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An observability and detectability 
analysis for non‑linear uncertain 
CSTR model of biochemical 
processes
Mateusz Czyżniewski 1 & Rafał Łangowski 1,2*

The problem of proving observability/detectability properties for selected non‑linear uncertain model 
of biochemical processes has been addressed in this paper. In particular, the analysis of observability/
detectability in the face of parametric and unstructured uncertainty in system dynamics transformed 
into unknown inputs, and unknown initial conditions has been performed. Various sets of system 
measured outputs were taken into account during the research. The considered biochemical 
processes were modelled as a continuous stirred tank reactor with the microbial growth reaction and 
microbial mortality with the aggregated substrate and biomass concentrations in aerobic phase. 
Classical tools based on differential geometry and the method of indistinguishable state trajectories 
(indistinguishable dynamics) were used to verify the properties of the system. The observability/
detectability analysis was performed for nine cases covering a wide range of possible combinations of 
system measured outputs and unknown inputs. The obtained results of are crucial meaning for system 
state reconstruction (estimation), which involves the synthesis of state observers.

Nowadays, effective handling of a majority of industrial processes requires advanced control and monitoring 
algorithms. This requirement can be understood in many ways, such as meeting assumed control objectives, 
ensuring process safety, or the cost efficiency of the performed process. The algorithms used must enable this 
operation by covering fields such as control, monitoring, estimation, diagnostics, or optimisation. It undoubtedly 
involves the issue of access to the information about process variables, e.g., state variables, controlled output vari-
ables (signals), etc., of the system (plant) in which the process occurs. It is known, e.g., from operational practice 
that the access to these variables is limited. There are various reasons for this, and the most typical ones include 
the impossibility of measuring a given variable due to a lack of measuring devices (sensors), physical impos-
sibility of installing a sufficient number of measuring devices in a given physical system, high cost of purchasing 
and exploiting measuring devices and low quality of the measurements provided due to measurement errors 
or measurement noise. Therefore, the missing information on, e.g., state variables may be completed by their 
estimates. Typically, the reconstruction (estimation) of the system state is based on the mathematical model of 
a given process and measurements of other available variables (system measured outputs). The typical tool used 
for system state estimation is a state observer.

A significant number of various state observer structures can be found in the literature. The choice of the type 
of state observer is mainly driven by the features of the system whose state is to be estimated. In this paper, a 
bioreactor in which biochemical processes take place, that is part of a wastewater treatment plant is  considered1. 
From the point of view of mathematical modelling, which is an essential stage of system state reconstruction, 
two main groups of non-linear models of biochemical processes can be indicated. These include activated sludge 
models (ASMs) and balance  models2–7. The ASM model family is seen as the most faithfully reflecting the 
behaviour of natural processes in a  bioreactor2,4,6. Thus, they are primarily used for simulation purposes, e.g., 
to predict the run of a given process under certain operating conditions. On the other hand, these models are 
burdened with a significant degree of complexity and, therefore, it is not always possible to use them to synthesise 
a state observer or a control system. An alternative is to use balance models based on physical balance laws and 
aggregating certain individual fractions occurring in ASM  models2,4. Unfortunately, the simpler structure of the 
balance models often entails the appearance of both parametric (structured) and unstructured uncertainty in 
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them. The parametric uncertainty stems from inaccurate knowledge of the values of system parameters, while 
the unstructured uncertainty, in turn, usually holds unmodelled system dynamics (includes intended model 
simplifications). In this paper, a non-linear uncertain balance model of a biochemical processes is considered. 
It is worth adding that this kind of model belongs to a certain sub-class of the general class of affine non-
linear dynamic  systems8,9. In turn, typically taking uncertainty into account can be done through stochastic or 
deterministic approaches. The first approach requires reliable probabilistic models. To obtain such models, it is 
necessary to have sufficient data to guarantee the reliability of the assumed probability density functions. One 
of the most popular estimation methods using probabilistic uncertainty models also for measurement noise is 
estimation using the Kalman  filter10,11. Observers based on Kalman filter or, especially, an extended version of 
it, i.e., extended Kalman filter are widely used in the state estimation of biochemical processes, also in a situ-
ation of not exactly known  inputs12–20 . In contrast, the use of a deterministic approach generally leads to the 
synthesis of Luenberger-like  observers2,21–24. For example, a set-membership approach to uncertainty modelling 
is used in the design of an interval  observer25. It involves that an interval observer produces upper and lower 
envelopes bounding the reconstructed state  variable26–29. Another way is to eliminate the uncertainty from the 
system dynamics by transferring it to an additional model component. From the point of view of the further 
state observer synthesis, this component is treated as some additional unknown input (UI). This methodology 
gives very good results and its application leads to so-called unknown input observers (UIOs)30–38. The UIOs 
include sliding mode observers (SMOs), which enable the generation of a point estimate of the reconstructed 
state variable under uncertainty impact. Due to their properties, e.g., the possibility of ’estimating’ the uncertainty, 
sliding mode observers have been widely used in biochemical systems, e.g.,30,33,34,39–48. However, it is important 
to be aware that SMOs are very sensitive to measurement noise, hence their implementation requires the use of 
appropriate filters. In the following sections of the paper some of the considerations take into account the pos-
sibility of further synthesis of the sliding mode observer. It is also worth adding that using of UIOs for estimation 
purposes in other applications than biochemical processes is widely addressed in the literature. For example, 
they are used in mechanical, electrical or water  systems49–55.

It should be emphasised that the reconstruction of the system state associated with the synthesis of a given 
state observer is strictly related to the observability/detectability (asymptotic observability) properties of the 
system model. In general, when the particular input-output behaviour of the system is known, observability 
addresses the ability to exactly reconstruct the system state in a finite time-horizon, whereas detectability only 
enables estimating the system state in an asymptotic  way23,26,56–58. It is also worth highlighting that there are many 
different notions of observability/detectability for non-linear systems and they are more difficult to prove in such 
systems than in linear  systems8,12,56,59–61. Moreover, the mathematical model of a given system is only a certain, 
idealised representation of reality which primarily addresses the most essential features of the considered natural 
phenomena. Consequently, there is parametric and unstructured uncertainty. Furthermore, it is typical in the 
system that the initial conditions are not exactly known. Uncertainty can also burden input signals to the system, 
which is manifested by, e.g., the occurrence of mentioned unknown inputs. In this situation, the observability/
detectability concepts become more complicated and extended. However, both of these two properties should 
be maintained despite the uncertainties involved.

Hence, the main aim of this work is to investigate the observability/detectability for selected non-linear model 
of biochemical processes in the presence of unknown inputs. A continuous stirred tank reactor (CSTR) with 
the microbial growth reaction and microbial mortality with the aggregated substrate and biomass (reactants) 
concentrations in aerobic phase is used as a cognitive bioreactor  model2,4. The analysis presented takes into 
account various configurations of system measured outputs. A method of indistinguishable dynamics (indistin-
guishable system state trajectories) is used to prove these  properties56,59,62–64. Moreover, the classical approach 
based on differential geometry tools is used to provide sufficient conditions for  observability8,56,59,63,65–68. Several 
methodological aspects of the analysis carried out are indicated. To summarise, the main contributions of this 
paper are as follows: 

(a) an observability/detectability analysis of the non-linear CSTR model of biochemical processes in the face of 
parametric and unstructured uncertainty and unknown initial conditions, and taking into account various 
sets of system measured outputs has been devised,

(b) a comprehensive discussion on performing simplification of the cognitive CSTR model for the observ-
ability/detectability analysis has been given,

(c) a method of indistinguishable dynamics and an approach based on differential geometry tools has been 
used during research, highlighting their essential features and aspects,

(d) the analysis has been presented for nine cases covering a wide range of choices of system measured outputs, 
along with the way how to eliminate uncertainty from system dynamics.

The paper is organised as follows. The background and problem statement are presented in Sections "Back-
ground" and "Problem statement", respectively. In Section "Cognitive CSTR model" the cognitive model of con-
sidered biochemical processes is given. Section "CSTR model for observability/detectability analysis purposes" 
includes derivation of the CSTR model for observability/detectability analysis purposes. A detailed observability/
detectability analysis of the non-linear uncertain CSTR model is presented in Section The observability/detect-
ability analysis of the CSTR model. The paper is concluded in Section Conclusions and completed with three 
Appendices.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22327  | https://doi.org/10.1038/s41598-022-26656-3

www.nature.com/scientificreports/

Background
In this Section, the background of the most important aspects of the paper is presented. It includes defining the 
considered affine uncertain non-linear dynamic system, describing possible ways of analysing observability/
detectability and investigating the problem of so-called ’bad inputs’.

Description of affine non‑linear system. Considering Rn as the n–dimensional vector space over a real 
number field R , a multiple-input single-output (MISO) affine non-linear system �ν can be defined as  follows8,9:

where: ˙(·) stands for the derivative with respect to t; t ∈ T = R+ ∪ {0} is the time instant, R+ denotes a 
positive part of R ; ∀t ∈ T : ν(t) ∈ M ⊂ R

n is the vector of state variables, which coincide with globally 
defined cubic coordinates, M is a (connected) differentiable manifold with C∞(·) structure of dimension n; 
∀t ∈ T : �uip(t)�∞ = sup

{

| uip |: t ∈ T
}

≤ uboundip
< ∞, ip = 1, p denotes the ip th exogenous input belonging 

to ∀t ∈ T : u(t) ∈ Up ⊂ R
p ; ν0 signifies the vector of initial conditions; t0 denotes the initial time equal to zero; 

∀t ∈ T : y(t) ∈ Yq ⊂ R
q is the vector of system measured outputs; ∀t ∈ T : ϕ ∈ C

∞(M) : M × T → TM ,   
∀t ∈ T : ϑ ip ∈ C

∞(M) : M → TM ,    ∀t ∈ T : h : M → Yq are the smooth maps; T(·) stands for the 
tangent bundle of vector field; × denotes a Cartesian product.

It should be added that the system �ν is claimed as complete, i.e., the system state trajectories ν(t) are defined 
for every t ∈ T and every initial condition ν0 and for all exogenous inputs which belong to their particular sets.

In turn, it is assumed that the internal dynamics of �ν represented by ϕ(ν(t), t) is not exactly 
known due to parametric and unstructured uncertainty. Due to uncertain nature of ϕ(ν(t), t) , the new 
ϕ̂(ν(t)) ∈ C

∞(·) : M → TM , which is the exactly known (independent of parametric and unstructured 
uncertainty) assessment of ϕ(ν(t), t) for some sub-class of affine non-linear systems can be introduced as:

where ∀t ∈ T : �(ν(t), t) : M × T → W ⊂ R with ��(ν(t), t)� = max{| �(ν(t), t) |: t ∈ T} ≤ � < ∞ ; 
∀t ∈ T : ρ ∈ C

∞(·) : M → TM is the smooth map.
Given the assumption expressed by (2), the following form of �ν , which is a model of some sub-class of affine 

non-linear systems, can be written as:

The component �(ν(t), t) may be considered as an additional input to system �d bounded by � . Moreover, 
taking into account (2) and interpreting ρ as a vector parameterising the uncertainty of the dynamics of the 
original system (1), the component ρ(ν(t))�(ν(t), t) models the parametric and unstructured uncertainty and 
thus represents the (parameterised) unknown inputs of the system (3). This makes the vector of state variables 
ν(t) independent of the impact of uncertainty. This transformation provides very interesting properties since even 
if the uncertainty is not the physically occurring unmeasured signal, introducing the new variable as the differ-
ence between real internal dynamics burdened by some uncertainties and known estimation gives the chance 
of its compensation by method addressed to UI-related systems. The unknown inputs expressed by �(ν(t), t) 
are depended on ν(t) ; however, they are not considered as tangent mapping but as certain distinct signals which 
coincide with the field ρ(ν(t)) . Imposing this particular consideration of uncertainty has two strong advantages. 
The first advantage is associated with the possibility of performing the observability/detectability analysis on 
the perfect model of the system belonging to this sub-class of non-linear affine systems based on differential 
geometry tools. The second one makes a way of estimation of uncertain part of the system dynamics by a certain 
additional component in the structure of the state observer, e.g.,30,41,46,69–74.

It is worth adding that there may be situations in which, due to the complex structure of a given model of the 
system under consideration, it is preferable to decompose the system dynamics before performing transforma-
tions eliminating the uncertainty. The idea of such a decomposition is included in Appendix A.

Observability/detectability analysis for non‑linear systems. As it has been mentioned, there are 
many different notions of observability/detectability for non-linear systems. The classical approach to prov-
ing the observability of a non-linear system is based on differential geometry  tools8,56,59,63,65–68. It is associated 
with using ’observability maps’ expressed as the set of subsequent Lie derivatives of the system measured out-
puts along the drift vector field. By checking the injectivity of the Lie derivatives , e.g., by applying the inverse 
function theorem to the map’s Jacobi matrix (checking its invertibility ), or investigating the positiveness of 
principal minors of the Jacobi matrix, it is possible to prove whether the system is observable or  not8,32,56,59,73,75. 
This approach is also called ’observability rank condition’ and in detail is associated with local properties of the 
manifold M . Due to the fact that this particular methodology is essentially based on the theory of differential 
geometry and the theory of differential equations, the observability notion is extended and narrowed to local, 
weak and local weak  observability8,32,56. Therefore, this approach generally provides only sufficient conditions for 

(1)�ν :















ν̇(t) = ϕ(ν(t), t)+
p
�

ip=1
ϑ ip(ν(t))uip (t)

ν(t0) = ν0
y(t) = h(ν(t))

,

(2)ρ(ν(t))�(ν(t), t) � ϕ(ν(t), t)− ϕ̂(ν(t)),

(3)�d :















ν̇(t) = ϕ̂(ν(t))+
p
�

ip=1
ϑ ip(ν(t))uip(t)+ ρ(ν(t))�(ν(t), t)

ν(t0) = ν0
y(t) = h(ν(t))
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observability. This is due to that the observability can be given only for some time interval, which is dependent 
on factors associated with the properties of system  dynamics8,56,65,68,76. Hence, for the considered system (3) the 
observability map (’observation space’) O ∈ C∞(M)  yields8,56,59,65:

where L(·)(·)(·) denotes the Lie  derivative8,77.
The observability matrix is derived by exterior differentiation of O concerning the state vector ν(t) . In this 

single measured output system, it is equal to the following observability co-distribution after imposing particular 
coordinates of ν(t):

where d(·) stands for exterior differentiation, which is invariant with respect to the fields ϕ̂(ν(t)) , ϑ ip(ν(t)) and 
ρ(ν(t))8,77.

Thus, the observability matrix which is equivalent to the Jacobi matrix is as follows:

where ∇(·) denotes the gradient operator.
If dO spans the whole manifold M (excluding singular points), which means that the rank of the observ-

ability matrix ∂ν�(ν(t)) equals the rank of the considered system, then the particular system states are observ-
able (locally weak observable). The system is globally observable if the local weak observability is proven for all 
points (excluding singular points) on manifold M8,56,59,65. The potential singularities provide the problem, which 
makes this condition only sufficient, not necessary for all considered cases. It is necessary to check, how the 
parameters values, initial conditions, and inputs affect the singularity of ∂ν�(ν(t)) . In other words, the observ-
ability can be guaranteed in some time intervals contained in T , in which duration is strongly dependent on the 
after-mentioned factors. If the system is unobservable (not all system states are observable) one can decompose 
its dynamics into two sub-dynamics, the former of which consists of observable states and the latter includes 
the stable unobservable part of the state vector. To make state decomposition properly, two assumptions must 
be met: (i) the observability (Jacobi) matrix must be invertible, and (2) unobservable states must be Lyapunov 
stable. These assumptions have important implications for further synthesis of the state observer, as shown  in78–83.

Establishing the observability/detectability of a system using the classical approach outlined above does not 
guarantee (asymptotic) system state reconstruction in the face of uncertainty. Its presence imposes additional 
conditions closely related to the way it is modelled, and consequently to the synthesis of a state observer of 
a given type. As it has been mentioned, in the systems considered in this paper, the idea of unknown input 
sliding mode observers works well when eliminating the uncertainty leading to the appearance of unknown 
 inputs40,70–72,84,85. However, the estimation of the system state using these observers requires that, besides the 
observability/detectability of the system, the matching condition is  met86. For the system �d under considera-
tion, this condition is as follows:

what means that an element of field ρ - ρ1 is invariant with respect to the first component of the observability 
map (4), and that the span{ρ} does not annihilate dO . Hence, the matching condition (7) states that the relative 
degree of system measured output y(t) with respect to �(ν(t), t) (Lie differentiation with respect to ρ(ν(t)) ) is 
equal to one. That means that there is a significant relation between the system measured output and the uncer-
tainty, which makes a given (SMO) state observer to be able to cope with uncertain system dynamics via direct 
’counter action’ imposed by a particular part of the correction  term40.

However, the particular analysis for high dimensional or highly non-linear dynamics is well-known to be 
very troublesome. Moreover, this general methodology has not been ’globally’ derived for systems with unknown 
inputs. Therefore, the above classical approach is not always convenient, due to specific properties of a given 
system , e.g.,44,48,60,61,87–90. In order to overcome this problem, an alternative method based on the method of 
indistinguishable dynamics (indistinguishable state trajectories) can be used. According to this method, two 
states of a (non-linear) system with certain dynamics are said to be indistinguishable if the state trajectories 
associated with certain initial conditions are different, although the exogenous inputs and system measured 
outputs are the  same56,59,62,63. Let us consider the system �d with known input u(t) and unknown inputs �(ν(t), t) 
and �′

(ν(t), t)12,32,44,48,56,59–61,65,88. 

1. Two initial states ν0  = ν
′

0 ∈ M are strongly u-indistinguishable, if for any u(t) and for 
any pair  of  �(ν(t), t), �

′
(ν(t), t) ∈ W  ( two unknown inputs  not  necessar i ly  di f fer-

e nt  f rom  e a c h  o t h e r )  h o l d :  y(ν(t, ν0, u(t),�(ν(t), t))) = y(ν(t, ν
′

0, u(t),�
′
(ν(t), t))) a n d 

(4)O =











h
Lϕ̂h
...

Ln−1
ϕ̂

h











,

(5)dO = span
{

dh, dLϕ̂h, , · · · , dL
n−1
ϕ̂

h : h, Lϕ̂h, , · · · , L
n−1
ϕ̂

h ∈ O

}

,

(6)∂ν�(ν(t)) =











dh
dLϕ̂h
...

dLn−1
ϕ̂

h











=











∇h
∇Lϕ̂h

...

∇Ln−1
ϕ̂

h











,

(7)Lρ1h  = 0,
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ν(t, ν0, u(t),�(ν(t), t))  = ν(t, ν
′

0, u(t),�
′
(ν(t), t)) . The set of strongly u-indistinguishable states from ν0 

is denoted by IUI
(u(t),ν0)

 . The prefix ’u–(· )’ refers to the situation when the known input does not affect the 
observability property of the system. In the literature, this phenomenon is called the uniform observability.

2. System �d is strongly u-observable if ∀t ∈ T for every ν0 ∈ M ,  and for any pair of 
�(ν(t), t), �

′
(ν(t), t) ∈ W and for any u(t) holds: IUI

(u(t),ν0)
= {ν0} . It means that the state trajec-

tory is strongly u-distinguishable. In other words, the observability means that if (as assumed) ν ′

0 
is indistinguishable from ν0 ,  and y(ν(t, ν0, u(t),�(ν(t), t)))  = y(ν(t, ν

′

0, u(t),�
′
(ν(t), t))) and 

ν(t, ν0, u(t),�(ν(t), t))  = ν(t, ν
′

0, u(t),�
′
(ν(t), t)) holds, then ν ′

0 = ν0 (the assumption on indistinguish-
ability was a contradiction). Thus, the observable system state is only indistinguishable from ’itself ’. It is worth 
emphasising that if system �d is not associated with any indistinguishable initial conditions (trajectories), 
then it is fully observable.

3. System �d is strongly u-detectable if ∀t ∈ T and for every ν0 ∈ M for every ν ′

0 ∈ I
UI
(u(t),ν0)

 , and for any 
u(t) and also for any pair of �(ν(t), t), �

′
(ν(t), t) ∈ W that causes indistinguishable ν ′

0 . That means 
that ∀t ∈ T y(ν(t, ν0, u(t),�(ν(t), t))) = y(ν(t, ν

′

0, u(t),�
′
(ν(t), t))) ;  from which it follows that 

ν(t, ν0, u(t),�(ν(t), t)) → ν(t, ν
′

0, u(t),�
′
(ν(t), t)) asymptotically.

4. System �d is strongly observable (detectable) if it is strongly u-observable (u-detectable) for every u(t).

The ’practical’ usage of the above terms is based on comparison of two different state trajectories generated for 
distinct initial conditions and unknown inputs ∀t ∈ T . The first one is generated by the ’original’ (dependent on 
ν(t) ) system �d , and the other is generated by a ’copy’ (dependent on z(t) ) of system �d . The dynamic meaning 
of this idea implies considering an extended model of the system which will consist of ’original’ and ’copied’ 
dynamics. Thus, it is necessary to derive the following ’error system’ (differential-algebraic equation - DAE) 
ε(t) ∈ � ⊂ R

n:

Assuming that the initial conditions of both systems are different, i.e., ν0  = z0 , and that the measured output and 
known inputs of both systems are the same, and also that different unknown inputs affect the system’s dynamics 
in the time interval T:

• the observability means that the only possible state trajectories of the ’original’ and ’copied’ systems under 
these conditions are always equal (the ’error’ is zero) ∀t ∈ T,

• the detectability means that the after-mentioned state trajectories mutually tend to each other asymptotically.

Several features of this approach are worth  highlighting12,60,61,87,88: 

(1) The Lyapunov’ function-based approach may be used for analysing properties of system �d such as observ-
ability and detectability.

(2) Both observability and, especially, detectability are provable in the presence of unknown inputs.
(3) The interpretation of the results obtained is relatively simple and based on classical terms linked with the 

theory of differential equations.
(4) It can be used to characterise particular interactions between system states and exogenous inputs which 

involve ensuring observability/detectability.
(5) By characterising zeros dynamics (known from the differential geometry based control approach, e.g.,8), 

it can be used to investigate observable and unobservable parts of the system.
(6) Topological interpretation of sets of system states which make the system indistinguishable is possible via 

analysing properties of algebraic parts of the ’error system’ .
(7) The results can be directly interpreted as global without invoking the after-mentioned concepts of local, 

weak or local weak observability.

’Bad inputs’ problem. As mentioned above, proving the observability/detectability of a non-linear system 
under the uncertainty resulting in the appearance of unknown inputs is a non-trivial task. Moreover, these 
unknown inputs may cause the model of the system under consideration to become unobservable/undetectable. 
The inputs that lead to this situation are usually called ’bad inputs’. Hence, the observability/detectability prop-
erties for all ’bad inputs’ are, in general, necessary to consider when designing a state UIO expected to provide 
good performance of the obtained estimates. It should be emphasised that the observability conditions must be 
strictly linked with a priori guarantee that the unknown inputs do not belong to ’bad inputs’31,32,47,59,70,73,74,85,91. 
For example, meeting the matching condition (7) ensures the above, and thus the designed unknown input slid-
ing mode  observer40,70–72,84,85 is able to correctly reconstruct the state vector.

Let us consider the system �d again. If for any initial condition ν ′

0 and for any unknown input �′
(ν(t), t) 

where (ν0,�(ν(t), t))  = (ν
′

0,�
′
(ν(t), t)) holds ∀t ∈ T y(ν(t, ν0, u,�(ν(t), t))) = y(ν(t, ν

′

0, u(t),�
′
(ν(t), t))) , 

then the pair (ν ′

0,�
′
(ν(t), t)) is UI u-indistinguishable from the pair (ν0,�(ν(t), t)) . When the indis-

tinguishable pairs do not exist, the system is UI u-observable (or UI u-distinguishable). Whereas if 
the indistinguishable trajectories converge asymptotically to each other, the system is UI u-detect-
able. That is,  if  ∀t ∈ T y(ν(t, ν0, u(t),�(ν(t), t))) = y(ν(t, ν

′

0, u(t),�
′
(ν(t), t))) that implies that 

ν(t, ν0, u(t),�(ν(t), t)) → ν(t, ν
′

0, u(t),�
′
(ν(t), t)) and, what is the most important, �′

(ν(t), t) → �(ν(t), t) 
for t → ∞.

(8)ε(t) � ν(t)− z(t).
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Thus, the equivalence of meeting the matching condition (7) and UI observability/detectability is justified, 
which means that the conditions for the existence of the unknown input sliding mode observer are formulated. 
It is worth adding that when the matching condition is not met, then the uncertainty may not only strongly affect 
the performance of the obtained estimates, but also cause the unobservability of particular state variables. Several 
additional remarks referring to UI observability/detectability and the equivalence of two  methods61,92 used to 
verify the observability/detectability property under uncertainty are given in Appendix B.

Remark 1. In general, the idea of ’bad inputs’ has been primarily developed in the context of the impact of 
particular known (control) inputs, which in some circumstances may lead to state  unobservability32,65,89,90. If 
a particular control input distinguishes two different initial conditions ν0 and ν ′

0 , then it is called the universal 
input. Hence, its action on system dynamics does not induce the unobservability of state trajectories. However, 
this concept can be easily extended to the mentioned UI. Therefore , to avoid ambiguity, in this paper ’bad inputs’ 
concern only unknown inputs.

Problem statement
In general, this paper is focused on the investigation of observability/detectability properties under uncertainty 
for a certain sub-class of the general class of affine non-linear dynamic systems. This sub-class is represented 
by a bioreactor in a wastewater treatment plant. The considered bioreactor model is based on a CSTR with the 
microbial growth reaction and microbial mortality with the aggregated substrate and biomass concentrations 
in aerobic phase. This model is considered the feasibility study for showing the important issues which can be 
encountered in the biochemical processes. The CSTR model of biochemical processes is less complex than the 
ASM model, but unfortunately, there is uncertainty in it. The main source of uncertainty in the model dynamics 
is the reaction kinetics function. In this paper, the reaction kinetics function is assumed to be the only uncertain 
part of the model under consideration. The concept of simplifying/transforming the reaction kinetics function 
in order to establish a model with exactly known dynamic part for analysing system properties and for further 
synthesis of control or estimation algorithms is widely known and gradually exploited. Many methods and 
approaches have been developed under distinct assumptions associated with the behaviour of system’s dynam-
ics, e.g.,3,7,37,81,93–97. Modifications in the reaction kinetics function have been realised by taking into account 
various dependencies, e.g., time scales of the dynamics of state variables, available measurements, complexity 
of the reaction kinetics function, and predictive capabilities or uncertainties in the model dynamics. The idea of 
transforming the reaction kinetics function proposed in this paper is based on these experiences. However, the 
consequence of this approach is the appearance of unknown inputs. For a model of biochemical processes, in 
which the reaction kinetics function is an uncertain part of dynamics, proofing the observability/detectability 
properties is non-trivial. In addition, when analysing the observability/detectability together with the issue of 
unknown inputs, appropriate selection of system measured outputs must be made. This selection is essential for 
the synthesis of an observer that will enable system state reconstruction. To summarise, a systematic approach 
to analysing the observability/detectability of the non-linear uncertain bioreactor CSTR model with considering 
a given selection of system measured outputs is devised.

Cognitive CSTR model
A CSTR with the microbial growth reaction and microbial mortality with the aggregated substrate S(t)

[

g/L
]

 , 
biomass X(t)

[

g/L
]

 and dissolved oxygen O(t)
[

g/L
]

 concentrations is one of the most widely used models of 
both the aerobic bioreactor and the sequencing batch reactor (SBR) in the aerobic  phase4,6,90,97–99:

For further considerations, ∀t ∈ T the set of all possible system states is defined as follows:

where X  , S , O and X  , S , O are the real positive the upper and lower bounds of a particular variable, respectively. 
It is worth noting that � defined in this way is an invariant set meeting the condition of the general theory of 
dynamics of biochemical processes : � ⊂ M ⊂ R

32,4,7,21,29.
The cognitive CSTR model of the considered biochemical system includes the following  phenomena2,4,6,27,98–100: 

(a) microbial growth in the CSTR, described by the reaction kinetics function r(t)
[

g/hL
]

,
(b) inflow to the CSTR and its outflow, described by the positive dilution rate D(t)

[

h−1
]

 ∀t ∈ T , which is upper 
bounded by D,

(c) gas-liquid transfer of dissolved oxygen to the CSTR, described by the positive term including the oxygen 
mass transfer coefficient kLa(t)

[

h−1
]

 ∀t ∈ T , which is upper bounded by kLa,
(d) microbial mortality, which is considered in the CSTR dynamics as follows: 

where Xd

[

g/L
]

 is the dead biomass concentration modelled as a dissipating linear component in all equations 
of the model.

From the constituent mass balance law, the cognitive CSTR model taking into account the above-mentioned 
phenomena can be written as  follows2,4:

(9)S(t)+ O(t) → X(t).

(10)� =
{

(X(t), S(t),O(t)) ∈ R
3
+ : X ≥ X(t) ≥ X , S ≥ S(t) ≥ S, O ≥ O(t) ≥ O

}

,

biomass death: X(t) → Xd(t),

substrate and dissolved oxygen maintenance: O(t)+ S(t)+ X(t) → X(t),
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where: ∀t ∈ T : Ys [−]Yo [−] denote the positive yield coefficients of the growth of substrate and dissolved 
oxygen concentrations, respectively; ∀t ∈ T : Sin > 0

[

g/L
]

, Oin > 0
[

g/L
]

 signify the concentrations of 
substrate and dissolved oxygen in the inflow to CSTR, respectively; ∀t ∈ T : Os

[

g/L
]

 stands for the positive 
saturation constant of dissolved oxygen concentration; ∀t ∈ T : βm > 0

[

h−1
]

 is the biomass mortality rate; 
∀t ∈ T : ms

[

h−1
]

, mo

[

h−1
]

 denote the positive maintenance coefficients of the substrate and dissolved oxygen 
concentrations, respectively.

In model (11), the dilution rate (D(t)) and the gas-liquid transfer of dissolved oxygen ( kLa(t) ) signify the 
bounded known inputs. In turn, the reaction kinetics function r(t) is one of the most crucial parts of the dynamics 
of biochemical processes. This is because it is a time-varying component that is a major source of uncertainty. A 
detailed explanation of selected aspects of the reaction kinetics function can be found in many literature refer-
ences, e.g.,1,2,4,21,22,26,29,40. Taking this into account, in this paper all considered reaction kinetics functions are 
modelled as multiplication of a linear function related to X(t) and the Monod function related to S(t) or/and 
O(t). Therefore, the general form of the reaction kinetics function yields:

where ∀t ∈ T : µ(·)(t) signifies the growth rate function which separately represents the effect of each component 
of the rate, and the lower index refers to the concentration which occurs in a given model.

In general, the Monod function is based on the Michaelis-Menten law. This function for S(t) or O(t) is given 
by:

where ∀t ∈ T : µmax(t) ∈ R+

[

h−1
]

, Ks(t) ∈ R+

[

g/L
]

, Ko(t) ∈ R+

[

g/L
]

 are the time-varying coefficients 
of maximum specific growth rate, saturation of substrate concentration, and saturation of dissolved oxygen 
concentration, respectively.

Whereas for S(t) and O(t) is as follows:

CSTR model for observability/detectability analysis purposes
According to the discussion so far, the model of bioreactor for the proposed observability/detectability analysis 
should be of a general form (3). Therefore, the cognitive CSTR model (11) should be transformed. The following 
state variables, (known) model inputs (see Section "Cognitive CSTR model"), and unknown inputs are defined as:

where µ̂(·)(t) denotes the exactly known substitute growth rate function.
Taking into account the general form (3) and the definition (15), the particular components of the CSTR 

model ( �est
CSTR ) for the observability/detectability analysis is as follows :

The components ϕ̂(ν(t)) , ϑ1(ν(t)) , ϑ2(ν(t)) , and ρ(ν(t)) in (16) reveal the following general properties in terms 
of biochemical system dynamics: 

(11)�CSTR :















































Ẋ(t) = r(t)− βmX(t)− X(t)D(t)

Ṡ(t) = −
1

Ys
r(t)−msX(t)+ (Sin − S(t))D(t)

Ȯ(t) = −
1

Yo
r(t)−moX(t)+ (Oin − O(t))D(t)

+ (Os − O(t))kLa(t)
X(t0) = X0

S(t0) = S0
O(t0) = O0

,

(12)r(t) = µ(·)(t)X(t),

(13)
µS(t) = µmax(t)

S(t)

Ks(t)+ S(t)
,

µO(t) = µmax(t)
O(t)

Ko(t)+ O(t)
,

(14)µSO(t) = µmax(t)
S(t)

Ks(t)+ S(t)

O(t)

Ko(t)+ O(t)
.

(15)
ν1(t) � X(t), ν2(t) � S(t), ν3(t) � O(t), u1(t) � D(t),

u2(t) � KLA(t), �(ν(t), t) �
[

µSO(t)− µ̂(·)(t)
]

ν1(t),

(16)

ϕ̂(ν(t)) =











µ̂(·)(t)ν1(t)− βmν1(t)

−
1

Ys
µ̂(·)(t)ν1(t)−msν1(t)

−
1

Yo
µ̂(·)(t)ν1(t)−moν1(t)











, ϑ1(ν(t)) =

�

−ν1(t)
Sin − ν2(t)
Oin − ν3(t)

�

,

ϑ2(ν(t)) =

�

0
0

Os − ν3(t)

�

, ρ(ν(t)) =











1

−
1

Ys

−
1

Yo
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(1) Component ϕ̂(ν(t)) , which is a substitution part of internal dynamics is strictly linked with the simplifica-
tion of the reaction kinetics function. Many approaches to the modelling of reaction kinetics which lead 
to the determination of a given reaction kinetics function can be found in the literature. Some of them are 
based on neglecting the impact of slowly time-varying state variables either by treating them as constant 
parameters or excluding them due to their insignificant influence on process  dynamics5,7,37,95–97,101. Other 
authors use a linear approximation of Monod, Haldane, etc.  functions3,5,37,82,83,93,97. There are also methods 
based on  linearisation3,102. A very rich survey of derived reaction kinetics functions can be found  in2. As 
it has been shown, e.g.,  in4,6,26, the most common reaction kinetics function is the Monod function, which 
is also used in this paper (see (13)). It is worth adding that the structure of this function provides meeting 
the observability condition (injectivity of coordinate transformation). Therefore, it might be claimed that 
the Monod function is a proper candidate for being a substitute model of real reaction  kinetics40. Once the 
structure of the reaction kinetics function has been defined in terms of a Monod function, it needs to be 
parameterised. The uncertain nature of reaction kinetics needs to consider parameters of this function as 
time-varying, which is included in the cognitive CSTR model (11). However, due to meeting the mentioned 
conditions, an approximating function µ̂(·)(t) cannot have these kinds of parameters. Therefore, the origi-
nal parameters of the reaction kinetics function are replaced by their time-invariant alternatives, which is 
done by calculating their mean values. To sum up, in this paper the exactly known substitute growth rate 
function µ̂(·)(t) is based on the following two postulates:

• the structure of the substitute growth rate function is understood as a product of Monod functions,
• the parameters of the substitute growth rate function are assumed constant.

   Taking into account the above and (13), (14), the following forms of µ̂(·)(t) are further considered:

• time-invariant Monod function related to S(t): 

• time-invariant Monod function related to O(t): 

• time-invariant product of two Monod functions related to S(t) and O(t): 

   Time-invariant parameters µ0
max ∈ R+

[

h−1
]

 , K0
o ∈ R+

[

g/L
]

 and K0
s ∈ R+

[

g/L
]

 in (17)–(19) related 
to their time-varying originals are calculated as the mean values derived by using the knowledge about 
bounds of particular  originals40.

(2) Components ϑ1(ν(t)) and ϑ2(ν(t)) are straightforward due to a general theory of ’building’ a form of non-
linear affine systems. Because D(t) and kLa(t) are considered as exogenous known inputs to the CTSR, 
ϑ1(ν(t)) and ϑ2(ν(t)) are defined as coefficients which multiply particular inputs to the model. Neverthe-
less, it should be noted that in many papers, e.g.,4,26,27, kLa(t) is treated as a time-varying parameter. Also, 
the observability/detectability analysis of a system similar to that under present consideration has been 
performed in based on this  assumption89,90. However,  in98–100 the authors presented profound explanation 
that kLa(t) should be treated as an input to the model. The work in this paper also includes this approach. 
The key reason for this is the need to derive the component ϕ̂(ν(t)) in as simple form as possible.

(3) Component ρ(ν(t)) is related to the task of deriving �(ν(t), t) using formula (2). Because the unknown 
input is defined as a difference between two elements related to the reaction kinetics function, the elements 
of ρ(ν(t)) are either constant with value equal to one, or they express the yield coefficients.

The last important issue from the point of view of proving the observability/detectability of the model of the 
considered system is the choice of system measured outputs. In the papers devoted to state estimation of bio-
chemical processes , especially those modelled as CSTR, a single measured output—biomass concentration—is 
usually  used4,14,26,27. In real implementation of the state observer this proposition is in general possible but not 
essentially convenient. It is because of hardware aspects of the measuring tasks. On the other hand,  in21,27,90, 
the authors proposed that the concentrations of substrate or dissolved oxygen have to be the system measured 
outputs. This case is more realistic and some interesting model properties for state observer synthesis purposes 
may be observed. For instance, unlike biomass concentration, the measurements of dissolved oxygen concentra-
tion are commonly used in the control system of dissolved oxygen in  CSTR98–100.

The next Section presents the results of studies of various combinations of available measurements—S(t), 
X(t), O(t) and µ̂(·)(t) forms (17)–(19), which give a wide view on the observability/detectability of the model of 
the biochemical system under consideration. Based on these studies, cases for which it is possible to synthesise 
a state observer (primarily SMO) guaranteeing proper state reconstruction are indicated.

(17)µ̂S(t) = µ0
max

ν2(t)

K0
s + ν2(t)

,

(18)µ̂O(t) = µ0
max

ν3(t)

K0
o + ν3(t)

,

(19)µ̂SO(t) = µ0
max

ν2(t)

K0
s + ν2(t)

ν3(t)

K0
o + ν3(t)

.
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The observability/detectability analysis of the CSTR model
The observability/detectability analysis has been performed for nine cases covering a wide range of possible 
combinations of the after-mentioned system measured outputs and forms of the growth rate function. It was 
needed to state that for all considered cases of system measured output and growth kinetics function choice, the 
unknown input meets the matching condition (7) (is in certain sense ’observable’). In other words, due to the 
form of ρ(ν(t)) in (16), it is easy to state that Lρ1h  = 0 in all cases of system measured output choice:

Thus, the field ρ is invariant with respect to the first component of the ’observability map’ and the span{ρ} does 
not annihilate dO.

It is necessary to mention here a special (emergency) situation that can occur in a bioreactor. It is the wash-
out state during which biomass is washed out, i.e., ∃tX ∈ T : X(tX) = 0 . From the point of view of the observ-
ability/detectability analysis based on model (16), X(t) remains zero ∀t ≥ tX . The evolution of the O(t) and S(t) 
dynamics becomes independent of the impact of the reaction kinetics function and therefore obtaining any 
information about other states becomes extremely complicated or even impossible (it relies on the choice of the 
system measured output and the substitute reaction kinetics function). Hence, since X(tX) = 0 , all states of the 
system are not observable for all known (control) and unknown inputs, and it is impossible to reconstruct all 
of the system  states12,89,90. Certainly the wash-out state is highly undesired for the physical requirements of the 
entire process. Thus, this state is not considered in the further part of the observability/detectability analysis.

Analysis based on differential geometry tools. To show how a given choice of µ̂(·)(t) and y(t) affects 
the observability matrix ∂ν�(ν(t)) the following analysis is given. According to the assumption that in all cases 
only one state variable is considered as a system measured output, i.e., h(ν(t)) = νj(t) , where j ∈ {1, 2, 3} , it is 
obvious that:

Therefore, in general, the sufficient condition for observability of the system in a particular case is dependent on 
values of dLϕ̂h and dL2

ϕ̂
h . Let us make the first case analysis. 

(1) y(t) = ν3(t) and µ̂(·)(t) = µ̂O(t) Due to the knowledge about the structure of µ̂O(t) it is easy to show that 
∀t ∈ T : ϕ̂(ν1(t), ν2(t), ν3(t)) → ϕ̂(ν1(t), ν3(t)) . Therefore, ∀t ∈ T : ∂ν2Lϕ̂h = 0 and ∂ν2L2ϕ̂h = 0 , which 
results in obtaining the following observability matrix: 

 where the symbol ⋆ denotes a certain non-linear expression calculated as particular partial derivative 
which is not equal to zero. The analytical calculations and explicit form of the observability matrix is not 
included in this paper. This is due to its bulkiness which the authors believe would not benefit the read-
ability of the paper.

  The rank of the observability matrix (22) is not equal to the rank of the considered system model. Con-
sequently, it is unobservable.

  However, it is worth noting that if we decompose the system dynamics into two parts, ’partial’ observ-
ability will be obtained. More specifically, the first part of the dynamics will meet the sufficient condition 
for observability if it consists of state variables ν1(t) and ν3(t) . The second part, consisting of state variable 
ν2(t) , will be unobservable, which is due to the lack of this variable in µ̂O(t) . For decomposition purposes, 
Appendix A may be used. Then, the first part of the dynamics will be represented by subsystem ’ x(t) ’ con-
taining ν1(t) and ν3(t) , and by the second subsystem ξ(t) containing ν2(t) as parameter ξ(t) in the unknown 
input �(x(t), ξ(t), t) . A detailed procedure is shown in Appendix C.

An analogous analysis to case (1) was carried out for the other combinations and its results, together with case 
(1), are summarised in Table 1.

To complement the above conclusions, the following comments are added:

• In cases, (7), (8) and (9), the considered model meets the sufficient condition of observability, which is due 
to the effect of consistence of ν2(t) and ν3(t) ensured by the structure of the substitute growth rate function. 
Naturally, ν1(t) is a part of all particular ϕ̂(ν(t)) , therefore it is always an observable state variable. However, 
from the point of view of further SMO synthesis , formula (19) is complicated, and, as a result, the established 

(20)

Lρ1h = 1 if h(ν(t)) = ν1(t),

Lρ1h = −
1

Ys
if h(ν(t)) = ν2(t),

Lρ1h = −
1

Yo
if h(ν(t)) = ν3(t).

(21)∀t ∈ T :
∂hj

∂νi
= 0, i �= j, i = 1, 3.

(22)∂ν�(ν(t)) =





∂νh
∂νLϕ̂h

∂νL
2
ϕ̂
h



 =





∂ν1h ∂ν2h ∂ν3h
∂ν1Lϕ̂h ∂ν2Lϕ̂h ∂ν3Lϕ̂h

∂ν1L
2
ϕ̂
h ∂ν2L

2
ϕ̂
h ∂ν3L

2
ϕ̂
h



 =

�

0 0 1
⋆ 0 ⋆

⋆ 0 ⋆

�
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state coordinate transformations (6) would contain very complex components. Therefore, when designing 
SMO, this formula is further simplified, but without losing the observability property.

• Cases (1), (2), (5) and (6) concern situations when the considered model is unobservable. However, it is 
possible to separate the observable part of the system dynamics. This translates into the observability of two 
of the three state variables. This situation is an effect of the possibility of decomposition of the considered 
model, as explained in Appendices A and C.

• Cases (3) and (4) are the most interesting. It is due to deriving the methodology of the observability analysis 
for further convenient synthesis of SMO. Both situations give certain combinations of substitute growth 
rate function and system measured outputs which guarantee the observability of all system states and con-
sequently their reconstructability.

Remark 2. As it has been mentioned, the observability or unobservability of the particular state variable is 
strictly dependent on its occurrence in the considered function µ̂(·)(t) . Taking into account that SMO might be 
able to generate the system states estimates ν̂(t) under uncertain reaction kinetics function it always follows to 
ν̂(t) → ν(t) asymptotically when the system is observable.

Analysis based on the method of indistinguishable state trajectories. To show how a given choice 
of µ̂(·)(t) and y(t) affects the observability/detectability properties, the following analysis is given. The ’copied’ 
(dependent on z(t) ) system �est

CSTR is structurally the same as the ’original’ (dependent on ν(t) ) one from (16). 
According to Section Observability/detectability analysis for non-linearsystems, the ’error’ is defined as follows:

Moreover, the difference between uncertain parts of the dynamics of the ’original’ and ’copied’ systems is defined 
in the following  way60,61,87,88:

where �(ν(t), t) and �′
(z(t), t) are the unknown inputs considered in a particular ’original’ system and its ’copy’ 

defined in (15), respectively.
Symbol δ�(ν(t), z(t), t) is a universal symbol for denoting the variance (error) of the unknown input in all 

considered cases; henceforth, denoted as δ� for simplicity. The initial conditions are not equal, i.e., ν(t0)  = z(t0) , 
which imposes a potential different behaviour of the integral  curves44,48,61,87,89,90.

For all considered cases, the dynamics of the ’error system’ �(·)
E  reads:

System (25) has an analogous form to the general form of the affine system invoked in (1), whereas its dynam-
ics is a 6-dimensional manifold composed as the Cartesian product of the original state space and the ’error’ 
( ε(t) ∈ � ) space, i.e., 

[

νT(t), εT(t)
]T

∈ �×� = � ⊂ R
3
+ × R

3.
Due to the fact that system (25) presents a general form of ’error’ dynamics, the following comments are given:

(23)ε(t) � ν(t)− z(t) → z(t) = ν(t)− ε(t).

(24)δ�(ν(t), z(t), t) � �(ν(t), t)−�
′
(z(t), t),

(25)�
(·)
E :



















































ε̇1(t) = µ̂(·)(t)ν1(t)− µ̂
′

(·)(t)[ν1(t)− ε1(t)]
− βmε1(t)− u1(t)ε1(t)+ δ�

ε̇2(t) = −
1

Ys

�

µ̂(·)(t)ν1(t)− µ̂
′

(·)(t)[ν1(t)− ε1(t)]+ δ�

�

−msε1(t)− u1(t)ε2(t)

ε̇3(t) = −
1

Yo

�

µ̂(·)(t)ν1(t)− µ̂
′

(·)(t)[ν1(t)− ε1(t)]+ δ�

�

−moε1(t)− [u1(t)+ u2(t)]ε3(t)
ε(t0) = ε0

.

Table 1.  Results of analysis based on differential geometry tools.

Case

ObservabilityNo. y(t) µ̂(·)(t)

(1) ν3(t) µ̂O(t) No

(2) ν1(t) µ̂O(t) No

(3) ν2(t) µ̂O(t) Yes

(4) ν3(t) µ̂S(t) Yes

(5) ν1(t) µ̂S(t) No

(6) ν2(t) µ̂S(t) No

(7) ν1(t) µ̂SO(t) Yes

(8) ν2(t) µ̂SO(t) Yes

(9) ν3(t) µ̂SO(t) Yes
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• Dynamics (1) is not affected by (25); however, the inverse relation is necessary for the purposes of the observ-
ability/detectability analysis.

• System �(·)
E  is the ’base dynamics’ for each case considered in the observability/detectability analysis.

• Symbol µ̂′

(·)(t) is a universal symbol for denoting the Monod function for the ’copied’ system, the structure 
and parametrisation of which is the same as that of the ’original’ system.

The pair of systems �est
CSTR and �(·)

E  has a so-called strongly indistinguishable dynamics, which means that the 
state trajectories of these systems are indistinguishable. By interpreting the dynamic behaviour of �(·)

E  ’supplied’ 
by known and unknown inputs, measurements, and the state behaviour of (3), it may be stated that the original 
system is observable or not. Hence, by invoking to propositions  from44,48,87 and the content of Section "The 
observability/detectability analysis ofthe CSTR model", the following extended definitions are given:

• System �est
CSTR is globally strongly u-observable (briefly: strongly u-observable) if and only if for any pair �(·) 

and �′
(·) , for every input-output system’s behaviour, and for every ε(t0) there is no solution trajectory in T 

for �(·)
E  . There is only the trivial solution given by ε(t) = ε = 0 ∀t ∈ T , where ε is an equilibrium point of 

error dynamics (so-called ’zero point’). The lack of trajectory solution means that there are no time-varying 
integral curves derived from ’error system’ dynamics which would coincide with the stability of ’zero point’, 
but there exists only a constant solution at this point indeed. In this situation, all state variables, as well as 
unknown inputs, are observable.

• System �est
CSTR is locally strong u-observable if and only if the conditions for global strongly u-observability 

hold only in a certain neighbourhood V ⊂ � of ’zero point’.
• System �est

CSTR is globally strongly u-detectable (briefly: strongly u-detectable) if and only if for any pair �(·) 
and �′

(·) , for every input-output system’s behaviour, and for every ε(t0)  = ε , the ’zero point’ of �(·)
E  is globally 

an attractive point for all trajectories defined in T . It means that for any initial condition ε(t0) , the dynamics 
of ’error system’ ε(t) → 0 when t → ∞ . In this situation, at least one state variable must be detectable and 
the unknown input must be observable or detectable.

• System �est
CSTR is locally strongly u-detectable if and only if the conditions for global strong u-detectability 

hold only in a certain neighbourhood V ⊂ � of ’zero point’.

The understanding of local and global definitions of observability and detectability based on indistinguishable 
dynamics is not equivalent to the notions of local, weak and local weak observability introduced in Section 
"Observability/detectability analysis for non-linearsystems". Whereas the abovementioned notions based on 
differential geometry tools invoke the properties of the manifold M and are associated with state-space transfor-
mations (precisely Lie derivative based co-distributions), the meaning of the concepts presented in this Section 
comply with classical understanding of the theory of stability. More specifically, they are natural extensions of 
definitions presented in Section "Observability/detectability analysis for non-linearsystems". Local observability/
detectability may be constituted due to the occurrence of the potential impact of ’bad inputs’ or the existence 
of singular points which can make the system unobservable/undetectable in some regions of M . By using the 
Lyapunov  stability9, it is possible to state that the dynamics of the ’error system’ is asymptotically stable for all 
initial states or it is stable only for their particular subset (local asymptotic stability). For the geometric approach, 
an analogous interpretation may be presented, e.g., if the rank of the observability matrix is equal to the system 
rank everywhere, then the system is globally observable the necessary and sufficient conditions for observability 
are met. If not, it might be claimed that the system is locally observable in some region of manifold M . However, 
as it has been emphasised in Section "Observability/detectability analysis for non-linearsystems" the classical 
approach has minimal aptitude to perform a detectability analysis.

Thus, if the inputs and measured outputs of both systems, i.e., �est
CSTR and �(·)

E  , are identical in T , the observ-
ability property is equivalent to the statement that the only possible solution trajectories of the ’original’ and ’cop-
ied’ systems are always equal. It means that particular components of ε(t) are equal to zero ∀t ∈ T . Whereas, the 
detectability property is equivalent to the statement that the abovementioned trajectories mutually tend to each 
other asymptotically for t → ∞ . Naturally, that means that particular components of ε(t) tend to zero ∀t ∈ T.

The next Section analyses selected cases from Section "Analysis based on differential geometry tools". Finally, 
for comparative purposes, an analogous analysis is carried out in the absence of uncertainty in the considered 
model.

Analysis for the CSTR model with uncertain dynamics. Case: (1) - y(t) = ν3(t) and µ̂(·)(t) = µ̂O(t).
The system measured output is: y(t) = ν3(t) . It implies that ∀t ∈ T : ε3(t) = 0 , and ε̇3(t) = 0 . Thus, the 

third equation in (25) yields:

Taking into account that ε3(t) = 0 , the growth rate functions of the ’original’ and ’copied’ systems are 
µ̂O(t) = µ̂

′

O(t) ∀t ∈ T . Hence, (26) is rewritten as follows:

(26)
0 = −

1

Yo

[

µ̂O(t)ν1(t)− µ̂
′

O(t)[ν1(t)− ε1(t)]
]

−moε1(t)−
1

Yo
δ� →

δ� = −
[

µ̂O(t)ν1(t)− µ̂
′

O(t)[ν1(t)− ε1(t)]
]

− Yomoε1(t).

(27)δ� = −ε1(t)
[

µ̂O(t)+ Yomo

]

.
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It is worth mentioning that due to the boundedness of ν3(t) , the growth rate function µ̂O(t) is also bounded.
Considering the above, (25) is transformed to the following DAE system:

The first differential equation of system �(1)
E  is globally asymptotically stable, so the error ε1(t) → 0 . Therefore, 

the second differential equation of �(1)
E  can be written as follows:

where ε1(t) ≡ γ2(t) = ε1(t0) exp
(

−
∫ t
t0
u1(τ )dτ − [βm + Yomo](t − t0)

)

→ 0 , for t → ∞ is the solution of 
the first differential equation ( ε1(t) dependent) in (28).

The two known inputs of the system are always positive, therefore it may be stated that the solutions of dif-
ferential equations in (28) and (29) tend to zero asymptotically for any initial condition. This leads to δ� in (28) 
approaching zero if ε1(t) → 0 asymptotically. Therefore, in case (1), the state variables ν1(t) and ν2(t) are strongly 
u-detectable, whereas δ� is detectable. The potential situation (but physically impossible due to permanent 
system activation) of zeroing both growth rate functions due to ν3(t) = 0 does not affect the conclusion.

Case: (5) - ( y(t) = ν1(t) and µ̂(·)(t) = µ̂S(t)).
The system measured output is: y(t) = ν1(t) . It implies that ∀t ∈ T : ε1(t) = 0 , and ε̇1(t) = 0 . Thus, the 

first equation in (25) yields:

Taking into account (30), and by performing proper substitutions, (25) is transformed to the following DAE 
system:

The two known inputs of the system are always positive, therefore it may be stated that the solutions of differential 
equations in (31) tend to zero asymptotically for any initial condition. Since both growth rate functions µ̂′

S(t) 
and µ̂S(t) are the Monod functions, if ε2(t) → 0 then µ̂′

S(t) → µ̂S(t) asymptotically without the occurrence of 
causing ’bad inputs’. Moreover, due to the boundedness of all state variables, the growth rate function, and con-
sequently the reaction kinetics function, do not tend to infinity. Therefore, in case (5) the system state variables 
ν2(t) and ν3(t) are strongly u-detectable.

To show the convergence of the growth rate functions, by assuming that ∀t ∈ T : ν1(t) �= 0 , the following 
calculations are performed:

Therefore, if ε2(t) → 0 , then δ� must also asymptotically tend to zero, which means that the uncertainty is 
detectable.

However, in this moment, the considerations about the observability/detectability of δ� in (31) should be 
divided into two situations. The first situation takes place when the state variable ν1(t) is always positive, whereas 
the second is linked with the wash-out state. In the second situation, the state variable ν1(t) becomes zero either 
asymptotically (A) or due to initial condition (IC) ν1(t0) = 0 , while in the first situation, where ν1(t) is always 
positive (and bounded by assumption), the right-hand side of the third equation in (31) is not equal to zero 
until the growth rate functions become equal to each other. It leads to the conclusion that the uncertainty δ� is 
approaching zero when ε2(t) → 0 . That means that δ� is detectable. The detectability of ν2(t) and ν3(t) is not 
affected by this assumption. In the second situation, when the initial condition of state variable ν1(t) is equal to 
zero, the right-hand side of the third equation in (31) must always be equal to zero. This leads to the conclusion 
that the uncertainty δ� is observable. In turn, if the state variable ν1(t) tends to zero asymptotically, the uncer-
tainty δ� is detectable until ν1(t) = 0 . This provides the observability of δ� . In both cases of the second situation, 
this property is independent of asymptotic approaching of the growth rate functions. Also, the detectability of 
ν2(t) and ν3(t) is not affected by this assumption.

(28)�
(1)
E :















ε̇1(t) = −ε1(t)[βm + u1(t)+ Yomo]

ε̇2(t) = −ε2(t)u1(t)− ε1(t)

�

ms +
1

Ys
Yomo

�

δ� = −ε1(t)
�

µ̂O(t)+ Yomo

�

.

(29)ε̇2(t) = −u1(t)ε2(t)− γ2(t)

[

ms +
1

Ys
Yomo

]

,

(30)0 =
[

µ̂S(t)− µ̂
′

S(t)
]

ν1(t)+ δ� → δ� =
[

µ̂
′

S(t)− µ̂S(t)
]

ν1(t).

(31)�
(5)
E :















ε̇2(t) = −u1(t)ε2(t)
ε̇3(t) = −[u1(t)+ u2(t)]ε3(t)

δ� =
�

µ̂
′

S(t)− µ̂S(t)
�

ν1(t)

ε(t0) = ε0

.

(32)

δ� = µ0
max

[

ν2(t)

K0
s − ν2(t)

−
ν2(t)− ε2(t)

K0
s + ν2(t)− ε2(t)

]

ν1(t),

δ� = µ0
max

[

(

K0
s + ν2(t)

)

(ν2(t)− ε2(t))− ν2(t)
(

K0
s + ν2(t)− ε2(t)

)

(

K0
s + ν2(t)

)(

K0
s + ν2(t)− ε2(t)

)

]

ν1(t),

δ� = µ0
max

[

K0
s ε2(t)

(

K0
s + ν2(t)

)(

K0
s + ν2(t)− ε2(t)

)

]

ν1(t).
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An analogous analysis to cases (1) and (5) was carried out for the other combinations and its results, together 
with cases (1) and (5), are summarised in Table 2.

Analysis for the CSTR model without uncertain dynamics. In this Section, for comparative purposes, an analo-
gous analysis to that presented in Section “Analysis for the CSTR model with uncertain dynamics” is carried out 
in the absence of uncertainty in the model under consideration.

Case: (1) - y(t) = ν3(t) and µ̂(·)(t) = µ̂O(t).
The system measured output is: y(t) = ν3(t) . It implies that ∀t ∈ T : ε3(t) = 0 , and ε̇3(t) = 0 . Thus, the 

first equation in (25) yields:

Taking into account that ε3(t) = 0 , the growth rate functions of the ’original’ and ’copied’ systems are 
µ̂O(t) = µ̂

′

O(t) ∀t ∈ T . Hence, (33) is rewritten as follows:

It is worth mentioning that due to the boundedness of ν3(t) , the growth rate function µ̂O(t) is also bounded.
Considering the above, (25) is transformed to the following DAE system:

The third equation of system �(1)
E  is equal to zero only if ε1(t) = 0 and ε̇1(t) = 0 . This leads to the conclusion 

that the state variable ν1(t) is strongly u-observable. Therefore, the second differential equation of �(1)
E  can be 

written as follows:

where ε1(t) ≡ γ4(t) = ε1(t0) exp
(

−
∫ t
t0
u1(τ )dτ − [βm + Yomo](t − t0)

)

→ 0 , for t → ∞ is the solution of 
the first differential equation ( ε1(t) dependent) in (35).

The two known inputs of the system are always positive, therefore it may be stated that the solutions of dif-
ferential equations in (35) and (36) tend to zero asymptotically for any initial condition. Therefore, in case (1), 
the state variable ν1(t) is strongly u-observable, whereas state variable ν2(t) is strongly u-detectable. The potential 
situation (but physically impossible due to permanent system activation) of zeroing both growth rate functions 
due to ν3(t) = 0 does not affect the conclusion.

Case: (5) - ( y(t) = ν1(t) and µ̂(·)(t) = µ̂S(t)).
The system measured output is: y(t) = ν1(t) . It implies that ∀t ∈ T : ε1(t) = 0 , and ε̇1(t) = 0 . Thus, the 

first equation in (25) yields:

(33)0 = −
[

µ̂O(t)ν1(t)− µ̂
′

O(t)[ν1(t)− ε1(t)]
]

− Yomoε1(t).

(34)0 = −ε1(t)
[

µ̂O(t)+ Yomo

]

.

(35)�
(1)
E :















ε̇1(t) = −ε1(t)[βm + u1(t)+ Yomo]

ε̇2(t) = −ε2(t)u1(t)− ε1(t)

�

ms +
1

Ys
Yomo

�

0 = −ε1(t)
�

µ̂O(t)+ Yomo

�

.

(36)ε̇2(t) = −u1(t)ε2(t)− γ4(t)

[

ms +
1

Ys
Yomo

]

,

Table 2.  Results of analysis based on indistinguishable dynamics with the uncertainty.

Case Observability Detectability

No. y(t) µ̂(·)(t) ν1(t) ν2(t) ν3(t) δ� ν1(t) ν2(t) ν3(t) δ�

(1) ν3(t) µ̂O(t) No No – No Yes Yes – Yes

(2)

ν1(t) > 0

µ̂O(t)

– No No No – Yes Yes Yes

ν1(t) = 0 (IC) – No No Yes – Yes Yes No

ν1(t) = 0 (A) – No No No – Yes Yes No

(3) ν2(t) µ̂O(t) Yes – Yes Yes Yes – Yes Yes

(4) ν3(t) µ̂S(t) Yes Yes – Yes Yes Yes – Yes

(5)

ν1(t) > 0

µ̂S(t)

– No No No - Yes Yes Yes

ν1(t) = 0 (IC) – No No Yes – Yes Yes Yes

ν1(t) = 0 (A) – No No No – Yes Yes Yes

(6) ν2(t) µ̂S(t) No – No No Yes – Yes Yes

(7)

ν1(t) > 0

µ̂SO(t)

– Yes Yes Yes – Yes Yes Yes

ν1(t) = 0 (IC) – Yes Yes No – Yes Yes No

ν1(t) = 0 (A) – Yes Yes No - Yes Yes No

(8) ν2(t) µ̂SO(t) Yes – Yes Yes Yes – Yes Yes

(9) ν3(t) µ̂SO(t) Yes Yes – Yes Yes Yes – Yes
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Taking into account (37), and by performing proper substitutions, (25) is transformed to the following DAE 
system:

Since the left-hand side of the third equation from (38) must be equal to zero ∀t ∈ T , the following considera-
tions about the observability/detectability of ν2(t) are divided into two situations. The first situation takes place 
when the state variable ν1(t) is always positive and both growth rate functions are the same, whereas the second 
is linked with the wash-out state. In this second situation, the state variable ν1(t) becomes equal to zero either 
asymptotically or due to initial condition ν1(t0) = 0 . Moreover, by assumption, both of the known inputs u1(t) 
and u2(t) are always positive. In the first situation, where ν1(t) is always positive (and bounded by assumption), 
the right-hand side of the third equation in (38) is not equal to zero until µ̂S(t) = µ̂

′

S(t) ∀t ∈ T . This leads to 
the conclusion that ν2(t) must be strongly u-observable, what is imposed by ε2(t) = 0 and ε̇2(t) = 0 , ∀t ∈ T . In 
the second situation, when the initial condition of the state variable ν1(t) is equal to zero, the behaviour of the 
growth rate function strictly depends on changes of ε2(t) . Thus, the first differential equation in (38) must be 
taken into account, which leads to the conclusion that ν2(t) is globally strongly u-detectable. In turn, if the state 
variable ν1(t) tends to zero asymptotically, the behaviour of the growth rate function also relies on changes of 
ε2(t) . Hence, ν2(t) is globally strongly u-detectable due to the same reasons where ν1(t0) = 0 . Due to the fact 
that µ̂′

S(t) and µ̂S(t) are the Monod functions, if ε2(t) → 0 , then µ̂′

S(t) → µ̂S(t) asymptotically.
To show the convergence of the growth rate functions, after assuming that ∀t ∈ T : ν1(t) �= 0 , the following 

calculations are performed:

To meet the equality of both sides of (39), ε2(t) must be always equal to zero. This induces the observability of 
state variable ν2(t).

The detectability of state variable ν3(t) is associated with the fact that both known inputs of the system are 
always positive. Thus, it may be stated that the solution of the second differential equation in (38) tends to zero 
asymptotically. Therefore, in case (5), the state variable ν2(t) is strongly u-observable, whereas the state variable 
ν3(t) is strongly u-detectable.

An analogous analysis to cases (1) and (5) was carried out for the other combinations and its results, together 
with cases (1) and (5), are summarised in Table 3.

(37)0 =
[

µ̂S(t)− µ̂
′

S(t)
]

ν1(t).

(38)�
(5)
E :















ε̇2(t) = −u1(t)ε2(t)
ε̇3(t) = −[u1(t)+ u2(t)]ε3(t)

0 =
�

µ̂
′

S(t)− µ̂S(t)
�

ν1(t)

ε(t0) = ε0

.

(39)

ν2(t)

K0
s + ν2(t)

=
ν2(t)− ε2(t)

K0
s + ν2(t)− ε2(t)

→
(

K0
s + ν2(t)

)

(ν2(t)− ε2(t)) = ν2(t)
(

K0
s + ν2(t)− ε2(t)

)

→

K0
s ε2(t) = 0.

Table 3.  Results of analysis based on indistinguishable dynamics without the uncertainty.

Case Observability Detectability

No. y(t) µ̂(·)(t) ν1(t) ν2(t) ν3(t) ν1(t) ν2(t) ν3(t)

(1) ν3(t) µ̂O(t) Yes No – Yes Yes –

(2)

ν1(t) > 0

µ̂O(t)

- No Yes – Yes Yes

ν1(t) = 0 (IC) – No No – Yes Yes

ν1(t) = 0 (A) – No No – Yes Yes

(3) ν2(t) µ̂O(t) Yes – Yes Yes – Yes

(4) ν3(t) µ̂S(t) Yes Yes – Yes Yes -

(5)

ν1(t) > 0

µ̂S(t)

– Yes No – Yes Yes

ν1(t) = 0 (IC) – No No – Yes Yes

ν1(t) = 0 (A) – No No – Yes Yes

(6) ν2(t) µ̂S(t) Yes – No Yes – Yes

(7)

ν1(t) > 0

µ̂SO(t)

– Yes Yes - Yes Yes

ν1(t) = 0 (IC) – No No – Yes Yes

ν1(t) = 0 (A) – No No – Yes Yes

(8) ν2(t) µ̂SO(t) Yes – Yes Yes – Yes

(9) ν3(t) µ̂SO(t) Yes Yes - Yes Yes -
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The summary of the observability/detectability analysis. Sections “Analysis based on differential 
geometry tools” and “Analysis based on the method of indistinguishablestate trajectories” present an observ-
ability/detectability analysis of a non-linear system burdened by unknown inputs. First, the classic geometri-
cal approach based on checking the invertibility of the observability matrix and checking the matching condi-
tion has been used. Secondly, the method based on the analysis of indistinguishable state trajectories has been 
employed. For nine cases, which include distinct choice of system measured outputs and form of the substitute 
reaction kinetics function, the research was performed in a way that if the first of the aforementioned methods 
reveals a negative result on state observability, the second method is applied and gives answers on state estima-
tion possibility. Strong u-detectability has been proven for all cases, which entails asymptotic reconstruction of 
states and unknown input in the context of the measured output and the estimated reaction kinetics function. 
The analysis performed by using the indistinguishable dynamics method has also been applied in a situation 
when the uncertainty has been excluded. The comparison of results presented in Sections “Analysis for the CSTR 
model with uncertain dynamics” and “Analysis for the CSTR model without uncertaindynamics” shows how 
significantly the uncertainty occurrence affects the observability/detectability property. In fact, this analysis also 
shows that some approaches to system state (and also unknown input) estimation cannot be applied since full 
state observability cannot be obtained. It is worth mentioning that the results obtained by using the second 
method are non-trivial and entail performing certain transformations on DAE system dynamics to derive that a 
particular state variable (or unknown input) is observable/detectable or not. To make the above clearer, the con-
clusions drawn are summarised in Table 4. The symbols used in Table 4 stand for M—measured, O—observable, 
UO—unobservable, and D— detectable. It should be added that in the case of an approach based on the tools of 
differential geometry, the symbols ’O’ and ’UO’ have the meaning of meeting, or not the sufficient conditions of 
observability for the full considered model (without decomposition), respectively.

Conclusions
In this paper, an observability/detectability analysis for selected non-linear uncertain model of biochemical 
processes with various sets of system measured outputs has been performed. As a model of the considered bio-
chemical processes, a continuous stirred tank reactor with the microbial growth reaction and microbial mortal-
ity with the aggregated substrate and biomass concentrations in aerobic phase was used. In order to eliminate 
uncertainty from the system dynamics, it was transferred to an additional model component, which was then 
treated as an additional unknown input to the model. The analysis was performed for nine cases which covered 
a wide range of possible combinations of system measured outputs and unknown inputs. The observability/
detectability properties were investigated using the classical approach based on differential geometry tools and 
the method of indistinguishable state trajectories (indistinguishable dynamics).

The delivered comprehensive analysis shows how the given structure of the mathematical model of the sys-
tem is linked to the uncertainty of its dynamics, and how the selection of the system measured output affects 
the observability/detectability properties. The results obtained allowed to determine whether it is possible to 
develop a state observer, especially a sliding mode observer, depending on the available measured outputs of the 
considered system. Thus, these results, and the resulting conclusions may be used for state observer synthesis, 
and consequently for the development of monitoring and diagnostic systems for biochemical systems.

Data availibility
All data generated or analysed during this study are included in this published article.
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