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ABSTRACT In this paper, we present a novel strategy for selecting expansion points in the reduced
basis method. A single computation of the error estimator is used to select a few expansion points in the
multi-parameter space simultaneously. The number of selected points is determined adaptively, based on
the accuracy of the current reduced model. The reliability and efficiency of this proposed approach are
illustrated by numerical tests considering real-life structures, including dielectric resonator filter, H-plane
filter, and four-pole dielectric-loaded cavity filter.

INDEX TERMS Model-order reduction, a posteriori error estimator, finite element method.

I. INTRODUCTION
Model-order reduction (MOR) techniques are commonly
applied to expedite evaluations of the behavior of electro-
magnetic systems over wide frequency ranges. The main idea
of MOR is to replace the original complex model with a
much simpler approximated model that is accurate within
a certain frequency band. In order to obtain reliable and
compact reduced models for broadband frequency analysis,
multipoint MOR methods must be applied. These assume
that the projection basis is generated by solving a problem
at a few carefully selected frequency points. In moment-
matching techniques [1]–[6], frequency derivatives of the
reduced and original transfer functions are matched up to
the specified order at the selected expansion points. How-
ever, if the analyzed structure contains dispersive materials,
the moment-matching techniques provide the reduced-order
models (ROMs) which are valid only in a narrow frequency
band.

In such cases, much more reliable are the so-called
reduced-basis methods (RBM) [7], [8], which rely on the
assumption that field solutions (snapshots) are collected from
selected frequency points. The subsequent block moments or
snapshots are used to form an orthogonal projection basis.
What is important, RBM provides a much more compact
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basis, comparing to moment-matching based methods. Next,
the Galerkin projection of the original full-order model is
used to obtain a low-dimensional model. However, both mul-
tipoint approaches face the same challenge—how to chose
expansion points that yield a reliable, compact ROM, while
ensuring the efficiency of the reduction process.

A few approaches have been proposed to address this issue.
A multipoint moment-matching method for fast high-speed
VLSI interconnect analysis was used in [1]. Frequencies for
expansion are chosen by a binary search algorithm that com-
pares the values of two transfer functions at neighboring
expansion points. In [2], the order of the reduced model and
the placement of the subsequent expansion points are selected
using criteria based on the convergence of a certain number
of poles of the system. In [3], a multipoint moment-matching
approach is presented in which the expansion points are
chosen a priori. Reference [4] details the multipoint Galerkin
asymptotic waveform evaluation, where the frequencies for
ROM construction are selected based on the relative residual
measure. Finally, in [9], a bisection point-placement strategy
is considered.

There are also techniques [5]–[11] based on optimal
greedy point selection algorithms. Subsequent expansion
points are selected at frequencies where a residual-based
a posteriori error estimator assumes its maximum. More-
over, error estimators are used to measuring the accu-
racy of the reduced model. The greedy multipoint MOR
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technique [5], [6] makes use of the residual error associated
with the computation of the scattering matrix and the error
is verified only at the ports of the analyzed structure. A dif-
ferent strategy is considered in RBM approaches [8]–[10],
where the error is evaluated over the whole frequency band
by computing the Euclidean norm of the residual error.
Finally, the RBM techniques proposed in [7], [11] rely on
the dual norm of the residual. The error-estimator operates
on low-dimensional matrices, so it can be evaluated fast.
Notwithstanding this, when the analysis involves computing
the scattering parameters over a wide frequency range, and
when the final projection basis consists of many vectors,
the error-estimator computational cost can be large. This
cost can further increase when the FE simulation is used to
compute the response of systems in multi-parameter space,
where the parameters are associated with frequency, material
properties and geometry of the analyzed structure [11]–[13].

In this paper, we propose a novel greedy strategy for
selecting expansion points, which increases the efficiency of
the standard RBM by reducing the estimation time. Unlike
traditional techniques [5]–[11], in which the expansion points
are selected one at a time, in the technique proposed here,
a single computation of an error estimator in the whole
multi-parameter space is used to pick few subsequent expan-
sions simultaneously. In order to prevent the projection basis
from becoming too large, the number of points selected
in each iteration is different and depends on the accuracy
of the current reduced model. The end result is an auto-
mated enhanced reduced-basis method (EnRBM), which is
a cost-efficient alternative to the standard RBM.

II. BACKGROUND
Consider a second-order time-harmonic formulation of
Maxwell’s equations for the electric field E . We assume that
the conductors can be lossy and their properties are described
by a frequency-dependent surface impedance. Following the
standard finite element method (FEM) procedure (see [14]
for details), the problem to be solved reduces to a linear
system:

(0 + sγ (s)G+ s2C)E(s) = sBI,

U = BTE(s). (1)

where 0, G, and C are Cn×n system matrices, E ∈ Cn×m is
the electric field solution matrix, B ∈ Rn×m is the normal-
ized port selection matrix, m and n are the number of ports
(assuming single-mode excitation) and the number of degrees
of freedom (DoF), respectively, I is the normalized vector of
amplitudes for modes at the ports, U - amplitudes of voltage
waves, s = jω/c = jk is the complex frequency, and finally
γ (s) is a scalar functionmodeling the dispersion of the surface
impedance.

The number of unknowns (n) is often as high as a few
million, and the analysis then becomes time consuming,
especially when wide-band frequency analysis is needed.
To speed up the frequency sweep, we consider the RBM
method [7]–[11].

A. REDUCED BASIS METHOD
The RBM method relies on the observation that the elec-
tromagnetic field does not vary significantly inside a given
frequency band of interest. The solution can thus be obtained
in the reduced basis space spanned by N well-chosen solu-
tions E(s1),E(s2), . . . ,E(sN ) computed at the expansion fre-
quencies s1, s2, . . . , sN . To this end, the original system of
equations is projected onto the reduced space:

Q = span{E(s1),E(s2), . . . ,E(sN )}. (2)

The orthogonality of the projection basis Q is ensured by the
Gram–Schmidt process. Applying the Galerkin method with
Q as basis and testing vectors, a reduced system is obtained:

(0r + sγ (s)Gr + s2Cr )Er (s) = sBrI (3)

where the reduced matrices are given by: 0r = QH0Q ∈
CN×N , Gr = QHGQ ∈ CN×N , Cr = QHCQ ∈ CN×N ,
Br = QHB ∈ CN×m and E(s) ≈ QEr (s). The final number
of degrees of freedom is much smaller, since N � n.

Each time a new solution matrix E(si) is appended to
the projection basis Q, the error introduced by the ROM is
assessed by means of a correctly defined error estimator. The
role of the estimator is twofold: Firstly, it is used as a stopping
criterion—once the estimated error drops below a specified
tolerance over the entire frequency band, the algorithm stops.
Secondly, it guides the process of selecting expansion fre-
quency points within the band of interest [fmin, fmax]. To this
end, a greedy scheme is applied. That is, the next point
is located at the frequency at which the estimated error is
largest. It is worth mentioning that this kind of reduction
scheme based on the error-estimator enables full automation
of the reduction process, since at every stage of the reduction,
we gain insight into the error introduced by the ROM.

In order to define the error estimator formula, we first have
to formulate the residual error matrix. In [5], [8], an error
estimator related to the residual of the scattering parameter
FEM formulation was proposed:

R(s) = 2sB− (0 + s(γ (s)G+ BBT )+ s2C)QEr (s) (4)

where the reduced solution matrix Er (s) is the solution of:

(0r + s(γ (s)Gr + BrBTr )+ s
2Cr )Er (s) = sBrI. (5)

Based on (4) and (5) we can efficiently assess the error
introduced by the reduced order model using the following
goal-oriented error estimator [5], [8]:

Es(s) = BTR/|2sBTB| =
[
2sBTB− BT0QEr

− s2BTCQEr − sB
TBBTQEr

− sγ (s)BTGQEr
]
/|2sBTB|. (6)

Note that the blocks of matrices BTB, BT0Q, BTCQ,
BTBBTQ and BTGQ are frequency-independent and can be
computed only once, in the prepossessing stage, so-called
offline. More precisely (following [7]), the offline stage com-
prises all the computations with complexity depending on n,
which are performed only once. On the other hand, the online
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phase concerns all the computations with the complexity
depending on N , including error estimation process (6) and
fast frequency sweep (5), which is used to compute the scat-
tering parameters of the structure.

The above definition of the error estimator is used to
fully control the reduction algorithm in terms of the stopping
criteria, as well as the expansion point selection. Although
the estimator operates on low-order matrices, it must be com-
puted at each frequencywithin the band of interest, every time
a projection basis is expanded. For wide-band simulations,
this may significantly increase the numerical effort required
for the reduction process. In order to improve the estimation
efficiency, we propose a novel approach, called the enhanced
reduced-basis method (EnRBM), in which a few expansion
points are added simultaneously with each evaluation of the
error estimator. To prevent the resulting basis from growing
too large, the number of expansion points added at one time is
chosen adaptively, based on the current value of the estimator.

B. ENHANCED RBM ALGORITHM (ENRBM)
The proposed EnRBM algorithm is summarized in the pseu-
docode in Algorithm 1 and Algorithm 2. It begins with spec-
ification of the input parameters: lower and upper frequency
limits (fmin, fmax), the number of frequency points (nf ),
the error tolerance (tol), the maximum number of points
selected in a single iteration (Nmax), and the coefficient
1w—a positive number � 1 associated with the thresh-
old level of the estimated error, below which candidates
for additional expansion points are not taken into account.
Finally, we define the minimal distance 1f between the
chosen expansion points. We also need to specify the initial
frequency expansion points. Standard approaches begin with

Algorithm 1 EnRBM: Enhanced RBM Procedure

Require: fmin, fmax, nf , tol, B, C, G, 0
1: Offline stage: compute components BTB, BTC, BTG,

BT0

2: fx = [fmin (fmin + fmax)/2 fmax] // Initial expansion
points
1w = 0.1 1f = 0.05 GHz jj = 1

3: while eglobalmax > tol do
4: SET ii← 1
5: while ii ≤ length(fx) do
6: For given s = j2π fx(ii) compute:

A = 0 + sγ (s)G+ s2C, Qjj = sA−1B
7: Q = GS(Q,Qjj) Gram-Schmidt process
8: [·] = UPDATE(Cr ,0r ,Gr ,Br ,BTBBTQ,BTCQ,

BTGQ,BT0Q,Q, ·) // Offline components
update

9: Set ii← ii+ 1 jj← jj+ 1
10: end while
11: [eglobalmax , fx , ·] = EstError(·) // Estimate error
12: end while
13: return eglobalmax , Cr , 0r , Br , Gr

Algorithm 2 EstError: Fast S-Parameter Error Estimator

Require: nf , Nmax, f, tol, 1w, Cr , 0r , Gr , Br ,
BTBQ, BTCQ, BTGQ, BT0Q

1: Compute Es(s) using (6)
2: Find local maxima vector emax (considering 1f ), cor-

responding frequency vector fx and global maximum
value eglobalmax

3: Compute Nmax using (7)
4: Limit number of expansion points to Nmax

5: Reject expansion points with values below 1we
global
max

6: return eglobalmax

only one expansion point, either located in the middle of the
bandwidth ((fmin + fmax)/2) [5], [9] or chosen randomly [7].
In EnRBM, we assume that, besides the middle point, two
additional points are initially chosen from the end of the band:
the solutions at these points are the least linearly dependent
with respect to the solution evaluated at the midpoint. Next,
at the three initial points, the original FEM system of equa-
tions (1) is solved and the solution matrices are appended to
the projection basis Q, which is afterwards orthogonalized
using the Gram-Schmidt algorithm.

In the next step, the error estimator (6) is computed using
frequency-independent reducedmatrices (seeAlgorithm 2 for
details). Based on the error estimator, we now have to define
new expansion points that provide, on the one hand, a signif-
icant increase in the fidelity of the reduced model, but on the
other hand, do not expand the basis too much. To this end,
the local maxima of the estimated error are found, and among
them a few new expansion points are selected, based on the
following criteria:

1) If the two selected expansion points are located too
close to each other, the projection basis Q will contain
redundant components. In order to prevent such a situ-
ation, the distance between the two points is calculated.
If the distance is smaller than 1f , only one point with
a larger error is retained.

2) The maximum number of expansion points in a single
iteration should not be greater than Nmax , which is
selected adaptively on the basis of the current maxi-
mum value of the estimated error:

Nmax = blog10(e
global
max /tol)c + 1. (7)

This ensures that, in the initial stage, the number of
points selected is relatively large and that the value of
the error decreases quickly across the whole frequency
band. In the final step, fine tuning is performed and only
one point is added at a time.

3) The error introduced by the reduced model should be
suppressed evenly over the entire frequency bandwidth;
the local maxima, which are significantly below the
current global maximum value of the error estimator,
are therefore not considered. To this end, we compare
all maxima to the global maximum eglobalmax and consider
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only the local maxima with values not smaller than
1we

global
max .

Once a set of new points has been selected in the cur-
rent iteration, the system of equations (1) is constructed and
solved for the new expansion points. The solutions are then
appended to the projection basis Q. This process is executed
until the maximum value of the error estimator eglobalmax drops
below tol. The subsequent snapshots added to the projection
basis Q need to be orthogonalized with the Gram-Schmidt
approach. Otherwise, the loss of orthogonality of Q leads
to an ill-conditioned system of equations (3) and, in effect,
the error estimator begins to differ significantly from the
actual error.

FIGURE 1. Expansion point selection.

Let us illustrate the above process with the simple example
of the reduction for a bandwidth of 2–10 GHz with tol =
1e − 8, as shown in Fig. 1. The error estimator has been
computed and ten local maxima have been found, taking into
account the minimum distance between the selected points
(1f = 0.05 GHz). The global maximum value eglobalmax is
equal to 1.8, and so Nmax = 9 (computed using (7)). Thus
only the first nine maxima are considered. Next, we reject the
candidate points with error estimator values below the thresh-
old, defined as 1we

global
max , where 1w = 0.1 (the threshold

is denoted by the dashed horizontal line in Fig. 1, and the
rejected candidates points 6–9 are indicated with crosses).
Finally, the resultant set of expansion points, which will be
used to generate new snapshots in the next iteration, consists
of the first five local maxima, marked with the circles.

In effect, the proposed EnRBM approach selects a few
expansion points simultaneously. It thus requires the error
estimation to be computed significantly fewer times, than
in the standard RBM approach. EnRBM is thus expected to
result in substantial savings in the overall reduction time,
especially when the bandwidth is large.

C. ENRBM FOR MULTI-PARAMETER FEM SYSTEMS
In the previous subsection, we have introduced the enhanced
RBM approach for expedited solution of FE systems with
a single parameter - frequency. However, the FEM-MOR
technique can also be used for sweeps involving several
parameters, associated not only with frequency but also with
material properties and geometry of the structures [11]–[13].
EnRBM can be easily extended to multi-parameter systems,

provided the parameters are of the affine type. In the case
of the non-affine parameter dependence, firstly the affine
parameterization has to be extracted from the original system,
using e.g. [13], [15], [16].

Here, for the sake of simplicity, we will consider FE
systems with frequency and dielectric permittivity taken as
parameters. More precisely, let us consider computational
domain � divided into M non-overlapping subdomains:

� =

M⋃
m=1

�m, (8)

where �m contains a homogeneous, isotropic material,
characterized by the frequency-independent relative permit-
tivity εr,m. Hence, the vector of global parameters has the
following form:

p = [s, εr,1, εr,2, . . . , εr,M ] ∈ CM+1. (9)

Taking into account the parameter-space, system (1) is trans-
formed into:

(0 + sγ (s)G+ s2
M∑
m=1

(εr,mCm))E(s) = sBI,

U = BTE(s), (10)

where the entries of the matrix associated with�m subregion:
Cm ∈ Rn×n are defined as follows:

cmij =
∫
�m

(Eαi · Eαj)d�m. (11)

In the above formula, Eα are the H (curl) conforming FE basis
functions. Similarly, equations (3) and (6) are transformed
into:

(0r + sγ (s)Gr + s2
M∑
m=1

(εr,mCr,m))Er (s) = sBrI (12)

and:

Es(s) = BTR/|2sBTB| =
[
2sBTB− BT0QEr

− s2
M∑
m=1

εr,mBTCmQEr − sB
TBBTQEr

− sγ (s)BTGQEr
]
/|2sBTB|. (13)

Note that the response of the reduced-order model as well as
the error indicator are computed inM+1 dimensional space.
In order to apply the EnRBM approach in multi-variable

space, only a few changes have to be considered, with regards
to Algorithm 1 and Algorithm 2:
1) The initial expansion point is placed centrally in the

parameter-space: pc = [sc, εcr,1, ε
c
r,2, . . . , ε

c
r,M ].

2) The response of the reduced model, as well as the error
indicator are computed using (12) and (13), respec-
tively.

3) Additional reduced matrices have to be generated and
stored: Cm and BTCmQ, for m = 1 . . .M .
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4) Let us assume that in a given iteration, nG points
have already been selected for expansion. The distance
1pg between the next considered point and each of
the already selected points should be greater than 1,
assuming:

1pg =

√√√√M+1∑
m=1

( 2|ppm − p
s,g
m |

(pmaxm − pminm )

)2
for g = 1 . . . nG

(14)

where pmaxm and pminm are the maximum and minimum
values of the pm parameter, ps,gm is the value of the
m-th parameter of the already selected expansion point,
and ppm is the value of the m-th parameter of the
potential expansion point. Note that the equation (14)
corresponds to the (M+1)-dimensional hyperellipsoid
with them-th semi-axes length equal to (pmaxm −p

min
m )/2.

Only the points which lie outside of the hyperellipsoid
are selected.

D. LIMITATIONS OF ENRBM
The RBM-based simulations comprise the so-called offline
and online steps (see Section IIA for details). Note that
the proposed method affects only the online stage, which
includes the error estimation process and the fast frequency
sweep. Therefore, the overall speedup of simulations per-
formed using EnRBM is high, only if the offline stage is not
the dominating factor of computations. Hence, the proposed
method is effective in the following cases:
1) The number of FEM variables is relatively small/

medium so the system matrix factorization is not the
dominating computational load. Such a situation occurs
for example in the initial phases of the design pro-
cess, which rely on the coarse (surrogate) models [17].
In such cases, the scattering characteristics of the
coarsemodel have to be computedmany times in differ-
ent points of the parameters space. Hence, the overall
simulation time can be large, although the number of
FE unknowns is relatively small.

2) The number of frequency points, in which the scatter-
ing parameters are evaluated, is relatively large. Such
simulation scenarios are considered for example if the
goal of computations is to precisely extract the zeros
and poles of a rational function, which approximates
the scattering parameters [18] or when the simulation
deals with the narrow-band structures, such as multi-
plexers or high-order filters.

3) The simulation deals with the multi-parameter
space [12], [13]. In such cases, the error has to be
estimated in many points of the parameter space, and
thus the error estimation may become a bottleneck of
the whole simulation.

III. NUMERICAL EXPERIMENTS
In this section, we use the proposed EnRBM approach on
three structures: dielectric resonator filter, H-plane filter and

four-pole dielectric-loaded cavity filter. All simulations were
carried out on a 64-bit workstation with a 3.00 GHz Intel
i5-7400 processor and 32 GB of RAM in Matlab; however
the Intel MKL PARDISO library was used for the solution of
the original large system of FEM equations. Examples were
prepared using InventSIM [20]. In all the tests, we assumed
1w = 0.1.

FIGURE 2. The geometry of dielectric resonator filter, dimensions are
provided in [19].

FIGURE 3. S parameters of dielectric resonator filter. Solid lines -
reference, dashed lines - MOR.

In the first example, we considered a dielectric resonator
filter, fed with an SMA connector, analyzed at 1801 points
from 4 to 12 GHz. The structure is presented in Fig. 2 and
the reference and MOR S-characteristics are shown in Fig. 3.
The full FEM model consists of 101,264 variables, for which
the direct frequency sweep took 1004.1 s.

Next, the filter has been analyzed by means of RBM and
the proposed EnRBM, where we assumed 1f = 0.1 and
tol = 1e−8. The results can be seen in the Table 1. The num-
ber of vectors in the projection basis for both algorithms is the
same (140), however the number of estimate computations
is significantly higher (70 and 16, respectively). In effect,
the online time is reduced from 41.8 s to just 11.0 s, whereas
the overall simulation time is reduced from 97.5 s to 66.5 s.

TABLE 1. Analysis results, dielectric resonator filter, tol = 1e− 8.
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The accuracy of the reduced model in both cases is almost
the same, whereas the speedup of computations is increased
from 10.3 (RBM) to 15.1 (EnRBM).

FIGURE 4. The geometry of H-Plane filter, dimensions are provided
in [21].

FIGURE 5. S parameters of H-Plane filter. Solid lines - reference, dashed
lines - MOR.

The second numerical test deals with H-plane filter, con-
sidered at 1801 points from 12 to 30 GHz. The structure is
presented in Fig. 4. The reference andMOR S-characteristics
are shown in Fig. 5. We assumed that the structure exhibits
frequency dependent conductor loss, namely that the con-
ductivity of the walls is equal to σ = 5.8e7 S/m. The full
FEM model consists of about 157,300 variables, for which
the direct frequency sweep took 3124 s. Next, we analyzed
the same structure using RBM and EnRBM, with 1f = 0.1
and tol = 1e − 6. The number of vectors in the projection
basis for both cases is the same (174), whereas the number of
the error estimate computations is significantly higher (87 for
RBM vs. 19 for EnRBM). In effect, the online time is reduced
from 89.7 s to 20.5 s and the simulation time: from 325.8 s
to 256.1 s. The accuracy of the reduced model is almost the
same in both cases (1.5e-7 for RBM and 3.2e-7 for EnRBM),
though the speedup increases from 9.6 to 12.2.

In the next numerical test, we have studied the efficiency
of the proposed algorithm as a function of the number of
frequency points (nf ). To this end, we have simulated the
two considered structures for nf varied from 201 to 1801.
The results are shown in Fig. 6, and it can be seen that
EnRBMconsiderably decreases the computational load of the
online phase for all considered cases, whereas the memory
consumption between RBM and EnRBM in both studied
cases is negligible (see Tab 1-2 for details). The comparisons
between the actual and estimated errors are shown in Fig. 7,
where the actual error is defined as:

Serroractual(s) = max|S(s)MOR − S(s)REF |, (15)

where SMOR and SREF are the scattering parameters of the
structure, obtained by means of the reduced and the original

TABLE 2. Analysis results, H-plane filter, tol = 1e-6.

FIGURE 6. Online phase computational time as a function of the number
of frequency points for RBM and EnRBM.

full-order FEM model, respectively. It can be seen that both
error measures are well correlated and fall below the specified
tol. level.
In the last numerical test we considered a four-pole

dielectric-loaded cavity filter (Fig. 8), analyzed in the multi-
variable space. More precisely, the response of the system is
a function of three parameters: frequency p1 = f = 11 . . . 12
GHz, and relative permittivity of the pucks: p2 = εr,1 =

26 . . . 34 and p3 = εr,2 = 26 . . . 34, where the number of
equidistantly distributed sampling points is 201, 19 and 9,
respectively. The full FEM model consists of 130,238 vari-
ables, for which the direct sweep with respect to all three
parameters (i.e. computations at 34731 points in a three
dimensional space) took ≈ 21960 s. Figs. 9 and 10 show
parametric plots of s11 and s12 where the value of εr,2 is
fixed at 30.

Next, the structure has been analyzed using RBM and
the proposed EnRBM methods. In both cases, the initial
expansion point was placed centrally in the parameter space:
pC = [11.5, 30, 30]. The subsequent expansion points
have been selected following the error indicator (13), which
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FIGURE 7. Comparison of actual error (black) and estimated (red) errors
for the first two considered cases. The blue line specifies the tolerance
level.

FIGURE 8. The geometry of the four-pole dielectric-loaded cavity filter,
dimensions are provided in [22].

FIGURE 9. The S11 parameter-plot, where the εr ,2 value is fixed at 30.

operated in the whole parameter-space. Table 3 compares the
results of the simulations performed by means of RBM and
EnRBM. It can be seen that unlike in previous examples,
the online time is dominant, however this is more than two
times shorter in the EnRBM comparing to RBM. As dis-
cussed in Section II.D, EnRBM is expected to outperform
RBM exactly in such situation. Indeed by using EnRBM
instead of RBM, the overall speedup of simulations increases
from 22.6 to 49.7, whereas the estimated error is almost
at the same level (6.6e − 07 and 5.4e − 07, respectively).
The actual error as a function of εr,1 and frequency, for

TABLE 3. Analysis results, dielectric-loaded cavity filter, tol = 1e− 6.

FIGURE 10. The S21 parameter-plot, where the εr ,2 value is fixed at 30.

FIGURE 11. A four-pole dielectric-loaded cavity filter. The actual error as
a function of εr ,1 and frequency, for εr ,2 = 26, 27, . . . , 34.

εr,2 = 26, 27, . . . , 34 is presented in the Fig. 11. It can be
seen that in the whole parameter-space, the actual error is
below tol (1e-6), indicated by the yellow transparent plane.

IV. CONCLUSIONS
In this paper, a systematic process has been presented for
enhancing the efficiency of the Reduced Basis Method.
In contrast to the standard RBM approach, a few expansion
points in the multi-parameter space are selected with a single
computation of the error estimator. The number of expansion
points is determined adaptively based on the accuracy of a
current reduced model. Numerical examples show that this
proposed technique substantially improves the efficiency of
the reduced-basis approach, without affecting the size of the
projection basis.
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