
Abstract—An improvement of the recently developed global
roots finding algorithm has been proposed. The modification
allows to shorten the computational time by reducing the number
of function calls. Moreover, both versions of the algorithms
(standard and modified) have been tested for numerically defined
functions obtained from spectral domain approach and field
matching method. The tests have been performed for three simple
microwave structures (open waveguides and conformal antenna
resonator). The results have been verified and the increase of
efficiency for the improved version of the algorithm has been
confirmed.

Index Terms—radiation, propagation, root finding, conformal
antennas, dielectric waveguides.

I. INTRODUCTION

The complex function analysis is an important contribution
to solving the propagation and radiation problems. The prop-
agation coefficient of a shielded or unshielded waveguide is
represented by a complex number (guided, leaky or complex
modes), which usually represents losses or radiation. Similarly,
a complex domain is required when finding resonant frequen-
cies of radiators or resonators. In many cases, evaluation of
these parameters boils down to finding the roots of more or
less complicated function. Unfortunately, hardly ever those
roots can be found analytically (even for simple methods,
such as mode matching technique [1]). For more sophisticated
methods, for instance field matching method [2] or spectral
domain approach [3], [4] the problem is deepening (the
function cannot be expressed in analytical form). Although
many algorithms have been developed for the last few decades,
root finding is still an open problem. The algorithms can be
applied only for a certain class of functions or for restricted
search regions. For local algorithms such as Muller’s [5]
or Newton’s [6], the knowledge of an initial root value is
required. Global root finding algorithms can be very efficient
for polynomial functions [7], [8] and this fact caused the
rise of many different techniques based on polynomial and
rational approximation (for functions containing singularities).
However, in some cases such approximation can bear little
or no relation to the original function [9]. Moreover, the
accuracy of the root obtained by these methods cannot be
easily determined and local algorithms are usually used to
its improvement. However, in local algorithms some of the
roots might be omitted, due to the uncertain convergence (if

the initial localization of the root is not sufficiently accurate). 
Another problem, arising during the rational approximation, is 
a random occurrence of spurious solutions [10].

Recently, a new global complex roots and poles finding 
method (GRPF) has been published [11]. It is based on the 
function phase analysis and does not require its derivative. It 
can be applied for a very wide class of problems defined on 
an arbitrary domain (also for functions containing branch cuts 
and singularities). Moreover, the efficiency of this algorithm is 
very high in comparison with the other established techniques, 
which has been confirmed i n [ 11]. T he a lgorithm c onsists of 
two main stages. In the first o ne t he f unction i s s ampled in 
the nodes of triangular mesh evenly covering the assumed 
domain. Then the candidate edges (edges along which the 
function phase changes of more than two quadrants) are found 
and the triangles attached to these edges are combined into 
the candidate regions. Next, at the boundary of these regions 
discretized Cauchy’s Argument Principle (CAP) is applied, in 
order to confirm the existence of roots or poles. In the second 
stage the accuracy of the evaluated roots/poles is improved by 
self-adaptive mesh refinement.

This paper is a continuation and extension of the publication 
[11]; a simple modification o f t he s econd s tage o f t he GRPF 
algorithm is presented. In the original GRPF method, new 
nodes are added in the center of all the edges in the candidate 
regions. In the new approach, extra nodes are added only to 
the candidate edges. It is shown that the reduction of the 
nodes added in subsequent iterations can notably improve the 
convergence of that process. Such an improvement leads to the 
smaller number of the function evaluations, which results in 
much shorter processing time (especially if the function eval-
uation is time-consuming). The numerical tests are performed 
on analytically and numerically defined f unctions (obtained 
from spectral domain approach [3], [4] and field matching 
method [2]) for both original and modified GRPF algorithms. 
For a multi-valued function a new single-valued function 
obtained as a pointwise product of the all Riemann sheets 
can be used [12]. In the considered examples the convergence 
of the modified G RPF i s u p t o t wo t imes f aster t han f or the 
original one.
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II. MODIFIED GRPF ALGOITHM

The aim of the GRPF algorithm [11] is to find all the
roots/poles of the considered function f(z) in a fixed region
Ω ⊂ C. The method is based on the function phase analysis
and do not involve derivative of the function. The algorithm
consists of two main stages and the modification concerns
the second stage only. The first stage remains unchanged
and begins with covering the domain with triangular mesh
using Delaunay triangulation (with the initial mesh step ∆r).
Next, the function value at each node zn ∈ Ω is calculated.
Parameter Qn describes the quadrant in which the function
value lies:

Qn =


1, 0 ≤ arg f(zn) < π/2
2, π/2 ≤ arg f(zn) < π
3, π ≤ arg f(zn) < 3π/2
4, 3π/2 ≤ arg f(zn) < 2π

. (1)

The root or pole is located at the point, where regions of four
different quadrants meet, as it is presented for the exemplary
function in Fig. 1.
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Fig. 1. The phase portrait of example function. The numbers (colors): 1
(red), 2 (yellow), 3 (green) and 4 (blue) represent the quadrants in which the
function values lie. The candidate edges are marked by thick black lines. The
black dotted lines represent the boundaries of the candidate regions [11].

An extra parameter ∆Qp can be introduced to represent the
difference in quadrants of the function values along the edge

∆Qp = Qnp2
−Qnp1

, ∆Qp ∈ {−2,−1, 0, 1, 2}, (2)

where np1 and np2 are nodes attached to edge p. Then, if
|∆Qp| = 2, the edge is marked as a ”candidate edge” (close
localization of the root/pole is expected). Next, all triangles
attached to the candidate edges are combined into candidate
regions. Then, the set C of unique edges attached to candidate
regions is created. The set C can be divided into k subsets

C(k). All the edges from C(k) form a closed contour around
the k-th candidate region. Then, the existence of roots or poles
can be confirmed by discretized Cauchy’s Argument Principle:

q =
1

2π

P∑
p=1

arg
f(zp+1)

f(zp)
, (3)

where q represents difference between the sum of all roots
counted with their multiplicities and the sum of all poles
counted with their multiplicities. Since the ∆Qp parameters
are computed, (3) can be replaced by the following formula:

q =
1

4

P∑
p=1

∆Qp (4)

and the localizations of the roots/poles are determined (with
the accuracy lower than ∆r).

In order to refine the accuracy of the solutions the second
stage of the algorithm must be applied. In the original GRPF
algorithm the new mesh points are added in the center of
each edge from set C (each edge in the candidate regions). In
order to preserve well-conditioned mesh geometry (elimination
of ”skinny triangles”) an extra second zone surrounding the
candidate regions should be introduced. If the triangle in
the second zone is ill-conditioned (the maximal to minimal
triangle sides ratio is greater than three), the new point is
added at the center of this triangle. Then, the triangulation
involving the new nodes is performed again. As a result, a new
self-adaptive mesh is obtained and once again the candidate
regions (smaller) can be determined. The whole procedure is
repeated until the assumed size of the region (accuracy δ) is
reached.

The modification of the GRPF algorithm concerns only its
second stage (the refinement) and reduces the number of nodes
added in the subsequent iterations. In the improved algorithm,
instead of adding new nodes in the centers of all edges from
the candidate region, only a single node is added in the center
of candidate edge. Also, in this approach extra points must
be added in the centers of ill-conditioned triangles (in both
zones), but their number is not high. Moreover, an extra node
must be added in the center of the edge from candidate region,
if it is located at the boundary of Ω. Despite the similarities of
the both approaches (regular and the modified) the difference
in the number of nodes can be quite high and, as it is shown
in the numerical results, can reach 50%. An example of
the modified second stage of the algorithm performance is
presented in Fig. 2.

The proposed modification can notably reduce (even two
times) the total number of function calls. For more sophisti-
cated functions, its evaluation process can be the most time-
consuming part of the algorithm, so the presented improve-
ment can significantly reduce the total computational time.

III. NUMERICAL RESULTS

In order to verify the efficiency of the proposed method, the
results of some numerical tests performed for three different
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Re(f(z))>0, Im(f(z))<0Re(f(z))<0, Im(f(z))<0Re(f(z))<0, Im(f(z))>0Re(f(z))>0, Im(f(z))>0

Fig. 2. Four subsequent iterations of the modified algorithm: a new mesh node
is added in the half of the candidate edge (a), the same step is performed in
the next iteration (b), except the point in the candidate edge ceter, four nodes
are added in centers of ”skinny triangles” (c), another node is added in the
candidate edge (d)

electromagnetic problems are presented. The computational
time, the number of function evaluations and the accuracy
of the obtained results are analyzed. The algorithm is im-
plemented in MATLAB environment, and all the tests are
performed using an Intel(R) Core i5-2500 CPU 3.30 GHz,
16-GB RAM computer.

A. Cylindrical-Rectangular Microstrip Resonant Structure

The first example is a cylindrical-rectangular microstrip
resonator, which geometry is presented in Fig. 3. Such a simple
structure can be applied in conformal antennas (see [3], [13]–
[15]). The problem is solved numerically using the spectral
domain approach. In the last step of this approach a numeri-
cally defined determinant function is composed. The roots of
this function represent the searched resonant frequencies. The
analysis of that function in the Ω = {z ∈ C : 1.4 < Re(z) <
1.5 ∧ −0.1 < Im(z) < 0} with ∆r = 0.1, using the regular
and modified GRPF algorithm, results in a single resonant
frequency fr = 1.469084230386305 − 0.071068929056597i
GHz. The final results are exactly the same for both ap-
proaches, however the efficiency significantly differs - see
Table I. The reduction in the CPU time is a result of the
smaller number of nodes in the presented modified algorithm.

TABLE I
ANALYSIS OF THE STRUCTURE PRESENTED IN FIG. 3 - COMPARISON OF

THE RESULTS OBTAINED WITH THE USE OF BOTH ALGORITHMS (REGULAR
GRPF PLACED IN BRACKETS)

accuracy CPU time [s] no. of nodes no. of iterations
δ = 1e− 3 40 (64) 30 (50) 11 (7)
δ = 1e− 6 86 (158) 68 (125) 27 (18)
δ = 1e− 9 131 (227) 104 (180) 43 (27)
δ = 1e− 12 173 (310) 138 (246) 60 (37)

B. Triangular Dielectric Fiber

As the next structure, a dielectric optical fibers is considered
(see Fig. 5). The structure has a triangular cross section

Fig. 3. Cylindrical-rectangular microstrip structure [3], where ground cylinder
radius r = 200 mm, substrate permittivity εr = 2.32, and thickness h = 2.4
mm, patch dimensions L = 80 mm and W = 168 mm, air gap of thickness
s = 5 mm
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Fig. 4. Comparison of the self-adaptive meshes obtained for the structure
presented in Fig. 3. The standard (a), and modified version of GRPF (b).

TABLE II
ANALYSIS OF THE STRUCTURE PRESENTED IN FIG. (5) - COMPARISON OF

THE RESULTS OBTAINED WITH THE USE OF BOTH ALGORITHMS (REGULAR
GRPF PLACED IN BRACKETS)

accuracy CPU time [s] no. of nodes no. of iterations
δ = 1e− 3 16 (28) 162 (281) 17 (8)
δ = 1e− 6 25 (47) 249 (467) 38 (18)
δ = 1e− 9 34 (66) 336 (658) 58 (28)
δ = 1e− 12 44 (83) 437 (829) 82 (38)

(equilateral) and can be investigated using a simple field
matching technique [2]. The method is quasi-analytical and
leads to the construction of determinant function composed
of boundary conditions. The root of this function represents
the searched propagation coefficient. The analysis of that
function in the Ω = {z ∈ C : 1.25 < Re(z) < 1.35 ∧
−0.4 < Im(z) < −0.35} with ∆r = 0.1, using the regular
and modified GRPF algorithm, results in finding a leaky
mode characterized by normalized propagation coefficient
γ = 1.260551725649258 − 0.384838512540439i. Again, the
final results are exactly the same for both approaches, and
again the efficiency significantly differs - see Table II. As in
the previous example, the reduction in the CPU time is a result
of the smaller number of nodes in the modified GRPF.
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a
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Fig. 5. Dielectric fiber of triangular cross section [2], where permittivity
εr1 = 8.41, εr2 = 2.4025 and a = 0.5 µm
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Fig. 6. Comparison of the self-adaptive meshes obtained for the structure
presented in Fig. 5. The previous algorithm (a), and modified version (b).

C. Lossy Multilayered Waveguide

As the final example, a multilayered guiding structure pre-
sented in Fig. 7 is considered. This structures are widely used
in microwave applications [16] and their analysis boils down
to satisfying specific boundary conditions, which requires zero
of the determinant function (see equation (9) in [11]). Again,
the root of this determinant function represents the searched
propagation coefficient. The analysis of the function in the
Ω = {z ∈ C : 1.2 < Re(z) < 1.8 ∧ −0.3 < Im(z) < 0.3}
with ∆r = 0.1, using the both algorithms, results in finding
five guided modes characterized by normalized propagation
coefficients:
γ1 = 1.353140429034829− 0.000086139366031i,
γ2 = 1.439795543998480− 0.000052001476288i,
γ3 = 1.504169866194328− 0.000028029233217i,
γ4 = 1.548692244042953− 0.000012100934982i,
γ5 = 1.574863045538465− 0.000002974495292i.
Obviously, the final results are exactly the same for both
approaches. However, in opposition to the previous cases, for
such a relatively simple function the efficiency is similar for
both algorithms - see Table III. Since the evaluation of the
function is not time-consuming, the difference in the CPU
time is negligible (even if the number of function calls in the
modified algorithm is much smaller). From the practical point
of view (taking into account total CPU time) the choice be-

tween these two approaches for simple functions is irrelevant.

ε
c

dε1

ε
s

Fig. 7. Lossy multilayered waveguide, where layer permittivities are ε1 =
2.5075, εs = 4, εc = 15.99 + 0.52i and the layer thickness is d = 1.8 µm

TABLE III
ANALYSIS OF THE STRUCTURE PRESENTED IN FIG. 7 - COMPARISON OF

THE RESULTS OBTAINED WITH THE USE OF BOTH ALGORITHMS (REGULAR
GRPF PLACED IN BRACKETS)

accuracy CPU time [s] no. of nodes no. of iterations
δ = 1e− 3 0.06 (0.04) 320 (461) 24 (8)
δ = 1e− 6 0.11 (0.08) 527 (770) 40 (19)
δ = 1e− 9 0.16 (0.14) 1062 (729) 53 (29)
δ = 1e− 12 0.21 (0.20) 1390 (927) 69 (39)
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Fig. 8. Comparison of the self-adaptive meshes for the problem obtained for
the structure presented in Fig. 7. The previous algorithm (a), and modified
version (b).

IV. CONCLUSION

An improvement to the recently published roots and poles
finding method (GRPF) is presented. In the new approach the
number of the function calls is smaller (due to the reduction
in the number of the nodes) and results in a shorter processing
time. The numerical tests were performed on both versions of
the GRPF algorithm. The obtained results show that the new
algorithm can be up to two times faster than the original one.
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