
Analysis of denoising autoencoder properties

through misspelling correction task

Karol Draszawka, Julian Szyma«ski

Department of Computer Systems Architecture
Faculty of Electronic Telecommunications and Informatics

Gda«sk University of Technology, Poland,
kadr@eti.pg.gda.pl, julian.szymanski@eti.pg.gda.pl

Abstract. The paper analyzes some properties of denoising autoen-
coders using the problem of misspellings correction as an exemplary task.
We evaluate the capacity of the network in its classical feed-forward form.
We also propose a modi�cation to the output layer of the net, which we
called multi-softmax. Experiments show that the model trained with this
output layer outperforms traditional network both in learning time and
accuracy. We test the in�uence of the noise introduced to training data
on the learning speed and generalization quality. The proposed approach
of evaluating various properties of autoencoders using misspellings cor-
rection task serves as an open framework for further experiments, e.g.
incorporating other neural network topologies into an autoencoder set-
ting.
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1 Introduction

Experiments presented in this paper aims at researching properties of autoen-
coders � neural network-based models of autoassociative memory [1]. To do this
we need data that is scalable, easily obtainable, can be modi�ed in such a way
that allows to test particular properties of autoencoders, and corresponds to
some popular, common sense task. The task of misspelling correction ful�lls
these requirements � it is widely used for supporting writers to ensure quality
of their work [2]. The data can be represented in the form of large dictionaries
of strings, that can be modi�ed according to experiment requirements, e.g. by
injecting a particular type of noise (typos).

Typical approach to complete the task of misspellings correction is to provide
a priori dictionary and to select the entries that are the most probable given the
distorted one presented on input. This requires the comparison between the
input string and all entries in the dictionary using some similarity measure. This
approach has a linear complexity O(n), where n is the size of the dictionary.
The quality of the results depends on the representation of dictionary entries
and similarity measure used for string comparison [3] [4]. It may be e.g.: Cosine,
Hamming, Levenshtein distances or their modi�cations [5]. Regardless of what



similarity measure is used the complexity in that approach remains the same.
One way to improve the e�ciency is to used dedicated indexes [6] or hashing [7]
[8].

In this work we use misspellings correction as the task under which we ex-
amine properties of denoising autoencoders. Conducted experiments show that
this task can be successfully completed using such neural networks. This solution
provides high quality results, the O(1) complexity and the possibility to tune the
model for user preferences. Also representation of the dictionary is much more
compact and saves memory.

2 Autoencoders as Typo Correctors

2.1 Denoising Autoencoders

As stated, for large scale dictionaries �nding closest matches to a mistyped se-
quence of characters using some similarity measure may be inapplicable due to
O(n) complexity. On the other hand, existing techniques of scalability improve-
ments introduce accuracy problems. For example, solutions based on Locality
Sensitive Hashing [6], may decrease precision and/or recall of dictionary entries
retrieval. The quality of results is strongly related to the similarity function
that is employed � the more precise results we want to obtain the more so-
phisticated, and computationally expensive, function need to be used. In some
circumstances, there is also a need for tuning of the similarity function so that
it works better with a particular dictionary, e.g. to construct user personalized
spelling corrections, when characteristic examples of his or her misspellings are
provided.

Because of these drawbacks of traditional methods, we tested autoencoders
as an alternative misspellings correctors. Autoencoder is an arti�cial neural net-
work model, that tries to map a given input vector to itself (see �g. 1). The
computation is not trivial, because the information �owing from input to out-
put goes �rst through encoding part (function f), which squeezes it into smaller
number of a bottleneck layer (it may also be otherwise restricted, e.g. through
sparse regularization), before it is recovered back with decoder function g. Au-
toencoders are trained by minimizing a loss function L(x, g(f(x))) that penalizes
net output g(f(x)) for being dissimilar from net input x. For real valued input
vectors L is typically chosen to be mean squared error (MSE), but for binary
data it can also be binary cross-entropy (CE) loss [9]. When decoder is linear and
L is the mean squared error, an undercomplete autoencoder learns to span the
same subspace as Primary Component Analysis (PCA) [10]. Autoencoders with
nonlinear f and g can learn more powerful nonlinear embeddings than PCA.

Typically, the aim of training such neural networks is to obtain a useful
compact representation for a given data set, i.e. for the purpose of dimensionality
reduction [11�13]. In these cases, we are not interested in the output of the
decoder, but in the hidden layer, where internal representations of the input
data are formed. However, autoencoders can also be used as noise reductors, for
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Fig. 1. Typical shallow autoencoder ar-
chitecture: feed forward neural net with
one bottleneck hidden layer. Sigmoid acti-
vation function at output.

Fig. 2. Autoencoder with multi-softmax
output layer.

example like shown in [14] for enhancing speech signal, or in [15] for removing
di�erent types of noise from images. For such denoising autoencoders, training
dataset consists of (x̂,x) input-target data pairs, where x̂ is a corrupted version
of the original x instance. The corrupted version is formed from original one
during generation of training pairs.

2.2 Words Representation

In this context, misspellings correction can be seen as a denoising process, for
which denoising autoencoders are perfectly suitable. All what has to be done
is to transform sequence of characters into a �xed length feature vector, which
is then directly applicable to neural networks input and targets. In this work,
we used one-hot encoding of characters: let n be the number of symbols in
the alphabet, then i-th symbol is associated with a vector v(s(i)) of length n
with all elements equal to 0 except i-th, where it has 1. Sequence of symbols
is represented as a concatenation of all associated v(s) vectors. For example,
if alphabet A = {'a', 'b', 'c'}, then v('a') = [1, 0, 0], v('b') = [0, 1, 0], v('c') =
[0, 0, 1] and v('cab') = [0, 0, 1, 1, 0, 0, 0, 1, 0].

The reverse transformation, i.e. from binary vectors to strings of characters
is analogical. However, vectors returned by a neural net will not be binary, but
real valued, with all elements between 0 and 1. Thus, the returned vector is split
into vectors representing each character, and then the position of the maximum
element in each of the vectors determines decoded symbols. For example, if A
is the same as in previous example, then vector [0.780.210.01, 0.1, 0.89, 0.01, 0.0,
0.99, 0.1, 0.6, 0.37, 0.3] is decoded as string 'abba', because we have symbol vec-
tors: [0.780.210.01] with maximum at �rst position, [0.1, 0.89, 0.01] with second
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element being maximal, [0.0, 0.99, 0.1] also with max at second position, and
[0.6, 0.37, 0.3] with argmax equal to 1.

To obtain �xed-sized vectors for all input sequences, regardless of their length,
space padding is used (space being added to alphabet). For the purpose of the
experiments we assumed maximum length of the sequence, denoted as C, equal
16. All shorter expressions where padded to this size with spaces. In result, 576-
element (C · |A|) binary sparse vector represents a word that can be formed from
36-symbols alphabet not longer that 16 characters.

2.3 Output Layers and Loss Functions

The output of our model for typos correction is speci�c: it is interpreted as a con-
catenation of C probability distributions of characters from alphabet A. Since
this is a concatenation of distributions, and not a single probability distribution,
we cannot apply a softmax output function to here. Instead, two possibilities
were tested.

In the �rst one, the models is as seen in �g. 1, i.e. with a normal dense
layer of sigmoid units (with standard logistic activation function σ(z) = 1/(1 +
exp(−z))). This type of network models arbitrary binary outputs. The loss func-
tion L for a single training target t is a binary cross-entropy:

L(y, t) = −
|A|C−1∑

i=0

[tilog(yi) + (1− ti)log(1− yi)] , (1)

where y is the output of the net.
The other one is presented in �g. 2. This is a con�guration, which we call

multi-softmax, which is a concatenation of dense softmax layers each calculating
normal softmax function σ(z)j = exp(zj)/

∑K
k=1 exp(zk). The loss function L

for a single training target t for such an output layer is a sum of categorical
cross-entropies, each corresponding to appropriate softmax:

L(y, t) = −
C−1∑
i=0

|A|∑
j=0

ti|A|+j log(yi|A|+j). (2)

This model has the same number of parameters as normal sigmoid layer, yet
it enforces the output vector to be a valid concatenation of probability distribu-
tions.

3 Experiments

3.1 Experimental Setup

In all the experiments described below, we used our implementation of autoen-
coders in Keras [16] with Theano [17] back-end. We trained models for 1000
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epochs using AdaDelta optimizer with default settings [18]. If not stated other-
wise, training and testing data is based on a 1000 long Polish words dictionary
(av. length of word is 13.02 characters).

Except an experiment that investigates generalization capabilities of pre-
sented models in detail (discussed further), all other experiments were conducted
using the following strategy. Instead of creating �xed-sized sets of training and
testing data, we use generators that create data on-the-�y during training and
testing phases. During training, generator creates training pairs (x,x) simply
taking a random word from a dictionary and transforming it into vector repre-
sentation, or creates (x̂,x) substituting one character of the word with a di�erent
random one from the alphabet. This way, any possible misspelling of a word (re-
sulting from mistyped a single character) could be possibly generated. In one
epoch, we give 100 such pairs per each dictionary entry. After each 10 epochs,
models are evaluated using testing data generator: for each word in a dictionary,
100 one-character typos is generated. So, for 1000 words, 100000 tests are per-
formed, and the percentage of times, when the net returns a correct word from
typo is reported as test accuracy.

The number of units in the hidden layer is crucial for autoencoder to work
properly. First experiment under these settings was conducted to selected the
number of hidden units in the bottleneck layer. The results are shown in Table 1.
It can be seen that more units give better results. However, this comes at the
cost of complexity and computation time. Therefore we have chosen a shallow
autoencoder of 300 hidden units as a good compromise between accuracy and
complexity and all subsequent experiments use models with 300 neurons in the
middle layer. We also tested deeper architectures (such as e.g. 576-1000-300-
1000-576), but they performed similarity at much higher computational cost.

Table 1. The impact of the number of hidden units in the bottleneck layer of a shallow
autoencoder. Each setup was trained and tested two times (dashed lines) and averaged
(solid line).

Hidden layer size 10 30 100 300 400 576 700 1000

Average test accuracy [%] 0.13 36.2 67.3 71.2 71.1 71.9 72.6 73.5

3.2 Sigmoid vs Multi-Softmax Output Layer

Providing the information to the network that each of the characters is coded
as separate probability distribution signi�cantly increases the speed of learning
process. Our multi-softmax adjustment causes the network to perform much
better than simple layer with sigmoid units, see Fig. 3. There, we present test
accuracy results and number of epochs required to train the shallow autoencoders
with 1 hidden layer of 300 units on word dictionaries containing 100 and 1000
elements.
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(b) 1000 words.

Fig. 3. Sigmoid (solid line) and multi-softmax (dashed line) test accuracy for di�erent
sizes of training dictionary.

Multi-softmax output layer constantly outperforms normal sigmoid layer in
both cases. In the case of 1000 words dictionary, multi-softmax enables autoen-
coder to achieve almost 100% test accuracy. Interestingly, performance on 100
word set is worse than on 1000 word set. This is because our 100 word dictionary
contains very similar words (each begin with the same three letters), whereas
1000 word dictionary contains diverse entries and it is easier to �nd a correct
word of misspelled one.

The time required to train the network is also very important factor to have
practical applications of proposed approach. Training on low-end GPU, our 576-
300-576 autoencoder took a couple of minutes for a dictionary of 100 words and
about 2 hours for 1000 words. We tested those models also on 10000 dictionary,
where 1000 epochs took over 22 hours, which was was not enough to obtain
a good test accuracy (69.3% for multi-softmax, 64.1% for sigmoid), showing
that 576-300-576 models are too small for 10000 words.

3.3 Impact of Input Noise on the Model

Table 2. Impact of the percentage of distorted training input examples on model
performance.

How often a training word
contains a typo

0% 50% 67% 80% 90% 97% 99% 100%

Average test accuracy [%] 53.3 80.3 85.9 89.3 91.0 92.6 93.3 91.7

Misspellings correction can be seen as a transformation of a noised input
into an output without the noise. The type noise we use in the experiments
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is random character substitution, but other examples of misspellings, such as
reversed order of neighboring chars or additional/missing chars, are possible as
well. The question is: how much noise is needed for a denoising autoencoder to
train it maximally e�ectively.

Table 2 shows the impact of the percentage of input training examples having
typo. The case when all examples are without any single character changed is
denoted as 0% case. On the other extreme, 100% case means that every time a
word from the dictionary is presented to the model, it has a random character
substitution at one random place. It can be seen that presenting distorted words
at training signi�cantly improves generalization of the autoencoder. This is ex-
pected, because the task is just to do this (at test time, all examples have one
random character substitution). The results indicate that training an autoen-
coder on the correct data leads to very poor generalization. On the other hand,
it is also bene�cial to include in a training data an correct examples of words.
The best result (93.3% test accuracy) was obtained when one 1 in a 100 exam-
ples was correct. Also 97% setting achieved better result than 100% distorted
data.

Another factor we evaluated was the level of distortion the network is still
able to reconstruct. The assumption of the experiment presented here was that if
we add more distorted data into the learning set the network can achieve better
generalization properties. Positional representation of characters in the input
vector means that there is a lot of independence among positions in the word. We
tried to make use of this independence and tested whether more than one random
substitutions can be made in each input example, although at test time examples
still have only one substitution. The hope was that more 'denoising work' could
be learned in a mini-batch processing than merely one random substitution in
a random place per example.

In Table 3 we present results of the experiment showing how distortion level
in�uence accuracy. The best performance was achieved when each training exam-
ple contains 3 typos (test accuracy 97.3%). 5 typos per training word performs
almost equally well. But 10 typos per word (when words are of 16 characters
maximally) is too much � the words are distorted to such a degree that they can-
not be reconstructed any more. This experiment was performed in two settings
(same as in previous experiment), one in which 50% of examples is distorted and
other are left unchanged, and second when 100% of examples is distorted. The
second setting constantly outperforms the �rst one, and the results from this
experiment conform previously drawn conclusions: it is better to show various
forms of distorted data than to present many times (50% means each second
epoch) the same correct version words.

3.4 Generalization Abilities

In all experiments presented so far, training and testing data are generated on-
line from two generators, which are sampling words from the same dictionary
of words. Although typos made in training and testing examples are constantly
di�erent, it is possible that in some epoch t test generator will generate a typo
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Table 3. The impact of the number of character substitutions in every one distorted
word presented to the model during training. Test accuracy [%].

Number of typos in each perturbed example 1 2 3 5 10

50% perturbed training examples 80.1 89.6 91.2 91.6 85.4

100% perturbed training examples 91.9 96.2 97.3 97.1 88.6

exactly the same as previously created by train generator in epochs ≤ t. In
fact, the probability of such situation is monotonically growing during training,
therefore, test accuracies will slowly converge to train accuracies. Although pre-
sented procedure is good for training misspellings correctors, it cannot reliably
answer a question whether such systems can generalize to correct other typos
than presented during training.

To answer this question we created four disjoint �xed-sized sets: one training
and three testing data. The �rst one, denoted as L1, contains typos very similar
to those from the training set: they are made in the same words and at the same
positions as in the train dataset, only wrong character is di�erent. The second
test set, L2, holds typos made in the same words as examples from the training
set, but at positions which are never altered in the training set (each word in
the training set has one randomly chosen position in it, where it always has its
correct character). The third test set, L3, has typos made in words not present
in the training set dictionary at all.

Fig. 4 shows accuracies of typos corrections for each of the datasets for 576-
250-576 autoencoders with sigmoid and multi-softmax output layers. Correction
unseen typos of L1 type is not a problem at all, the performance being essentially
the same as for train data. Correction of L2 typos is only slightly harder for multi-
softmax model, while sigmoid net struggles here, 500 epochs is not enough to
obtain good accuracy, but increasing tendency indicates that it is not over�tting
training data yet, and is able to generalize to L2 dataset. Neither model is able
to correct words that they did not see during training. This is not a surprise,
because the models are trained to associate their input to whole words from the
dictionary used during training, and have no clue that out-of-vocabulary output
is possible.

4 Summary and Further Works

In this paper we present results of the research on autoencoders for misspelling
correction task. We argue that the observations given here regarding the prop-
erties of autoencoders' behavior are general and may be used for other applica-
tions that employ this type of networks. We shown that introduction of so-called
multi-softmax layer signi�cantly improves learning results. The results of the ex-
periments shown that there is a �nite capacity of the network. Developing it into
larger topology is not a good way to extend the dictionary size because the time
required to train the network signi�cantly increases. Instead of enlarging the net-
work, in future we plan to introduce hierarchical structure with root network at
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Fig. 4. Accuracy on train and three di�erent test sets. Solid lines represent sigmoid
model, dashed lines � multi-softmax model. Details describing datasets are in the text.
Axes are shared between plots.

the top that will select subspace of the dictionary and indicates proper network
to perform misspelling corrections in that subspace. This task can be performed
using Self Organizing Map [19] that aggregate in each node the most similar
entries from the dictionary. Selecting the size of the map allows us to con�gure
the number of subnetworks used for a particular dictionary.

The framework we create during implementation of the experiments allows
us to test other network topologies that may be applied as autoencoders. In
future, instead of adding simple dense hidden layers we plan to test capacity
of convolutional layers [20]. Also usage of deep residual networks [21] seems to
be a good direction for extending the capacity and accuracy of the model. In
the experiments presented here we used static vectors to represent the input
strings. The other promising direction of research is to treat words as sequences
where next character depends in some degree on the previous one. This natu-
rally suggest recurrent networks [22], that can be incorporated to autoencoder
model (as encoder as well as decoder part) and provide information on successive
dependencies in training sequences.
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