
Highlights
An optimal form of the finite element mass matrix in the analysis of longitudinal vibrations
of rods
Marek Krawczuk,Magdalena Palacz

• Determination of the optimal form of a rod finite element mass matrix in the context of minimal errors in
calculation of natural frequencies for longitudinal vibration.

• Calculation of certain values of weights in order to determine the natural frequencies with the smallest mean
error in the range of analyzed frequencies.

• Determination of optimal values of weight factors.

Postprint of: Palacz M., Krawczuk M., An optimal form of the finite element mass matrix in the analysis of 
longitudinal vibrations of rods, FINITE ELEMENTS IN ANALYSIS AND DESIGN Vol. 207 (2022), 103763, 
DOI: 10.1016/j.finel.2022.103763
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.finel.2022.103763
https://creativecommons.org/licenses/by-nc-nd/4.0/


An optimal form of the finite element mass matrix in the analysis of
longitudinal vibrations of rods
Marek Krawczuka,∗∗,1 (Researcher), Magdalena Palaczb,∗,2 (Researcher)
aGdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Mechanical Engineering;
Narutowicza 11/12, 80-233 Gdańsk, Poland
bSilesian University of Technology, Faculty of Organisation and Management, Department of Production Engineering; Roosevelta 26, 41-806
Zabrze, Poland

A R T I C L E I N F O
Keywords:
Finite Element Method
Mass Matrix
Longitudinal Natural Frequencies
Rod Element

A B S T R A C T
In this paper, an attempt is made to find the optimal form of the mass matrix of a rod
finite element, which allows one to obtain the smallest errors in the longitudinal frequency
determination of natural vibrations of any boundary conditions within the whole range of
determined frequencies. It is assumed that the mass matrix can be treated as a linear combination
of the consistent and diagonal matrices. Based on analytical considerations, the optimal values
of certain weights for creating a linear combination of the mentioned matrices have been
determined. As a result, a mass matrix has been obtained which allows the determination of
natural frequencies with the smallest mean error within the possible spectrum of frequencies. It
is also shown that the value of the weight coefficient changes depending on the number of natural
frequencies within the spectrum one wants to determine.

1. Introduction
The accuracy of the Finite Element Method (FEM) can be improved using a number of methods. In practice,

two main approaches can be distinguished, one related to increasing the number of finite elements of the model with
the same approximation order - known as the h-method, or by increasing the order of the shape functions - known
as the p-method - in Zienkiewicz and Taylor (1989), Beslin and Nicolas (1997). It has been also possible to apply
a strategy based on the simultaneous increase of the number of finite elements and the order of their approximation
shape functions - known as the hpq-method, which has been described and used by Zboiński (2010) and Zboiński
(2013). Another strategy has been based on the application of functions that are the analytical solution of the shape
function matrix formation problem. This approach has been practical only for one-dimensional (1D) elements as for
more complicated geometries such solutions often do not exist. Certain efforts have been performed to show that a
deviation from the conventional FEM formulation would benefit from an improved accuracy of results obtained by
using shape functions other than polynomials Hashemi (2004).

Undoubtedly, high accuracy of numerical solutions of dynamic problems can be achieved by the use of Spectral
Finite Element Method (SFEM) defined in the frequency domain Doyle (1997) or in the time domain Patera (1984).
SFEM defined in the frequency domain has been based on analytical solutions of the analyzed problem and is limited to
1D problems. SFEM defined in the time domain has been a variation of a classic FEM in which an uneven distribution
of nodes within an element has been applied. As a result, an almost diagonal or diagonal mass matrix can be obtained,
which significantly reduces the time of numerical calculations. The fact that SFEM allows the use of approximating
polynomials of high order, results in high accuracy of obtained solutions Ostachowicz, Kudela, Krawczuk and Żak
(2012). Certain advantages and disadvantages of SFEM approaches have been compared and described by Palacz
(2018).

It is a well-known fact that the form of a finite element mass matrix is essential for dynamic analysis. The form of
a mass matrix affects both the accuracy and time of the calculations. In practice, two approaches have been developed,
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Optimal rod mass matrix...

one using the consistent form of the mass matrix derived from the shape functions, the other using the diagonal form of
the mass matrix which can be derived using the distribution of the mass and inertia between the nodes of an element.
The lumped mass matrix can be obtained naturally, as is the case with SFEM in the time domain Ostachowicz et al.
(2012). On the other hand, the consistent mass matrices in the case of classic FEM produce smaller errors (signifying
better accuracy) in dynamic calculations with a simultaneous extension of the computation time Kim (1993).

Various forms of a consistent mass matrix of a rod finite element can be found in the literature. In Kim (1993),
algebraic polynomials of different order have been used to study various matrix combinations to compare the accuracy
in finite element eigenproblems. In this article, it was noticed that non-consistent mass matrices can provide more
accurate natural frequencies than lumped and consistent mass formulations. While some approaches have shown
excellent accuracy in lower modes, other methods have given good natural frequencies for intermediate or higher
modes. The analyzed proper forms of non-consistent mass matrices have given accurate natural frequencies for both,
higher and lower modes. Shape functions for superconvergent element models attained directly from the eigen-
value convergence analysis or discretization error analysis have been analyzed in the paper authored by Ahmadian
and Faryghi (2011) where a new form of the mass matrix has been proposed. The method employs a series of
trigonometric functions of the sin2 and cos2 type to obtain shape functions corresponding to the superconvergent
element formulations. Another example of a shape function based on the cos + cos3 trigonometric polynomial has
been proposed by Stavridis, Clinckemailier and Dubois (1989) who used the polynomial for a mass matrix derivation.
Their results showed that the best agreement between numerical simulations and analytical results were obtained for the
cos + cos3 shape function. For the 1D rod element, a higher-order formulation has been derived, yielding considerable
accuracy improvement for the frequencies. In general, the analyzed frequency errors have been at least three times
smaller than the corresponding consistent or lumped-mass formulation errors for the first two-thirds of all modes.
Fried and Chavez (2004) presented the possibility of deriving the finite element mass matrix as a linear function of the
parameters used for the consistent element mass matrix and the lumped element mass matrix. The authors have analyzed
the convergence to the fundamental eigenvalue. An element mass matrix with which superaccurate eigenvalues have
been established. This has been demonstrated for the two- and three-node rod elements.

Based on the above literature review, it has been decided to find the optimal form of a rod finite element mass matrix,
which allows one to obtain the smallest errors in determining the frequency of longitudinal natural vibrations of any
boundary conditions in the entire range of determined frequencies. For that purpose, it has been assumed that the mass
matrix can be treated as a linear combination consistent and diagonal mass matrix of the element under investigation.
Using analytical and numerical methods, the optimal weight values have been determined. These parameters allow
one to determine a mass matrix for which natural frequencies have been calculated with the smallest value of the mean
error in the whole possible frequency spectrum, or with the smallest relative error for a specific number of frequencies.
The value of the weight factor depends on how many natural frequencies have been determined from the full spectrum
and also the number of calculated frequencies.

2. Existing forms of mass matrices for a rod finite element - state-of-the-art/basic
formulations
Generally, in the FEM, two types of mass matrices are utilized - the consistent and lumped. The consistent mass

matrix is usually calculated from the shape functions of the finite element. For the lumped mass matrix, it is assumed
that the mass and the inertia of the finite element are divided between nodes according to certain rules based on
mechanical principles.
2.1. Two-node rod element

Various forms of consistent mass matrices for a rod element can be found in the literature, resulting from the
expression of the assumed shape function. For two-node rod finite element Zienkiewicz and Taylor (1989) the shape
functions based on a linear algebraic polynomial take the form:

{

𝑁1 = 1 − 𝑥
𝐿

𝑁2 =
𝑥
𝐿

, (1)
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Optimal rod mass matrix...

where, 𝐿 signifies the length of an element. For such form of shape functions, the consistent mass matrix has the
following form:

𝑀𝐶 =
𝜌𝐴𝐿
6

[

2 1
1 2

]

, (2)

where, 𝜌 is the material density of the rod and 𝐴 is its cross-sectional area.
Ahmadian and Faryghi (2011) proposed shape functions for the rod element based on trigonometric functions as

follows:
⎧

⎪

⎨

⎪

⎩

𝑁1 = 𝑐𝑜𝑠
(

𝜋𝑥
2𝐿

)2

𝑁2 = 𝑠𝑖𝑛
(

𝜋𝑥
2𝐿

)2 . (3)

For the shape functions assumed in such a manner, the element mass matrix takes the form:

𝑀 =
𝜌𝐴𝐿
8

[

3 1
1 3

]

. (4)

Shape functions in the form of trigonometric cosine series have been used to construct the mass matrix of a rod
finite element as presented in Eq.5 Ahmadian and Faryghi (2011). An illustrative comparison of the shape functions
defined in Eq.1, Eq.3, and Eq.5 is shown in Figure 1.

⎧

⎪

⎨

⎪

⎩

𝑁1 =
(

1
2 +

√

15
6

)

𝑐𝑜𝑠
(

𝜋𝑥
2𝐿

)2
+

(

1
2 −

√

15
6

)

cos
(

3𝜋𝑥
2𝐿

)2

𝑁2 = 1 −𝑁1

. (5)

The element mass matrix, in this case, takes the form:

𝑀 =
𝜌𝐴𝐿
12

[

5 1
1 5

]

. (6)

The lumped mass matrix for two-node rod finite element has the following form Ahmadian and Faryghi (2011):

𝑀𝐿 =
𝜌𝐴𝐿
2

[

1 0
0 1

]

. (7)

It has been well established that such a form of mass matrix reduces the computational time for numerical
calculations of dynamics problems, however, it produces a larger solution error Kim (1993).

The forms of the above presented consistent mass matrix based on trigonometric shape functions can be obtained
as a linear combination of the consistent mass matrix with linear polynomial shape function and the lumped mass
matrix of the rod element Fried and Chavez (2004):

𝑀 = (1 − 𝜀)𝑀𝑐 + 𝜀𝑀𝐿, (8)
which leads to:

𝑀 =
𝜌𝐴𝐿
6

[

2 + 𝜀 1 − 𝜀
1 − 𝜀 2 + 𝜀

]

. (9)

As it can be noticed, the mass matrix described by Eq.5 has been obtained for 𝜀 = 0.25, while the matrix described
by Eq.7 has been obtained for 𝜀 = 0.5. From the literature, it follows that the matrix described by Eq.7 gives the best
agreement in the case of determining the longitudinal natural frequencies of rods. It may be noted that this form gives
small errors for the lowest natural frequencies of the spectrum Fried and Chavez (2004).
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Optimal rod mass matrix...

Figure 1: Shape functions of the �nite two-node rod element.

2.2. Three-node rod element
For three-node bar finite elements, the most common relation describing the shape functions has the following

form Fried and Chavez (2004), as illustrated in Figure 2:
⎧

⎪

⎨

⎪

⎩

𝑁1 = 1 − 3𝑥
𝐿 + 2𝑥2

𝐿2

𝑁2 =
4𝑥
𝐿 − 4𝑥2

𝐿2

𝑁3 = − 𝑥
𝐿 + 2𝑥2

𝐿2

. (10)

Figure 2: Shape functions of the �nite three-node rod element.

The consistent mass matrix for such an element is therefore described as Dokumaci (2006):

𝑀𝐶 =
𝜌𝐴𝐿
30

⎡

⎢

⎢

⎣

4 2 −1
1 16 2
−1 2 4

⎤

⎥

⎥

⎦

. (11)

Finally, the lumped mass matrix for such an element can be described using the following relationship Fried and
Chavez (2004):

𝑀𝐿 =
𝜌𝐴𝐿
30

⎡

⎢

⎢

⎣

5 0 0
0 20 0
0 0 5

⎤

⎥

⎥

⎦

. (12)
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Optimal rod mass matrix...

Additionally, for a three-node element, the mass matrix can be derived as a linear combination of the consistent
mass matrix and the lumped mass matrix. In the work performed by Stavridis et al. (1989), it was shown that the best
agreement between natural frequencies calculated numerically and analytically appears for 𝜀 = 2∕3.
2.3. Four-node rod element

Shape functions for four-node rod elements have the following form Zienkiewicz and Taylor (1989), as illustrated
in Figure 3:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁1 = 1 − 11𝑥
2𝐿 + 9𝑥2

𝐿2 − 9𝑥3
2𝐿3

𝑁2 =
9𝑥
𝐿 − 45𝑥2

2𝐿2 + 27𝑥3
2𝐿3

𝑁3 = − 9𝑥
2𝐿 + 18𝑥2

𝐿2 − 27𝑥3
2𝐿3

𝑁4 =
𝑥
𝐿 − 9𝑥2

2𝐿2 +
9𝑥3
2𝐿3

(13)

Figure 3: Shape functions of the �nite four-node rod element.

Finally, the mass matrix for a four-node rod finite element, as in the previous cases, can be obtained as a linear
combination of a consistent (Eq.14) and a diagonal (Eq.15) matrices with relevant matrices defined as Kim (1993):

𝑀𝐶 =
𝜌𝐴𝐿
1680

⎡

⎢

⎢

⎢

⎣

128 99 −36 19
99 648 −81 −36
−36 −81 648 99
19 −36 99 128

⎤

⎥

⎥

⎥

⎦

, (14)

𝑀𝐿 =
𝜌𝐴𝐿
194

⎡

⎢

⎢

⎢

⎣

16 0 0 0
0 81 0 0
0 0 81 0
0 0 0 16

⎤

⎥

⎥

⎥

⎦

. (15)

There are no studies in the literature devoted to finding the mass matrix for a four-node rod element in the form of
a linear combination of consistent and diagonal mass matrices.

3. Optimal mass matrix form of a two-node rod element
To calculate the optimal form of the mass matrix, the first natural frequency of the bar modelled with rod finite

elements of two-node type has been determined and compared with the analytical solution. This operation has allowed
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Optimal rod mass matrix...

computation of the weight coefficient 𝜀. The calculations have been done for various rod boundary conditions, in
particular fixed-fixed, fixed-free, and free-free. In the case of fixed-free boundary condition, only one two-node rod
finite element has been applied, whereas for other boundary conditions two rod finite elements have been utilized. For
all analyzed cases the element stiffness matrix has been assumed to follow elementary theory Zienkiewicz and Taylor
(1989):

𝐾 = 𝐸𝐴
𝐿

[

1 −1
−1 1

]

, (16)

where, 𝐸 is the Young’s modulus of the material of which the rod is manufactured and 𝐴 is the cross-sectional area of
the rod.

The analytical solution of the natural frequencies of a rod depends on the boundary conditions. For a fixed-free
rod, the formula for calculation of the natural frequencies takes the form Zienkiewicz and Taylor (1989):

𝜔𝑘 =
(2𝑘 − 1)𝜋

2𝐿

√

𝐸
𝜌
, (𝑘 = 1, ..., 𝑁), (17)

where, 𝑁 is the natural frequency number, 𝐿 is the length of the rod, 𝐸 represents Young’s modulus, and 𝜌 is the
material density.

The analytical solution for the free-free and fixed-fixed rod has the form:

𝜔𝑘 = 𝑘𝜋
𝐿

√

𝐸
𝜌
, 𝑘 = 1, ..., 𝑁. (18)

On the other hand, the natural frequency determined numerically for a fixed-free rod, based on the assumed form
of the mass matrix (Eq.9) and the elementary form of the stiffness matrix (Eq.16), has the form (for the model with
one finite element):

𝜔1 =
1
𝐿

√

6𝐸
𝜌 (2 + 𝜀)

. (19)

For 𝑘 = 1, Eq.18 has the form:

𝜔𝑘 = 𝜋
2𝐿

√

𝐸
𝜌
. (20)

By comparing Eq.19 and Eq.20, one gets

𝜀 = 24 − 2𝜋2

𝜋2
, (21)

which leads to the value of 𝜀 = 0, 4317.
Repeating this procedure for a fixed-fixed and free-free rod, the fundamental natural frequency can be determined

using two finite elements, each with a length equal to 𝐿∕2.

𝑑𝑒𝑡
⎛

⎜

⎜

⎝

2𝐸𝐴
𝐿

⎡

⎢

⎢

⎣

1 −1 0
−1 2 −1
0 −1 1

⎤

⎥

⎥

⎦

− 𝜔2 𝜌𝐴𝐿
12

⎡

⎢

⎢

⎣

2 + 𝜀 1 − 𝜀 0
1 − 𝜀 4 + 2𝜀 1 − 𝜀
0 1 − 𝜀 2 + 𝜀

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

= 0. (22)

The non-zero root of Eq.22 takes the form of:

𝜔1 =
1
𝐿

√

24𝐸
𝜌 (2 + 𝜀)

. (23)

Therefore, the analytical solution for a fixed-fixed rod (having length 𝐿, which is the same as the length of the rod
in the numerical model) leads to the form:
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Optimal rod mass matrix...

𝜔𝑘 = 𝑘𝜋
𝐿

√

𝐸
𝜌
, 𝑘 = 1, ..., 𝑁. (24)

By comparison of Eq.23 and Eq.24 for 𝑘 = 1, it is possible to obtain the 𝜀 value equal to 0.4317.
Following the same procedure for a free-free rod, the 𝜀 value can be determined using a numerical model consisting

of two finite elements, each of length 𝐿∕2. The first positive, non-zero root of the characteristic equation (Eq.22)
compared with the analytical solution (Eq.18) allows 𝜀 to be determined for a free-free rod. As it can be noticed, the 𝜀
value is the same for both a fixed-free and fixed-fixed rod and is equal to 0.4317.

Because the value 𝜀 is the same for all boundary conditions the optimal mass matrix has the following form:

𝑀 =
𝜌𝐴𝐿
6

[

24
𝜋2 3 − 24

𝜋2
3 − 24

𝜋2
24
𝜋2

]

. (25)

For the mass matrix determined in this way, the shape functions can be calculated by assuming them as:
⎧

⎪

⎨

⎪

⎩

𝑁1(𝑥) = 𝑎1𝑐𝑜𝑠
(

𝜋𝑥
2𝐿

)2
+ 𝑎2𝑐𝑜𝑠

(

3𝜋𝑥
2𝐿

)2

𝑁2 (𝑥) = 1 −𝑁1(𝑥)
. (26)

The constants 𝑎1 and 𝑎2 are calculated based on the following assumptions:
{

𝑁1 (𝑥 = 0) = 1
∫ 𝐿
0 𝑁1 (𝑥)𝑇 𝑁1 (𝑥) 𝑑𝑥 = 24𝐿

6𝜋2
. (27)

Solving the above system of equations yields to 𝑎1 = 1.1093 and 𝑎2 = −0.1093. As a result, the derived optimal
element shape functions take the form:

⎧

⎪

⎨

⎪

⎩

𝑁1 (𝑥) = 1.1093𝑐𝑜𝑠
(

𝜋𝑥
2𝐿

)2
− 0.1093𝑐𝑜𝑠

(

3𝜋𝑥
2𝐿

)2

𝑁2 (𝑥) = 1 −𝑁1(𝑥)
. (28)

3.1. Numerical calculations
To compare the influence of the 𝜀 parameter value on the longitudinal natural frequency accuracy, numerical

calculations were performed for a fixed-free rod made out of steel. The material parameters were assumed as follows:
Young’s modulus 𝐸 = 210 GPa and density 𝜌 = 7860 kg/m3. The rod length was equal to 1 m and the cross-sectional
area was equal to 0.0002 m2. The rod was modelled with 60, two-node rod finite elements. The natural frequencies
determined numerically were compared with those determined analytically according to Eq.17. For the analysis of the
numerical calculation accuracy, the relative error was determined according to the following equation:

𝑒𝑟𝑟𝑜𝑟 =
(

𝜔𝑎 − 𝜔𝑛
𝜔𝑎

)

100%, (29)

where, 𝜔𝑎 signifies the frequency calculated analytically and 𝜔𝑛 signifies the frequency calculated numerically.
The results of the above-mentioned error calculations have been presented in Fig.4. On the top graph, the errors

calculated for the whole range of frequencies are presented. The middle and bottom graphs present the errors calculated
for a half and a quarter of the analyzed spectrum of frequencies, respectively. From the figures, it arises that the value
of error depends on the number of calculated frequencies. The best results for high frequencies have been obtained for
various 𝜀 values, whereas for the middle and lower frequencies, the best results were obtained for half and a quarter of
the 𝜀 values, respectively.

It can be noticed from Fig.4 that the error of natural frequency calculation depends on the range of calculated
frequencies. The optimal value of 𝜀 for varying ranges of calculated frequencies has been determined using the average
M. Krawczuk and M. Palacz: Preprint submitted to Elsevier Page 7 of 20
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Optimal rod mass matrix...

Figure 4: Relative error of the natural frequency determination of a �xed-free rod for di�erent ranges of calculated

frequencies.

error (MAE - Mean Absolute Error - an arithmetic average of the absolute errors) calculated from the following formula:

𝑀𝐴𝐸 =
∑𝑛

𝑖−1 |𝑒𝑖|
𝑛

. (30)

The following calculations have been performed for a rod with the same geometrical and material parameters as in
the previous example. The simulation results for a model consisting of 40, 60, and 80 finite elements have been shown
in Fig.5. In this figure, the red dashed lines mark the Nyquist (half range) and a half of the Nyquist (quarter range)
frequencies in each analyzed case.
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Optimal rod mass matrix...

Figure 5: The 𝜀 coe�cient for the natural frequency ranges of the analyzed rod - 80, 60 and 40 2-node �nite elements.

Table 1

Average errors for 2-node element as a function of 𝜀 calculated for di�erent ranges of frequencies

Range 𝜀=1.0 𝜀=0.5 𝜀=0.0 𝜀=0.3031 𝜀=0.4604 textbf𝜀=0.4907

Full 12.7338 4.5307 9.9468 2.3846 3.7532 4.3404

Half 3.3633 0.2693 3.4450 1.1063 0.1055 0.2095

Quarter 0.8518 0.0161 0.8592 0.3237 0.0518 0.0060
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Optimal rod mass matrix...

Figure 6: The 𝜀 coe�cient for speci�c natural frequencies.

From the curves presented in Fig.5 it may be seen that the optimal value of 𝜀 has not been influenced by the total
number of finite elements in the model. For the full frequency spectrum, the best correlation between analytical and
numerical solutions has been obtained for 𝜀 = 0.3031. For the half spectrum, the optimal value of 𝜀 is equal to 0.4604,
whereas for the quarter of spectrum 𝜀 = 0.4907. To check the influence of the boundary conditions on the value of the
𝜀 coefficient, analogous calculations have been performed for a free-free and fixed-fixed rod with the same geometrical
and material parameters as in the previous examples. After the calculation was performed, it appeared that various
boundary conditions did not influence optimal values of 𝜀, therefore the illustrative figure was omitted. Additionally,
for several 𝜀 values, the mean error for the frequency range was calculated. These results have been summarized in
Table 1. The optimal 𝜀, for which the average error for various frequency ranges is the smallest, have been additionally
marked in Fig.5. It may be concluded that for a different range of calculated longitudinal natural frequencies, there
exists a value of 𝜀 which allows one to obtain the smallest average error in each particular range.

Following, an optimal (in terms of minimal calculation error) value of 𝜀 was calculated for each frequency of the
spectrum. The number of frequencies was dependent on the number of finite elements in the numerical model. The
results of the calculations are presented in Fig.6. The outcomes presented in Fig6 show that for the last frequency
M. Krawczuk and M. Palacz: Preprint submitted to Elsevier Page 10 of 20
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of the spectrum, the best results are obtained for 𝜀 = 0.1180, whereas for the first frequency the best agreement is
achieved with 𝜀 = 0.5 (superconvergent element known from Kim (1993)). On the other hand, for 𝜀 = 0.4317 (the
value proposed by Authors) the best accuracy has been obtained for the middle frequency. The change of the boundary
condition type and the finite element grid density has not influenced the optimal value of 𝜀. These observations have
been confirmed by the results gathered and presented in Table 2. The table presents a set of values for the calculated
relative errors of selected frequencies in the case of specified values of the 𝜀 parameter. The smallest calculated error
values have been marked in bold text (on the diagonal) - as it can be noticed, these are the results for certain optimal
values of 𝜀 (listed in the first row of the table), which is additionally illustrated in the middle graph of Fig.6.

Table 2

Relative errors as a function of 𝜀 calculated for speci�c frequencies

No 𝜀=0.5 𝜀=0.4939 𝜀=0.4729 𝜀=0.4317 𝜀=0.3719 𝜀=0.2740 𝜀=0.1180

1 0.00000 -0.00003 -0.00015 -0.00039 -0.00073 -0.0012 -0.0021

10 0.01287 0.00030 -0.04302 -0.12819 -0.25219 -0.45620 -0.78387

20 0.23529 0.18263 0.00070 -0.35914 -0.88841 -1.77320 -3.23268

30 1.28318 1.16630 0.76074 -0.04966 -1.26206 -3.34573 -6.9492

40 4.27997 4.08870 3.42135 2.07055 0.00506 -3.67808 -10.49277

50 10.67017 10.42576 9.56873 7.81330 5.07320 0.00678 -10.06431

60 21.38521 21.14440 20.29811 18.55543 15.80957 10.64528 0.00564

4. Optimal mass matrix form of a three-node rod element
To determine the optimal form of the mass matrix for the three-node rod finite element, the first natural frequency

of the rod has been determined numerically and compared with the analytical solution. This operation has allowed
the calculation of the weight coefficient 𝜀 for the three-node finite element. The computations have been performed
for various boundary conditions (i.e., fixed-free, fixed-fixed, and free-free). In the case of the fixed-free boundary
condition, only one three-node rod finite element has been applied, whereas for the other boundary conditions, two
three-node rod finite elements have been utilized.

The element stiffness matrix has been assumed according to the elementary rod theory Zienkiewicz and Taylor
(1989) and it can be expressed as Fried and Chavez (2004):

𝐾𝑒 =
𝐸𝐴
3𝐿

⎡

⎢

⎢

⎣

7 −8 1
−8 16 −8
1 −8 7

⎤

⎥

⎥

⎦

. (31)

The first positive and non-zero root of the eigenproblem in the case of fixed-free boundary conditions is given by
the formula:

𝜔1 =

√

52𝐸 + 3𝐸𝜀 + 𝐸
√

9𝜀2 − 168𝜀 + 1984
𝐿2𝜌 (3 + 2𝜀)

. (32)

Comparing the above expression with the relation describing the first natural frequency of longitudinal vibrations
of the rod determined analytically, the value of 𝜀 = 0.6295 has been obtained. The same value of 𝜀 has been also
obtained for free-free and fixed-fixed rods.

For the determined value of 𝜀, the mass matrix of the analyzed element takes the form:

𝑀𝑒 =
𝜌𝐴𝐿
30

⎡

⎢

⎢

⎣

4.6925 0.615 −0.3075
0.615 18.77 0.615

−0.3075 0.615 4.6925

⎤

⎥

⎥

⎦

(33)

4.1. Numerical calculations
As in the case of the two-node element, the changes in relative error have been first calculated for a rod element

modelled using 40 three-node finite elements. The material and geometrical parameters have been assumed the same
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Optimal rod mass matrix...

as for the rod modelled using two-node elements. The relative error of the natural frequency has been determined
according to the relation given by Eq.29. The results of the error calculations have been presented in Fig.7. On the
top graph, the error value changes calculated for the whole range of frequencies are presented. The middle and bottom
graphs present the error value changes calculated for a half and a quarter of the analyzed spectrum of frequencies,
respectively. From the presented figures it arises that the value of relative error depends strongly on the number of
calculated frequencies. Moreover, accurate results for high frequencies have been obtained for various values of 𝜀.

Figure 7: Relative error of the natural frequency determination of a �xed-free rod - 60, 30 and 15 three-node �nite elements.

The following calculations have been performed for a rod modelled with different numbers of three-node elements
(i.e., 40, 60, and 80). These calculations aimed to establish the optimal 𝜀 value. The results of the calculations are
presented in Fig.8. In this figure, as in the case of the analysis for two-node rod finite elements, the red dashed lines
mark the Nyquist, half of the Nyquist, and a quarter of the Nyquist frequencies in each analyzed case. It is worth noting
that in all figures a drop in the middle of the analyzed spectra can be observed. This effect appears due to the periodic
character of the model Żak, Krawczuk and Palacz (2016), therefore the popular conviction that such a model allows the
determination of as many natural frequencies as its number of degrees of freedom (DOFs), may be misleading under
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certain conditions. However, the optimal values of 𝜀 in terms of minimal average error for various frequency ranges
have been calculated and those results have been gathered in Table 3. The optimal 𝜀 values, in this case, have been
shown in bold text.

Figure 8: The 𝜀 coe�cient for the natural frequency ranges of the analyzed rod - 80, 60 and 40 3-node �nite elements.
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Table 3

Average errors for 3-node element as a function of 𝜀 calculated for di�erent ranges of frequencies

Range 𝜀=1.0 𝜀=0.6666 𝜀=0.0 𝜀=0.4128 𝜀=0.6414 𝜀=0.6611

Full 1.229 0.5330 0.8608 0.2749 0.4805 0.5214

Half 0.0449 0.0031 0.0775 0.0280 0.0009 0.0025

Quarter 0.0027 4.44e-05 0.0051 0.0019 0.0001 1.13e-5

Next, the optimal values of the 𝜀 coefficient for particular rod longitudinal frequencies have been determined. For
this purpose, each frequency determined numerically has been compared with the respective analytical solution. The
optimal value of 𝜀 has been found in regards to achieving the smallest relative error of each frequency of the spectrum
(Fig.9). Similarly to the results obtained with the two-node model, the curves presented in Fig.9 show that the optimal
value of 𝜀 is not influenced by the total number of finite elements in the model. For the full frequency spectrum, the best
correlation between analytical and numerical solutions has been obtained for 𝜀 = 0.1141. For the half spectrum, the
optimal value of 𝜀 (the value proposed by Authors) is equal to 0.6295, whereas for the quarter of spectrum 𝜀 = 0.6590.
To investigate the influence of the boundary conditions on the value of the 𝜀 coefficient, analogous calculations have
been performed for a free-free and fixed-fixed rod with the same geometrical and material parameters as in the previous
examples. After performing the calculations, it appeared that the boundary conditions did not influence the optimal
values of 𝜀, therefore the illustrative figure has been omitted. These observations have been confirmed by the results
collected and presented in Table 4. The table presents a summary of the values of the calculated relative errors at
selected frequencies for specific 𝜀 values. The smallest values of the calculated errors have been marked in bold text
(on the diagonal) - as can be noticed, these are the results for certain optimal values of the 𝜀 parameter (listed in the
first row of the table), which is further indicated in the middle graph of Fig.9.

Table 4

Relative errors as a function of 𝜀 calculated for speci�c frequency - 3-node �nite element

No 𝜀=0.6666 𝜀=0.6636 𝜀=0.6526 𝜀=0.6295 𝜀=0.5908 𝜀=0.5026 𝜀=0.1141

1 -2.37e-10 -5.32e-10 -9.16e-10 -2.03e-09 -3.81e-09 -8.01e-09 -2.68e-08

10 2.02e-05 7.822e-07 -6.90e-05 -0.00021 -0.00046 -0.0010 -0.0034

20 0.00157 0.00123 9.02e-06 -0.0025 -0.0068 -0.01664 -0.05924

30 0.02053 0.01877 0.01244 -0.00083 -0.02302 -0.07330 -0.29006

40 0.13967 0.13401 0.11370 0.07115 0.00013 -0.16042 -0.84616

50 0.77567 0.76107 0.70865 0.59878 0.41536 0.00053 -1.76592

60 6.06824 6.03755 5.92700 5.69359 5.29870 4.38018 0.0014

5. Optimal mass matrix form of a four-node rod element
To determine the optimal form of the mass matrix in the case of a four-node rod finite element, similarly to the

previously discussed elements, the first natural frequency of the modelled rod has been determined and compared
with the analytical solution. This operation has allowed the value of the weight coefficient 𝜀 to be determined. The
calculations have been performed for all types of already mentioned boundary conditions (i.e., fixed-free, fixed-fixed,
and free-free). In the case of the fixed-free boundary condition, only one four-node rod finite element has been applied,
whereas for the other boundary conditions, two finite elements have been utilized.

The four-node element stiffness matrix has been assumed as Zienkiewicz and Taylor (1989):

𝐾𝑒 =
𝐸𝐴
40𝐿

⎡

⎢

⎢

⎢

⎣

148 −189 54 −13
−189 432 −297 54
54 −297 432 −189
−13 54 −189 148

⎤

⎥

⎥

⎥

⎦

. (34)
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Figure 9: The 𝜀 coe�cient for speci�c natural frequencies - three-node �nite element.

Comparing the first, positive, non-zero root of the eigenproblem with the relation describing the first natural
frequency of longitudinal vibrations of the rod, determined analytically, a value of 𝜀 = 0.3517 was obtained. The
same value of 𝜀 was also obtained for the free-free and fixed-fixed rods. Finally, the mass matrix for the four-node rod
finite element has been assumed as the following relation:

𝑀𝑒 =
𝜌𝐴𝐿
1680

⎡

⎢

⎢

⎢

⎣

128 99
99 648

−36 19
−81 −36

−36 −81
19 −36

648 99
99 128

⎤

⎥

⎥

⎥

⎦

(1 − 𝜀) +
𝜌𝐴𝐿
194

⎡

⎢

⎢

⎢

⎣

16 0
0 81

0 0
0 0

0 0
0 0

81 0
0 16

⎤

⎥

⎥

⎥

⎦

𝜀. (35)

5.1. Numerical calculations
Similarly as in the case of two- and three-node elements, the relative error values for the natural frequencies of the

rod modeled with 60 four-node elements have been first determined. Additionally, the same material and geometrical
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Figure 10: Relative error of the natural frequency determination of a �xed-free rod - 60, 30 and 15 four-node �nite elements.

parameters used for the calculations presented earlier in this paper have been assumed. The relative error of the natural
frequency has been determined according to the relation given in Eq.29. The results of the error calculations have been
presented in Fig.10. The top graph shows the changes in the error values calculated for the whole frequency range. The
middle and bottom graphs show the changes in error values calculated for half and quarter of the analyzed frequency
spectrum, respectively. From the presented figures it can be seen that the value of the relative error significantly depends
on the number of calculated frequencies. Moreover, small values of errors appear for different values of 𝜀, therefore
the optimal value of this parameter should be determined by subsequent numerical analyses.
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Figure 11: The 𝜀 coe�cient for the natural frequency ranges of the analyzed rod - 80, 60 and 40 four-node �nite elements.

Table 5

Average errors for 4-node element as a function of 𝜀 calculated for di�erent ranges of frequencies

Range 𝜀=1.0 𝜀=0.0 𝜀=0.2153 𝜀=0.3012 𝜀=0.1095

Full 1.071 0.0536 0.0506 0.0875 0.0574

Half 0.0574 0.0013 0.0018 0.0010 0.0022

Quarter 0.0116 5.16e-05 0.0008 0.0022 1.62e-5
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Considering the findings presented above, the calculation of the optimal value of the 𝜀 parameter for the rod
modelled with a varied number of four-node elements (i.e., 40, 60, and 80) has been carried out, as in the case of
the two-node and three-node elements. The results of these calculations have been shown in Fig.11. In this figure,
as in the case of the analysis for two- and three-node finite elements, the red dashed lines indicate the Nyquist, half
Nyquist, and one-quarter Nyquist frequencies for each of the analyzed cases. It is worth explaining at this point that
in all figures a discontinuity can be observed in the one-third and two-third bandwidths of the analyzed spectra. This
effect, as in the model using three-node elements, appears due to the periodic nature of the model Żak et al. (2016),
so the common belief that any numerical model allows the determination of as many natural frequencies as its number
of DOFs can be misleading in certain cases. Nevertheless, the values of 𝜀 for which the average error of the various
ranges of frequencies have been calculated have been determined and those results have been presented in Table 5.

Figure 12: The 𝜀 coe�cient for speci�c natural frequencies - four-node �nite element.

Taking into account the above results, the authors have continued to attempt to answer the question of what is
the optimal value of the 𝜀 factor from the point of view of minimizing the error in the determination of the natural
frequencies for a model using a four-node element. For this purpose, calculations of the optimal value of the coefficient
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𝜀 for each frequency of the spectrum have been carried out (Fig.12). Similarly to the results obtained for the two-node
and three-node models, it can be concluded from the curves shown in Fig.12 that the optimal value of 𝜀 has not been
affected by the total number of finite elements in the model. For the full frequency spectrum, the best correlation
between the analytical and numerical solutions has been obtained for 𝜀 = 0.0989. For half of the spectrum, the optimal
value of 𝜀 is equal to 0.3517, while for the quarter of the spectrum 𝜀 = 0.1515. It was also found that the value of 𝜀
did not change for different types of boundary conditions, so, as in the previous subsections, the overview figure has
been omitted.

Table 6

Relative errors as a function of 𝜀 calculated for speci�c frequency - 4-node �nite element

No 𝜀=0.0 𝜀=0.0768 𝜀=0.2358 𝜀=0.3517 𝜀=0.3834 𝜀=0.3254 𝜀=0.0989

1 3.46e-11 2.15e-07 2.04e-06 4.54e-06 5.39e-06 3.88e-06 3.58e-07

10 -7.44e-06 1.26e-07 0.00056 0.00145 0.00176 0.00122 3.46e-05

20 -0.00054 -0.0013 2.99e-06 0.0037 0.00510 0.00266 -0.0014

30 -0.00619 -0.01099 -0.01000 9.90e-06 0.00411 -0.00294 -0.01174

50 -0.03336 -0.04721 -0.04310 -0.01239 4.05e-05 -0.02140 -0.04928

40 -0.11828 -0.14500 -0.09227 0.03555 0.08310 0.00013 -0.14636

60 -0.27121 -0.16669 1.3549 2.56919 2.89806 2.29486 0.00063

The observations described above have been confirmed by the results gathered and presented in Table 3. The table
presents a set of values of calculated relative errors for selected frequencies in the case of specified values of the 𝜀
parameter. The smallest values of the calculated errors have been marked in bold text (on the diagonal) - as it can
be easily noticed, these are the results for certain optimal values of 𝜀 (listed in the first row of the table), what is
additionally marked in the middle graph of Fig12.

6. Conclusions
The main objective of the research described in this paper has been to determine the optimal mass matrix for a

rod finite element, with the purpose of improving the accuracy of eigenvalue calculations. It has been assumed that
the matrix can be structured as a linear combination of coherent and diagonal mass matrices by using a certain weight
factor. In order to determine the optimal value of this factor, the eigenvalues of the discrete model have been compared
with the analytical values. From this, the optimal weight coefficients for the two-, three- and four-node rod finite
elements have been determined.

Based on the literature review, it has been found that certain values of weighting coefficients exist, however, their
application is limited only to the lowest ranges of rod natural frequencies, since, according to the literature sources cited
in this paper, only in the low range are the errors at an acceptable level. The use of previously known coefficients leads
to an increase in the error value with an increase in the range of the determined natural frequencies. This phenomenon
is numerically harmful, therefore, an attempt has been made to develop such a coefficient, which allows the analysis of
rod natural vibrations with minimum numerical errors for both low and high natural frequencies. Therefore, this paper
presents new forms of the mass matrix of a rod element which allows one to determine natural frequencies with the
smallest average error for a specific range of frequencies or with the smallest relative error for a specific number of
frequencies.

During numerical investigations, it has been found that in the case of the two-node element analysis for the first
natural frequencies, the best results may be obtained for 𝜀 = 0.5 - that is for the so-called superconvergent mass matrix
built on the basis of trigonometric polynomials Ahmadian and Faryghi (2011). However, if one would like to determine
the longitudinal natural frequencies from the whole spectrum with the smallest possible mean error (up to the Nyquist
frequency), whose number is related to the number of DOFs of the model, (𝑁 − 1)∕2, the best results can be obtained
using 𝜀 = 0.4604. The optimal 𝜀 value for the Nyquist frequency is then 0.4317. Similarly, for the three-node element
for the first natural frequencies, the smallest error is obtained at 𝜀 = 2∕3, while for the whole frequency range up to
the Nyquist frequency for 𝜀 = 0.4301. For the half frequency, 𝜀 = 0.6295. In the case of the four-node element, for the
first natural frequencies, the smallest error is obtained at 𝜀 = 0, while for the whole frequency range up to the Nyquist
frequency for 𝜀 = 0.3012. For the half frequency - 𝜀 = 0.3517.
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From analyzing the results of the performed tests, it has been concluded that it is not possible to determine
the optimal value of the weighting factor 𝜀 for the entire frequency range. Nevertheless, it is possible to find such
coefficients that for the selected frequency range will give the smallest average error. Furthermore, for a certain number
of frequencies, there is a weighting factor that gives a smaller error. It has also been found that the weighting factors
do not depend on the grid density or on the boundary condition type.
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