmer. Although comparable findings
have been obtained in numerous single-subject experiments (Greenwood et al. 2007; Kvale et al.
2005; Lobato et al. 2008; Mguni and Ayalew 2013; Mortensen et al. 2012; Sant’Anna et al. 2003),
to the best of our knowledge, this is the first statistically significant result regarding structural
changes published so far. One could think that the greater number of atomic changes needed to
implement a new requirement is not an issue as long as the time is the same. However, non-invasive
changes usually result in non-optimal design decisions, which in turn contribute to design erosion.
Indeed, as for OOP, we observed a paradox of the open-closed principle. When deriving a class
through inheritance, every place in the codewhere the base class is instantiated usually should be re-
written to instantiate the subclass. Nonetheless, if we want to follow the open-closed principle, we
cannot just modify the existing code, we have to extend relevant classes and override thosemethods
that instantiated the base class. Accordingly, even if we want to add a single method, we often have
to derive a few subclasses. However, a cascade of changes is exactly what the open-closed principle
seeks to avoid. Moreover, successive extensions lead to deep inheritance hierarchies that somewhat
degrade the system design. These findings raise new research questions, such as which paradigm is
more robust on the accumulation of non-optimal design decisions, or how difficult is it to refactor
Java and AspectJ systems that have undergone a lot of change scenarios.

A key novel insight of our research is that AspectJ differently affects on two sub-characteristics
of evolvability: understandability and changeability. While AspectJ decreases the former, it im-
proves one aspect of the latter. This has several implications for research and practice. First of all,
this explains why previous experiments that measured the completion time usually showed the
advantage of OOP over AOP, while most experiments focused on structural changes found positive
impact of AOP. Furthermore, our results present a new perspective on the dispute between those
who claim that AspectJ improves SoC and those who have the opposite viewpoint. Aspects allow
us to separate the implementation of crosscutting concerns from the implementation of core
concerns at the lexical level. Thereby, we can evolve existing concerns independently regarding
the lexical level or easily plug in new concerns. As a consequence, using AspectJ we will usually
need fewer structural changes to evolve our system. However, we must be aware that the lexical
separation does not imply a semantic decoupling. A class augmented by aspects in general cannot
be meaningfully studied in isolation. We need to undertake additional effort to “weave” the aspects
into the class in our minds. Moreover, by looking at a class we even do not know what aspects
augment it. To determine the applicability of aspects, we require global knowledge, i.e. all aspects
need to be revised. Thus, we believe that the number of aspects that are manageable within a

2046 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

program is limited and cannot grow together with the size of the program. Furthermore, when any
name in a base program is changed, not only the aspects that have relied on this name must be
changed, but also all aspects with unbound pointcuts must be reconsidered. Accordingly, we will
usually need more time to comprehend an AO system than its OO counterpart. Finally, our study
shows that switching from Java to AspectJ does not require vast expenditures of time and effort.
This might be an encouraging factor for companies that would like to try to put AspectJ to work on
real projects. Even though our study suggests that in general AspectJ does not decrease the overall
time required to evolve a software system, there may be specific situations in which AspectJ
performs better. For instance, Hohenstein and Jaeger (2011) reported a successful application of
AspectJ in integrating 3rd party software, which saved development time and money. For those
who want to replicate our experiments or conduct reanalysis of the collected data using other
statistical methods, we provide the reproducible package, available at http://przybylek.wzr.pl/ESE/.

Acknowledgments The study is cofounded by the European Union from resources of the European Social
Fund. Project PO KL “Information technologies: Research and their interdisciplinary applications”, Agreement
UDA-POKL.04.01.01-00-051/10-00.

Empir Software Eng (2018) 23:2018–2050 2047

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Arnaoudova V, Eshkevari LM, Sharifabadi ES, Constantinides C (2008) Overcoming comprehension barriers in
the AspectJ programming language. J Object Technol 7(6):121–142

Bartsch M, Harrison R (2008) An exploratory study of the effect of aspect-oriented programming on maintain-
ability. Softw Qual J 16(1):23–44

Basili VR, Caldiera G, Rombach HD (1994) Goal Question Metric Approach. In: Encyclopedia of Software
Engineering. Wiley, Chichester, pp 528–532

Benestad H, Anda B, Arisholm E (2006) Assessing Software Product Maintainability Based on Class-Level
Structural Measures. In: International Conference on Product Focused Software Process Improvement,
Amsterdam

Bezdek JC (1993) Fuzzy models - what are they, and why. IEEE Trans Fuzzy Syst 1(1):1–6
Boehm B (1987) Software engineering. IEEE Trans Comput 25(12):1226–1242
Bordens K, Abbott B (2011) Research design and methods: a process approach. McGraw-Hill, New York
Briand LC, Wüst J, Lounis H (1999) Using coupling measurement for impact analysis in object-oriented systems.

In: IEEE Int’l Conf. On software maintenance (ICSM'99), Oxford
Briand LC, Wüst J, Lounis H (2001) Replicated case studies for investigating quality factors in object-oriented

designs. Empir Softw Eng 6(1):11–58
Brito I, Moreira A (2004) Integrating the NFR framework in a RE model. In: 3rd workshop on early aspects at

AOSD’04, Lancaster
Burrows R, Taïani F, Garcia A, Ferrari FC (2011) Reasoning about faults in aspect-oriented programs: a metrics-

based evaluation. In: 19th international conference on program comprehension (ICPC'11), Kingston
Chapin N, Hale J, Khan K, Ramil J, Tan W-G (2001) Types of software evolution and software maintenance. J

Softw Maint Evol Res Pract 13(1):3–30
Charnessa G, Gneezyb U, Kuhnc M (2011) Experimental methods: Between-subject and within-subject design. J

Econ Behav Organ 81(1):1–8
Chatzigeorgiou A, Stiakakis E (2013) Combining metrics for software evolution assessment by means of data

envelopment analysis. J Softw Evol and Proc 25(3):303–324
Chavez CH et al (2011) The AOSD research Community in Brazil and its crosscutting impact. In: 25th Brazilian

symposium on software engineering, Sao Paulo
Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng 20(6):476–

493

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://przybylek.wzr.pl/ESE
http://mostwiedzy.pl

Chikofsky EJ, Cross JH (1992) II. Reverse Engineering and Design Recovery: ATaxonomy. In: Arnold RS (ed)
Software Reengineering. IEEE Computer Society Press, Washington DC, pp 54–58

Coad P, Yourdon E (1991) Object-oriented analysis. Prentice Hall, Upper Saddle River
Coady Y, Kiczales G (2003) Back to the future: a retroactive study of aspect evolution in operating system code.

In: 2nd inter. Conf. On aspect-oriented software development (AOSD'03), Boston
Dantas DS, Walker D (2006) Harmless advice. In: conference record of the 33rd ACM SIGPLAN-SIGACT

symposium on principles of programming languages. ACM, pp. 383–396, New York
Dijkstra EW (1976) A discipline of programming. Prentice Hall, Englewood Cliffs
Easterbrook SM, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering

research. In: Shull F, Singer J, Sjøberg D (eds) Guide to advanced empirical software engineering, pp. 285–
311. Springer, Berlin

Fenton N (2001) Conducting and presenting empirical software engineering. Empirical Software Engineering
6(3):195–200

Figueiredo E et al (2008) Evolving software product lines with aspects: An empirical study on design stability. In:
30th Intl. Conf. on Software Engineering, Leipzig

Filman RE (2001) What is Aspect-Oriented Programming, revisited. In: Workshop on Multi-Dimensional
Separation of Concerns at ECOOP’01, Budapest

Fjeldstad R, Hamlen W (1983) Application program maintenance-report to to our respondents. In: Parikh G,
Zvegintzov N (eds) Tutorial on Software Maintenance. IEEE Computer Soc. Press, Washington DC, pp 13–27

Greenwood P, Bartolomei TT, Figueiredo E, Dósea M, Garcia AF, Cacho N, Sant'Anna C, Soares S, Borba P,
Kulesza U, Rashid A (2007) On the impact of aspectual decompositions on design stability: an empirical
study. In: 21st European conference on object-oriented programming (ECOOP'07), Berlin

Griswold WG, Sullivan K, Song Y, Shonle M, Tewari N, Cai Y, Rajan H (2006) Modular software design with
crosscutting interfaces. IEEE Softw 23(1):51–60

Hanenberg S, Endrikat S (2013) Aspect-orientation is a rewarding investment into future code changes - as long
as the aspects hardly change. Inf Softw Technol 55(4):722–740

Hanenberg S, Unland R (2001) Using and Reusing Aspects in AspectJ. In: Workshop on Advanced Separation of
Concerns in Object-Oriented Systems at OOPSLA'01, Tampa Bay

Hanenberg S, Kleinschmager S, Josupeit-Walter M (2009) Does aspect-oriented programming increase the
development speed for crosscutting code? An empirical study. In: 3rd International Symposium on
Empirical Software Engineering and Measurement, Lake Buena Vista

Harrison W (2000) N=1: An Alternative for Software Engineering Research? In: BBS Workshop at ICSE'00,
Limerick

Hitz M,Montazeri B (1995) Measuring Coupling and Cohesion in Object-Oriented Systems. In: 3rd International
Symposium on Applied Corporate Computing, Monterrey

Hoffman K, Eugster P (2009) Cooperative aspect-oriented programming. Sci Comput Program 74(5–6):333–354
Hohenstein U, Jaeger MC (2011) Tackling the challenges of integrating 3rd party software using AspectJ. In:

Katz S, Mezini M, Schwanninger C, Joosen W (eds) Transactions on aspect-oriented software development
VIII. Lecture Notes in Computer Science, vol 6580. Springer, Heidelberg

Höst M, Regnell B, Wohlin C (2000) Using students as subjects. A comparative study of students and
professionals in lead-time impact assessment. Empir Softw Eng 5(3):201–214

ISO/IEC 14764 (2006) Software engineering – software life cycle processes – maintenance. IEEE Std 14764-
2006, Geneva

ISO/IEC 9126-1 (2001) Software engineering. Product quality. Part 1: quality model
Juristo N, Moreno AM (2001) Basics of software engineering experimentation. Springer, Berlin
Kästner C, Apel S, Batory D (2007) A case study implementing features using AspectJ. In: 11th international

conference of software product line conference, Kyoto
KatićM, Botički I, Fertalj K (2013) Impact of aspect-oriented programming on the quality of novices’ programs:

a comparative study. J Info Org Sci 37(1):45–61
Kellens A, Mens K, Brichau J, Gybels K (2006) Managing the Evolution of Aspect-Oriented Software with

Model-Based Pointcuts. In: 20th European Conference on Object-Oriented Programming (ECOOP'06),
Nantes

Kiczales G, Lamping J, Mendhekar A, Maeda C, Cristina Lopes C, Loingtier J, Irwin J (1997) Aspect-oriented
programming. In: LNCS, vol 1241. Springer, Heidelberg, pp 220–242

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG (2001) An Overview of AspectJ. In: 15th
European Conference on Object-Oriented Programming (ECOOP'01), Budapest

Kienzle J, Guerraoui R (2002) AOP: Does It Make Sense? The Case of Concurrency and Failures. In: 16th
European Conference on Object-Oriented Programming (ECOOP'02), Málaga

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El-Emam K, Rosenberg J (2002)
Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28(8):721–734

2048 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Kniesel G, Costanza P, Austermann M (2001) Independent Extensibility for Aspect-Oriented Systems. In:
Workshop on Advanced Separation of Concerns at ECOOP'01, Budapest

Koppen C, Störzer M (2004) PCDiff: attacking the fragile pointcut problem. In: European interactive workshop
on aspects in software, Berlin

Kouskouras KG, Chatzigeorgiou A, Stephanides G (2008) Facilitating software extension with design patterns
and aspect-oriented programming. J Syst Softw 81(10):1725–1737

Kulesza U, Sant’Anna C, Garcia A, Coelho R, von Staa A, Lucena C (2006) Quantifying the effects of aspect-
oriented programming: A maintenance study. In: 22nd IEEE Intl. Conf. on Software Maintenance, Dublin

Kvale AA, Li J, Conradi R (2005) A case study on building COTS-based system using aspect-oriented
programming. In: 20th ACM symposium on Applied computing (SAC'05), Santa Fe

Lehman MM, Belady LA (1976) A model of large program development. IBM Syst J 15(3):225–252
Lieberherr K, Holland I (1989) Assuring good style for object-oriented programs. IEEE Softw 6:38–48
Lobato C, Garcia A, Kulesza U, von Staa A, Lucena C (2008) Evolving and composing frameworks with

aspects: the MobiGrid case. In: 7th international conference on composition-based software systems, Madrid
Lopez-Herrejon R, Batory D, Lengauer CH (2006) A disciplined approach to aspect composition. In: ACM

SIGPLAN 2006 workshop on partial evaluation and program manipulation (PEPM'06). In: Charleston
Mancoridis S, Mitchell BS, Rorres C, Chen Y, Gansner ER (1998) Using Automatic Clustering to Produce High-Level

System Organizations of Source Code. In: 6th international Workshop on Program Comprehension, Ischia
Margaret-Anne D, Storey F, Fracchia D, Muller HA (1999) Cognitive design elements to support the construction

of a mental model during software exploration. J Softw Syst 44:171–185
Marot A (2011) Preserving the separation of concerns while composing aspects with reflective AOP. Phd thesis.

Universite Libre De Bruxelles, October, p 2011
Mauch JE, Park N (2003) Guide to the successful thesis and dissertation, 5th edn. Marcel Dekker, Inc., NewYork
McEachen N, Alexander R (2005) Distributing classes with woven concerns: an exploration of potential fault

scenarios. In: 4th international conference on aspect-oriented software development (AOSD'05), Chicago
Mens K, Tourwé T (2008) Evolution issues in aspect-oriented programming. In: Mens T, Demeyer S (eds)

Software evolution, pp. 203–232. Springer, Heidelberg
Mens T, Mens K, Tourwé T (2004) Software evolution and aspect-oriented software development, a cross-

fertilisation. ERCIM special issue on Automated Software Engineering, Vienna
Meyer B (1989) Object-oriented software construction. Prentice Hall, Upper Saddle River
Mguni K, Ayalew Y (2013) An Assessment of Maintainability of an Aspect-Oriented System. In: ISRN Software

Engineering, vol 2013 pp 11. https://doi.org/10.1155/2013/121692
Mortensen M (2009) Improving software maintainability through Aspectualization. PhD thesis, Department of

Computer Science, Colorado State University, Co
Mortensen M, Ghosh S, Bieman J (2012) Aspect-oriented refactoring of legacy applications: an evaluation. IEEE

Trans Softw Eng 38(1):118–140
Munoz F, Baudry B, Barais O (2008) Improving maintenance in AOP through an interaction specification

framework. In: IEEE Intl. Conf. On software maintenance, Beijing
Murphy GC, Walker RJ, Banlassad ELA (1999) Evaluating emerging software development technologies:

lessons learned from assessing aspect-oriented programming. IEEE Trans Softw Eng 25(4):438–455
Ossher H, Tarr P (2001) Hyper/J: multi-dimensional separation of concerns for java. In: 23rd international

conference on software engineering (ICSE'01), Toronto
Page-Jones M (1980) The practical guide to structured systems design. Yourdon Press, New York
Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Communications of the ACM

15(12):1053–1058 ACM Press, New York
Pereira RHR, García Perez-Schofield JB, Ortin F (2017) Modularizing application and database evolution – an

aspect-oriented framework for orthogonal persistence. Softw Pract Exper 47(2):193–221
Ponisio ML (2006) Exploiting client usage to manage program modularity. University of Berne, PhD thesis
Przybylek A (2010) What is wrong with AOP?. In: 5th International Conference on Software and Data

Technologies, Athens
Przybylek A (2011) Where the truth lies: AOP and its impact on software modularity. In: Giannakopoulou D,

Orejas F (eds) ETAPS 2011. LNCS, vol. 6603. Springer, Heidelberg, pp 447–461
Przybylek A (2013) Quasi-controlled Experimentations on the Impact of AOP on Software Comprehensibility.

In: 17th European Conference on Software Maintenance and Reengineering, Genova
Rashid A, Moreira A (2006) Domain models are not aspect free. In: 9th International Conference on Model

Driven Engineering Languages and Systems (MoDELS'06), Genova
Rinard M, Salcianu A, Bugrara S (2004) A classification system and analysis for Aspect-Oriented programs. In:

12th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Newport Beach
Ryder BG, Tip F (2001) Change impact analysis for object-oriented programs. In: 3rd ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Snowbird

Empir Software Eng (2018) 23:2018–2050 2049

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1155/2013/121692
http://mostwiedzy.pl

Sant’Anna C, Garcia A, Chavez C, Lucena C, von Staa A (2003) On the Reuse and Maintenance of Aspect-Oriented
Software: An Assessment Framework. In: 17th Brazilian Symposium on Software Engineering, Manaus

Santos A, Alves P, Figueiredo E, Ferrari F (2016) Avoiding code pitfalls in aspect-oriented programming. Sci
Comput Program 119:31–50

Scholtz J, Wiedenbeck S (1992) The use of unfamiliar programming languages by experienced programmers. In:
7th Conference of the British Computer Society Human Computer Interaction Specialist Group - People and
Computers VII, York

Serebrenik A, van den Brand M (2010) Theil index for aggregation of software metrics values. In: 26th IEEE
International Conference on Software Maintenance (ICSM’2010). Timisoara

Shen H, Zhang S, Zhao J (2008) An Empirical Study of Maintainability in Aspect-Oriented System Evolution
Using Coupling Metrics. In: 2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software
Engineering, Nanjing

Standish T (1984) An essay on software reuse. IEEE trans. On. Softw Eng 10(5):494–497
Steimann F (2006) The paradoxical success of aspect-oriented programming. SIGPLAN Not 41(10):481–497
Steimann F, Pawlitzki T, Apel S, Kästner CH (2010) Types and modularity for implicit invocation with implicit

announcement. ACM Trans Softw Eng Methodol 20(1):43
Storey MD, Fracchia FD, Müller HA (1999) Cognitive design elements to support the construction of a mental

model during software exploration. J Syst Softw 44(3):171–185
Tonella P, Ceccato M (2005) Refactoring the aspectizable interfaces: an empirical assessment. IEEE Trans Softw

Eng 31(10):819–832
Torkar R, Feldt R, Oliveira Neto FG, Gren L (2017) Statistical and practical significance of empirical software

engineering research: A maturity model. In: arXiv:1706.00933v3 [cs.SE]
Tourwé T, Brichau J, Gybels K (2003) On the existence of the AOSD-evolution paradox. In: AOSD 2003

workshop on software-engineering properties of languages for aspect technologies, Boston
Tsang SL, Clarke S, Baniassad EL (2004) An evaluation of aspect-oriented programming for java-based real-time

systems development. In: 7th IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC'04), Vienna

Walker R, Baniassad E, Murphy G (1999) An initial assessment of aspect-oriented programming. In: 21st
international conference on software engineering (ICSE), Los Angeles

Yourdon E, Constantine LL (1979) Structured design: fundamentals of a discipline of computer program and
system design. Prentice-Hall, New York

Zelkowitz MV, Wallace DR (1998) Experimental models for validating technology. Computer 31(5):23–31

Adam Przybyłek is an assistant professor at Gdansk University of Technology, Poland, where he has been working
since October 2012. Between 2002 and 2011 hewas a network consultant and instructor at CiscoNetworkingAcademy.
He obtained his Ph.D. degree in Software Engineering in 2011. He also holds a master's degree in Management
Information Systems. His main research interests are in empirical software engineering with focus on software
modularity, program comprehension, software evolution, post object-oriented paradigms, agile methods, and software
process improvement. Adam is the founder and programme chair of the International Conference on Lean and Agile
Software Development (https://fedcsis.org/lasd/). He has also served on the program committees for ENASE and ACM
SAC since 2015..

2050 Empir Software Eng (2018) 23:2018–2050

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://fedcsis.org/lasd/
http://mostwiedzy.pl

	An empirical study on the impact of AspectJ on software evolvability
	Abstract
	Introduction
	Motivations
	Considerations for Experimental Design and our GQM Model
	Considerations for Experimental Design
	Goal, Questions, and Metrics

	Related Work
	Measuring Maintainability of AO Software
	Experiments to Evaluate Maintainability of AO Software with External Product Metrics
	Other Studies

	Experimental Design for Software Understandability
	Objects
	Initial Release
	Initial Release + Timing
	Initial Release + Timing + Billing
	Initial Release + Timing + Billing + Listing

	Subjects
	Variables and Hypotheses
	Experiment Execution
	Analysis Procedure

	Experimental Design for Software Changeability
	Objects and Subjects
	Variables and Hypotheses
	Experiment Execution

	Experimental Results
	The Comprehension Experiment
	Measurements
	Completion Time
	Comprehension Accuracy

	The Changeability Experiment
	Measurements
	Completion Time
	Atomic Changes
	Qualitative Analysis

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	References

