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Abstract

In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP)
problem is considered, with the use of various types of Deep Neural Networks (DNNs).
The impact of the prediction time horizon length on accuracy, and the influence of tem-
perature on prediction effectiveness have been analyzed. Three types of DNNs have been
implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated
Recurrent Unit), and H-MLP (Hierarchical Multilayer Perceptron). The DNN architec-
tures are part of the Deep Learning Prediction (DLP) framework that is applied in the
Deep Learning Power Prediction System (DLPPS). The system is trained based on data
that comes from a real wind farm. This is significant because the prediction results
strongly depend on weather conditions in specific locations. The results obtained from
the proposed system, for the real data, are presented and compared. The best result has
been achieved for the GRU network. The key advantage of the system is a high effective-
ness prediction using a minimal subset of parameters. The prediction of wind power in
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wind farms is very important as wind power capacity has shown a rapid increase, and has
become a promising source of renewable energies.
Keywords: Renewable Energy, Wind Energy, Wind Power, Wind Turbine, Short-Term
Wind Power Prediction, Deep Learning, Convolutional Neural Networks, Gated Recur-
rent Unit, Hierarchical Multilayer Perceptron, Deep Neural Networks

1 Introduction

Renewable energy sources are an alternative to
coal-fired power plants. Their role in the produc-
tion of electrical energy is systematically increas-
ing, and many countries are striving to gradually
phase out coal-fired power plants. These actions
are in line with the goals of important strategies
to combat climate change and improve air quality,
which include the "European Green Deal" for the
European Union, the "Clean Air Act" for the United
States, etc.

Wind power plants play an important role
among renewable energy sources. They use the
power of wind, which is a common phenomenon
and allows for the delivery of large amounts of elec-
trical energy. Wind turbines can be installed on both
land and sea.

They generate low operating costs, and can
work under different weather conditions. Moreover,
they can easily be activated depending on the de-
mand for electrical energy; this process can be au-
tomated. In addition, they ensure an increase in en-
ergy independence, create new jobs in the local en-
vironment, do not emit CO2, and have a minimal
impact on the environment – they stand out due to
their low greenhouse gas emissions.

An important issue for wind power plants is
Short-Term Wind Power Prediction (STWPP). Such
a forecast covers the next few hours (day-ahead). It
must take into account the unpredictability of the
weather, particularly the variability of the wind.

Wind power prediction helps to reduce the ef-
fects of instability of atmospheric conditions, al-
lows planning of power plant operations, provides
the possibility of a more stable operation of the en-
ergy system, ensures optimization of fossil fuel con-
sumption, labour, and maintenance costs, etc.

The STWPP depends on many factors including
wind speed, turbulence (which can significantly af-

fect efficiency), air temperature, atmospheric pres-
sure, season, topographical factors of the terrain,
current demand for electrical energy (which can
change rapidly), insolation, precipitation level, etc.
Precise identification of key factors that determine
effective short-term prediction is difficult because
many of them are interdependent and their influence
can be difficult to quantify.

In this paper, the STWPP problem is considered
with application of Deep Neural Networks (DNNs).
The impact of prediction time horizon length on the
accuracy, and the impact of temperature on predic-
tion effectiveness are analyzed. Simulation studies
based on real data from a working wind turbine are
described, and results are presented.

The paper is organized as follows: Section 2
provides information about works related to the
subject of the STWPP published by various authors.
In Section 3, the main characteristics of our ap-
proach are described. Section 4 outlines selected
aspects of wind turbine operation. A detailed de-
scription of the proposed approach is given in Sec-
tion 5. Simulations, including assumptions and re-
sults achieved by the implemented solution, are pre-
sented in Section 6. Conclusions are formulated,
and plans for future works are outlined, in Sec-
tion 7.

2 Related works

In this article, DNNs are used to solve the
STWPP problem. This kind of neural networks are
steadily gaining popularity, so their capabilities are
being utilized in various application areas. For ex-
ample, such networks can be used to identify non-
human traffic on a website [11]. Among others, a
Recurrent Neural Network (RNN) is employed to
monitor a regenerative heat exchanger of a steam
turbine power plant [30]. The problem of process-
ing CAPTCHA codes (used on websites) solved by
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a Convolutional Neural Network (CNN) is consid-
ered in [34]. Stacked ensembles of neural networks
and autoencoders are tested for intrusion detection
in IT services [3]. The authors of paper [18] focus
their attention on the problem of improving the ef-
ficiency of medical imaging in the case of limited
data availability, taking into account interpretation
capabilities of the model. In [32], a DNN is used to
detect people and human posture points in 2D im-
ages. In [28], a CNN is applied to epileptic seizure
recognition.

For the STWPP, different methods are em-
ployed, not only neural networks, but also statistical
models based on regression, various artificial intel-
ligence methods, and hybrid models. In [12], the
state-of-the-art in STWPP is presented with a liter-
ature overview.

In [49], parametric power curve models, such
as the four-parameter logistic model, five-parameter
logistic model, and polynomial regression, are an-
alyzed. In [16], a piece-wise linear model is pro-
posed to estimate a power curve based on data of
wind speed. In [45], statistical methods are consid-
ered with a one-dimensional polynomial dependent
on wind speed and a two-variable function using
wind speed and direction. In [7, 8], attempts are
made to predict wind speed and active power us-
ing models such as moving average, weighted mov-
ing average, autoregressive moving average, and
autoregressive integrated moving average. In [48],
it is shown that improving the accuracy of weather
forecasting translates into better accuracy of turbine
power prediction.

A method for predicting wind speed and di-
rection by use of a one-dimensional CNN is pro-
posed in [14]. The authors of paper [27] focus their
attention on using information about wind speed
and precipitation, applying methods of time se-
ries mapping to image matrices and feature extrac-
tion, and employing a DNN for power prediction.
In [54], an innovative approach to short-term pre-
diction, based on a set of artificial neural networks,
with the PCA (Principal Component Analysis) and
FCM (Fuzzy C-Means) clustering algorithm, is pre-
sented. In [46], the ELM (Extreme Learning Ma-
chines) and a cloud model that takes into account
uncertainty aspects are used for power prediction.

In [24], hybrid approaches that combine ma-
chine learning and meteorological data-based pre-

diction are described. The authors of article [51]
compare the effectiveness of the LSTM (Long
Short-Term Memory), CNN, and DBN (Deep Be-
lieve Network) in short-term wind speed forecast-
ing. In paper [53], an approach based on the wavelet
transform, ELM, and firefly algorithm (population-
based optimization), is proposed. In [33], various
machine learning techniques, including neural net-
works, genetic algorithms, and reinforcement learn-
ing, are considered in application to the wind power
prediction. In [4], the importance of proper selec-
tion of input variables, modeling techniques, and
methods for evaluating prediction quality, are dis-
cussed.

In addition, hybrid methods, particularly those
based on population algorithms, are applied to the
STWPP. Such algorithms are widely used in vari-
ous design tasks. In [39], the application of evolu-
tionary algorithms for designing digital minimum-
phase filters with non-standard amplitude character-
istics and a finite word length is described. In [40]
an evolutionary method for designing and opti-
mizing digital combinatorial circuits is employed.
In [43], an evolutionary division of VLSI circuits
into sub-circuits with a minimal number of connec-
tions is presented. In [41, 42], evolutionary meth-
ods for designing and optimizing digital IIR filters
with non-standard characteristics are proposed.

As for the applications of population-based al-
gorithms to solve the STWPP problem, a hybrid
approach that combines the Least Squares Sup-
port Vector Regression (LSSVR) and Artificial Bee
Colony (ABC) is described in [5]. A hybrid method
for wind speed and wind turbine power prediction
using fuzzy clustering analysis and the SVM (Sup-
port Vector Machines) is presented in [55]. A hy-
brid approach that combines an MLP (Multi-Layer
Perceptron), a genetic algorithm, the SVM, and the
linear regression, is depicted in [38]. An innova-
tive approach to the STWPP, based on the kNN (k-
nearest neighbors) and PSO (Particle Swarm Opti-
mization), is proposed in [25]. A hybrid approach
to wind turbine prediction using a CNN and an
improved DE (Differential Evolution) is described
in [20]. An algorithm based on a deep CNN, and an
evolutionary optimizer that uses the Grey Wolf Op-
timization (GWO is applied in order to predict the
short-term wind power in [15].
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Many other publications that propose various
modifications of Machine Learning (ML) methods
and hybrid approaches to the STWPP are available.
The methods of wind power prediction can be ana-
lyzed with respect to three factors: physical, statis-
tical, and ML; see [37]. The authors of paper [26]
provide an overview of AI-based hybrid approaches
for wind power forecasting, and consider Artificial
Intelligence (AI) methods with regard to the afore-
mentioned categories; see also [47].

3 Main characteristics of the pro-
posed approach

Taking into account the solutions presented by
different authors, and described in Section 2 with
regard to the STWPP problem, we propose our ap-
proach focusing attention on the DNNs.

Specifically, we are interested in investigating
the following aspects: (1) whether it is possible
to effectively solve the STWPP problem using a
significantly reduced set of input attributes for the
DNNs; (2) whether the selection of the type of
DNNs is crucial considering the specificity of the
STWPP problem; (3) how the prediction time hori-
zon determines the accuracy of the STWPP prob-
lem.

Our motivation for considering these issues
comes from: (a) the application of various types of
DNNs; (b) the use of an extensive set of attributes
that describe turbine operating conditions; (c) the
incorporation of additional data, such as informa-
tion from weather services.

In this paper, we apply three types of DNNs
(i.e. CNN, Gated Recurrent Unit, and Hierarchical
Model based on MLP) to the short-term prediction
of wind turbine power. In addition, different predic-
tion horizons are considered. Moreover, focusing
our attention on the most reduced set of attributes
used for prediction, with a particular emphasis on
evaluating the impact of air temperature, can be
viewed as an important issue in this approach.

It is worth emphasizing that the simulation stud-
ies presented in this article were conducted by
use of real data from the Alstom ECO110 turbine
with a nominal power of 3 MW operating in a
90 MW farm located in the Pomeranian Voivode-
ship in Poland. This is very important because pre-

diction results obtained by machine learning mod-
els strongly depend on the data. This means that ar-
tificial intelligence systems trained on the data gath-
ered in one place (in this case – a geographical lo-
cation) may not work very well in another location
(with different weather conditions).

Therefore, in spite of the fact that there are
many publications presenting applications of var-
ious methods, including deep learning, to the
STWPP problem (see Section 2), most of them
employ data collected from wind farms located in
countries (and continents) where weather condi-
tions are totally different than in the north part of
Poland. Thus, such solutions cannot be directly im-
plemented in wind power plans developed in our
country.

The prediction time horizons also should be
taken into account because a good system applied
in real time to the STWPP problem should guaran-
tee reliable results in the case when the time horizon
is extended. Generally, the prediction accuracy de-
creases as the time horizon increases.

4 Description of selected aspects of
wind turbine operation

Power output P of a wind turbine in a wind farm
depends on many factors, such as wind speed V ,
wind direction dir (⃗V = [V,dir]), blade surface area
A, turbine efficiency, air temperature T (an increase
in temperature may reduce air density ρ, which in-
creases power output), and atmospheric pressure (a
decrease in pressure may also reduce air density, in-
creasing power output). Taking these components
into account, the power output of the turbine can be
described as:

P = f
(

ρ,T,V⃗ ,Cp,A
)
, (1)

where f (·) is the adopted dynamic model of the
turbine, and Cp is a constant power coefficient de-
pendent on the specific turbine (including its effi-
ciency). The correlation plot between power output
P and dir, V , and T , generated by the turbine for
the data used in the simulations is shown in Fig-
ure 1. Based on this plot, it can be concluded that
not all factors have a clear impact on P. One such
factor is, for example, T .
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Assuming that wind speed V is the key factor
for power output P of a wind turbine, instantaneous
power P (in W) can be estimated as follows:

P =




0 if V <VCutIn

0.5 ·Cp ·ρ ·A ·V 3 if VCutIn ≤V <Vr

Pr if Vr ≤V <VCutOut

0 otherwise,

(2)

where VCutIn is the minimum wind speed required
to start the turbine, Vr is the wind speed at which
the turbine achieves maximum efficiency, VCutOut is
the maximum wind speed at which the turbine must
be shut down, Cp is the aerodynamic power coeffi-
cient (the ratio of actual wind power to maximum
theoretical wind power), and Pr is the rated power
of the turbine (i.e. achieved under nominal operat-
ing conditions). The variable values used in equa-
tion (2) for the turbine considered in the simulations
are shown in Table 1.

Figure 1. Graphical representation of the
correlation between power P[MW ] generated by

the turbine and dir [◦], V
[m

s

]
, and T [◦C], occurring

in the data used in simulations.

The problem of the STWPP consists of us-
ing the attribute values considered in the context
of equation (1). Not only the current values of
these attributes are taken into account, but also the
values in previous moments (t − 1),(t − 2), ..,(t −
past). All of them are used to determine the max-
imum power values in the subsequent moments
(t + 1),(t + 2), ..,(t + horizon). Therefore, it is a
typical regression problem that can be solved by
use of ML methods. In practice, this problem is
not easy to solve because:

– Observation time ∆t, and the time resolu-
tion of the forecast δ, must be properly de-
fined. In the simulations we assumed that ∆t ∈
{7.5min,22.5min,45.0min}) and δ = 150sec).

– A different subset of available input attributes
can be applied to predict wind power. Some of
them may be dependent on each other.

– It is a dynamic problem, and a different number
of historical steps can be used for each of the
selected input attributes to solve it.

5 Description of the Deep Learning
Power Prediction System

The following subsections illustrate architec-
tures of the system created by means of the DNNs,
in accordance with the description of wind turbine
operation presented in Section 4 and characteristics
of our approach outlined in Section 3.

5.1 Power Transmission System

The STWPP should be considered with regard
to the Power Transmission System (PTS) shown in
Figure 2. The PTS includes the infrastructure that
enables the transmission of electrical energy from
wind turbines to consumers. It consists of a turbine
generating electrical energy (turbines comprising a
wind farm), transformers to increase the voltage for
reducing transmission power losses, transmission
lines, a centralized SCADA (Supervisory Control
and Data Acquisition) system for remote monitor-
ing and control of turbine operations, a power pre-
diction system, and an Independent System Oper-
ator (ISO) coordinating the operation of the wind
farm with other sources of electrical energy in the
network. The proposed approach to the STWPP
can be a component of the PTS. The SCADA sys-
tem collects data, such as temperature, wind speed,
wind direction, etc. These data can be used in or-
der to train systems based on ML methods. For
more information concerning the SCADA system,
see [37].

5.2 Deep Learning Prediction System

In the context of this article, the most important
block in the PTS is the Deep Learning Power Pre-
diction System (DLPPS), shown in Figure 3. The
DLPPS performs initial preprocessing of real data
to adapt it for prediction. In particular, data prepro-
cessing includes: equalizing time intervals between
data, removing missing data, and determining the
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[V,dir] components of the velocity vector {Vx,Vy}.
Simple linear interpolation can be applied to deter-
mine missing power values:

P(t) = P(ts)+(P(te)−P(ts)) ·
t − ts
te − ts

, (3)

where t ∈ (ts, te) and P(t) ∈ (P(te) ,P(ts)) must be
known.

5.3 Deep Learning Prediction Block

Preprocessed data prepared in the DLPPS block
can be passed to the DLP (Deep Learning Predic-
tion) block which contains a system that properly
defines model f (·) in the form of (1). In this pa-
per, we assume that such a model is expressed by a
DNN. During the training procedure, preprocessed
measurement data in the following form are used:

{X(t) ,Y(t)}=





T (t) ,T (t −1) , ...,T (t − past) ,
Vx (t) ,Vx (t −1) , ...,Vx (t − past) ,
Vy (t) ,Vy (t −1) , ...,Vy (t − past) ,

dir (t) ,dir (t −1) , ...,dir (t − past) ,
...

P(t) ,P(t −1) , ...,P(t − past)




,

{
P(t +1) ,P(t +2) , ...,
P(t +horizon)

}




. (4)

In our approach, three types of DNNs are em-
ployed to construct the DLP block:

– CNN [21] – most popular kind of DNNs. These
neural networks apply the convolution operation
to process input data, usually images or other
spatial data. CNNs consist of convolutional lay-
ers that employ filters (kernels) to extract fea-
tures from input data, and pooling layers that re-
duce the size of output data from the convolu-
tional layers. Fully connected layers are located
at the end of CNNs, and use the resulting fea-
tures for classification or regression. The archi-
tecture of the CNN is illustrated in Figure 4.a.

– GRU (Gated Recurrent Unit) [6] – The GRU is a
type of a RNN that was proposed as an extension
of the standard LSTM model. This neural net-
work works in a similar way to the LSTM, but

it has fewer parameters, and employs reset and
update gates to control the information transmit-
ted by the network. Thanks to these gates, the
GRU can deal with the problem of the vanishing
gradient, which occurs in standard RNNs. Be-
cause the GRU works faster than the LSTM, it
can be applied in order to process sequences of
different lengths. The architecture of the GRU is
portrayed in Figure 4.b.

– H-MLP (Hierarchical MLP) [31] – The hierar-
chical model based on MLP neural networks –
a type of DNNs that consists of multiple layers
of interconnected MLPs. This model is hierar-
chical which means that higher layers learn in-
creasingly complex features, which are built on
the basis of the features learned in lower layers.
This approach allows for a higher level of ab-
straction in the representation of data. The ar-
chitecture of the H-MLP is shown in Figure 4.c.
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System (PTS).
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(DLPPS).
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[V,dir] components of the velocity vector {Vx,Vy}.
Simple linear interpolation can be applied to deter-
mine missing power values:

P(t) = P(ts)+(P(te)−P(ts)) ·
t − ts
te − ts

, (3)

where t ∈ (ts, te) and P(t) ∈ (P(te) ,P(ts)) must be
known.
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



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...

P(t) ,P(t −1) , ...,P(t − past)




,

{
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}




. (4)
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duce the size of output data from the convolu-
tional layers. Fully connected layers are located
at the end of CNNs, and use the resulting fea-
tures for classification or regression. The archi-
tecture of the CNN is illustrated in Figure 4.a.

– GRU (Gated Recurrent Unit) [6] – The GRU is a
type of a RNN that was proposed as an extension
of the standard LSTM model. This neural net-
work works in a similar way to the LSTM, but

it has fewer parameters, and employs reset and
update gates to control the information transmit-
ted by the network. Thanks to these gates, the
GRU can deal with the problem of the vanishing
gradient, which occurs in standard RNNs. Be-
cause the GRU works faster than the LSTM, it
can be applied in order to process sequences of
different lengths. The architecture of the GRU is
portrayed in Figure 4.b.

– H-MLP (Hierarchical MLP) [31] – The hierar-
chical model based on MLP neural networks –
a type of DNNs that consists of multiple layers
of interconnected MLPs. This model is hierar-
chical which means that higher layers learn in-
creasingly complex features, which are built on
the basis of the features learned in lower layers.
This approach allows for a higher level of ab-
straction in the representation of data. The ar-
chitecture of the H-MLP is shown in Figure 4.c.
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There is a large number of publications cover-
ing subjects related to DNNs and their applications,
especially with regard to CNNs, including review
papers, see eg. [1, 9], in addition [50] concerning
the GRU. However, not so many articles refer to the
H-MLP; one of the examples presents an approach
to automatic language identification based on hier-
archical MLP classifiers [23].

The three types of DNNs, depicted above and
displayed in Figure 4, have been applied in the
simulations reported in Section 6. Nevertheless,
it should be emphasized that different models can
also be employed – instead of the suggested DNNs
variants, as the implementation of the DLP block.
For instance, a fuzzy system [44, 52] trained using
a population-based algorithm [10, 36] or another
option like a neuro-fuzzy architecture with hybrid
learning [35], can be considered in this application.

6 Simulations

The simulations conducted by the system de-
scribed in Section 5, on a real dataset from the
SCADA, have been reported in this section which
in the following subsections presents assumptions
regarding the simulation, and results, respectively.

6.1 Simulation assumptions

As mentioned in Section 4, values of the vari-
ables used in equation (2), for the wind turbine con-
sidered in the simulations, are shown in Table 1.

Table 1. Technical specification of the wind
turbine considered in the simulations.

No.
Parameters

of the wind turbine
Values

of the parameters
1. rated power Pr 3.0 MW
2. type of generator asynchronous DFIG
3. rotor diameter 110 m

4.
cut-in wind speed

VCutIn
3 m

s

5.
rated wind speed

Vr
11.5 m

s

6.
cut-out wind speed

(avg. 10 min) - VCutOut
25 m

s

7.
instant cut-out

wind speed (3s)
34 m

s

Remarks regarding the simulation can be sum-
marized as follows:

– The paper considers data from a wind farm
consisting of 30 Alstom ECO110 turbines.
One ECO110 turbine has a nominal power of
3.150 MW, produces approximately 195 MWh
annually, is designed for medium and high wind
speeds, and uses a doubly fed induction genera-
tor (DFIG). More information on the DFIG can
be found in [29].

– Three variants of DNNs in the DLP block were
tested in the simulations: CNN, GRU, H-MLP,
in accordance with the information provided in
Section 5.3. The hyperparameters of these net-
works are presented in Table 2.

– For the purpose of the tests performed in this
work, 33,983 real-time readings of values from
the SCADA system were archived: P, V , dir,
and T , during turbine operation at one of the Pol-
ish wind farms in the Pomeranian Voivodeship
in 2021. The readings were taken every 150 sec-
onds (2.5 minutes). It was assumed that high
time resolution could have a positive impact on
the performance of the DLP block.

– The training data for the DLP block were gener-
ated assuming that the wind farm produces max-
imum active power under current weather con-
ditions, which is not limited by the farm control
system (except for the cases endangering turbine
safety, which did not occur during the data ac-
quisition stage).

– The training data for the DLP block include:
wind direction dir and speed V , ambient tem-
perature T , and turbine power P. The structure
of a segment of these data (limited to 4 decimal
places) is shown in Table 3.

– The training dataset, in the form of the struc-
ture shown in Table 3, was processed according
to the information provided in Section 5. The
following number of observations was taken:
horizon ∈ {3,9,18}. The prediction time for
the wind turbine power was derived from the
number of observations and the time interval
between successive readings (i.e. 2.5 min-
utes): ∆t ∈ {7.5min,22.5min,45.0min}. An
exemplary segment of the training sequence for
past_history = 3 is illustrated in Table 4.
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– The simulations were conducted in two variants:
with the temperature attribute T and without tak-
ing into account the temperature. The purpose of
this approach was to attempt to answer the ques-
tion of whether T , as a derivative of the current
weather state, has a significant influence on the
value of power generated by the turbine. Doubts
regarding the need to consider the temperature
attribute were raised in Section 4 with regard to
comments concerning Figure 1.

– The Mean Squared Error (MSE) was applied in
order to evaluate the effectiveness of prediction
while the DNNs were employed. In the case
of networks with m neurons in the output layer,
the MSE errors were determined as the mean er-
rors of these neurons. The training data were
split into a 70:30 ratio into a training and test se-
quence. Each of the simulations was repeated 50
times, and the corresponding results were aver-
aged.

– The stopping criterion for the learning algo-
rithm, for each of the three variants of DNNs
in the DLP block (CNN, GRU, H-MLP), was a
constant value of the MSE error over the next 40
learning steps. The maximum number of learn-
ing epochs was 100.

– The adaptive moment estimation (ADAM) gra-
dient algorithm, which combines the advantages
of the RMSprop (Root Mean Square propaga-
tion) and Momentum [19], was used to train
each of the DNNs considered in the simulations.
Each network was tested for the following vari-
ations: past_history ∈ {3,6,9} for horizon = 3,
past_history ∈ {11,18,27} for horizon = 9, and
past_history ∈ {22,36,54} for horizon = 18. A
comparison of the results for the best variants is
presented in Table 5.

Figure 4. Architectures of the DNNs applied in the
DLP block: a) CNN, b) GRU, and c) H-MLP.

Table 2. Hyperpameters of the DNN architecture
applied in the DLP block.

No.
Parameter

name
Parameter

value
Network
symbol

1. batch size 32 CNN
2. learning rate 0.001 CNN
3. normalization z-score CNN
4. pooling max. size 2 CNN
5. activation function elu CNN
6. kernel size [3,3,3] CNN
7. filters [10,10,20] CNN
8. layers 3 CNN
9. num. of neurons 64-64 GRU
10. learning rate 0.001 GRU
11. normalization z-score GRU
12. layers 2 GRU
13. batch size 32 GRU
14. activation function relu H-MLP
15. learning rate 0.001 H-MLP
16. normalization z-score H-MLP
17. layers 5 H-MLP
18. batch size 32 H-MLP

a)

b)

c)
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– The simulations were conducted in two variants:
with the temperature attribute T and without tak-
ing into account the temperature. The purpose of
this approach was to attempt to answer the ques-
tion of whether T , as a derivative of the current
weather state, has a significant influence on the
value of power generated by the turbine. Doubts
regarding the need to consider the temperature
attribute were raised in Section 4 with regard to
comments concerning Figure 1.

– The Mean Squared Error (MSE) was applied in
order to evaluate the effectiveness of prediction
while the DNNs were employed. In the case
of networks with m neurons in the output layer,
the MSE errors were determined as the mean er-
rors of these neurons. The training data were
split into a 70:30 ratio into a training and test se-
quence. Each of the simulations was repeated 50
times, and the corresponding results were aver-
aged.

– The stopping criterion for the learning algo-
rithm, for each of the three variants of DNNs
in the DLP block (CNN, GRU, H-MLP), was a
constant value of the MSE error over the next 40
learning steps. The maximum number of learn-
ing epochs was 100.

– The adaptive moment estimation (ADAM) gra-
dient algorithm, which combines the advantages
of the RMSprop (Root Mean Square propaga-
tion) and Momentum [19], was used to train
each of the DNNs considered in the simulations.
Each network was tested for the following vari-
ations: past_history ∈ {3,6,9} for horizon = 3,
past_history ∈ {11,18,27} for horizon = 9, and
past_history ∈ {22,36,54} for horizon = 18. A
comparison of the results for the best variants is
presented in Table 5.

Figure 4. Architectures of the DNNs applied in the
DLP block: a) CNN, b) GRU, and c) H-MLP.

Table 2. Hyperpameters of the DNN architecture
applied in the DLP block.

No.
Parameter

name
Parameter

value
Network
symbol

1. batch size 32 CNN
2. learning rate 0.001 CNN
3. normalization z-score CNN
4. pooling max. size 2 CNN
5. activation function elu CNN
6. kernel size [3,3,3] CNN
7. filters [10,10,20] CNN
8. layers 3 CNN
9. num. of neurons 64-64 GRU

10. learning rate 0.001 GRU
11. normalization z-score GRU
12. layers 2 GRU
13. batch size 32 GRU
14. activation function relu H-MLP
15. learning rate 0.001 H-MLP
16. normalization z-score H-MLP
17. layers 5 H-MLP
18. batch size 32 H-MLP
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Table 4. An example of the training sequence for DNNs applied, for past_history = 3.

Vx(t −1) Vx(t −2) Vx(t −3) P(t −1) P(t −2) P(t −3) Vy(t −1) Vy(t −2) Vy(t −3) P(t) P(t +1) P(t +2)
... ... ... ... ... ... ... ... ... ... ... ...

-0.4866 -0.5961 1.3565 -0.0320 -0.2251 0.0006 -1.3706 1.1879 0.3487 -0.2674 -0.4575 -0.4199
-0.5961 1.3565 1.1526 -0.2251 0.0006 -0.2673 1.1879 0.3487 0.3004 -0.4575 -0.4199 -0.5103
1.3565 1.1526 0.9900 0.0006 -0.2673 -0.4574 0.3487 0.3004 0.0380 -0.4199 -0.5103 -0.6814
1.1526 0.9900 1.0966 -0.2673 -0.4574 -0.4199 0.3004 0.0380 0.0402 -0.5103 -0.6814 -0.6287
0.9900 1.0966 0.1134 -0.4574 -0.4199 -0.5102 0.0380 0.0402 1.1036 -0.6814 -0.6287 -0.7334

... ... ... ... ... ... ... ... ... ... ... ...

Table 5. Best simulation variants for DNNs applied. The best results are printed in bold.

No. DNNs
Input

attributes

horizon/
past_history/

∆t [s]
MSE

horizon/
past_history/

∆t [s]
MSE

horizon/
past_history/

∆t [s]
MSE

1a. CNN {Vx,Vy,P} 3/3/7.5 0.0745 9/11/22.5 0.1319 18/36/45.0 0.1904
1b. CNN {Vx,Vy,P,T} 3/3/7.5 0.0754 9/11/22.5 0.1366 18/36/45.0 0.1998
2a. GRU {Vx,Vy,P} 3/6/7.5 0.0727 9/18/22.5 0.1295 18/36/45.0 0.1817
2b. GRU {Vx,Vy,P,T} 3/6/7.5 0.0745 9/18/22.5 0.1320 18/36/45.0 0.1875
3a. H-MLP {Vx,Vy,P} 3/6/7.5 0.0751 9/11/22.5 0.1341 18/54/45.0 0.1895
3b. H-MLP {Vx,Vy,P,T} 3/6/7.5 0.0742 9/11/22.5 0.1345 18/54/45.0 0.1986

Table 3. An examplary segment of the real data
obtained from the SCADA system.

TimeStamp dir V T P
... ... ... ... ...

2021-01-01 00:00:01 4.7287 5.2717 1.5000 0.2104
2021-01-01 00:02:31 6.6561 5.3789 1.5000 0.2697
2021-01-01 00:05:01 6.6561 5.6060 1.5000 0.2477
2021-01-01 00:07:31 6.6561 5.2746 1.4571 0.2431
2021-01-01 00:10:01 7.3438 4.9269 1.4428 0.1965

... ... ... ... ...

6.2 Simulation results

Results of the simulations, with conclusions,
can be summarized as follows:

– The DLP block worked with appropriate accu-
racy for each tested simulation variant. The best
results were obtained for the GRU network; pre-
diction time of 7.5 minutes, 6 historical time
steps considered for input attributes, and ambi-
ent temperature T omitted (see Table 5).

– Each of the three DNNs performed similarly in
both variants: when the ambient temperature at-
tribute was considered and omitted (see rows 1a,
2a, 3a vs. 1b, 2b, 3b, in Table 5). This is also

confirmed by the graphical representation of the
data shown in Figure 1.

– As expected, the best results were obtained for
the shortest tested prediction time (see the MSE
column for horizon = 3, in Table 5).

– The choice of types of the DNNs in the DLP
block does not significantly affect the accuracy
of power prediction. This may be due to the
specificity of the problem itself, where the dy-
namics of changes are not high.

6.3 Comparison of the results

A direct comparison of the results obtained
from the simulation conducted for our approach
to the STWPP problem, with the results of other
authors, is not straightforward because: (a) dif-
ferent turbine models can be applied, (b) different
prediction horizons are used, (c) different methods
for pre-processing data are employed, (d) different
datasets collected from wind farms in various loca-
tions are utilized.

However, it can be concluded that the results
obtained in our work, and results of other au-
thors [2, 13, 17, 22], are similar in terms of accu-
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racy: the deviation of the predicted power from the
actual power is not greater than a few percent.

The key advantage of the results presented in
this paper demonstrates a high prediction effective-
ness achieved using a minimal subset of input at-
tributes.

7 Conclusions

In this paper, we consider an intelligent ap-
proach (AI, ML methods) to the Short-Term Wind
Power Prediction (STWPP) problem, using Deep
Neural Networks (DNNs). Three types of DNNs
(the CNN, GRU, and H-MLP) have been employed
to construct a wind turbine power prediction block.

Data from a wind turbine, operating on one
of the wind farms in Poland (in the Pomeranian
voivodeship), have been used to test the effective-
ness of this approach. The obtained results are sat-
isfactory.

The key conclusions from the conducted simu-
lations can be summarized as follows. Firstly, the
problem of the STWPP is important from a prac-
tical point of view, but it is not characterized by
high dynamic changes. As a result, each of the ap-
plied DNN operated with satisfactory accuracy, so
the choice of the network architecture was not cru-
cial.

Secondly, in the short-term prediction, temper-
ature could be removed from the input attributes of
the neural networks, and its omission did not signif-
icantly affect the prediction accuracy. However, our
recommendation - based on the simulations - is to
use the GRU.

Thirdly, it was difficult to obtain a reliable tur-
bine power forecast for time periods longer than
several minutes. This is due to the potentially large
variability of weather conditions characteristic of
the coastal climate in winter, which the considered
turbine had to cope with.

Our future plans include defining a time-
varying model of prediction reliability dependent
on weather data from a given location. The behav-
ior of this model could, for example, automatically
determine the length of the prediction time horizon.
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bine power forecast for time periods longer than
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variability of weather conditions characteristic of
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