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ABSTRACT
We derive two equivalent analytical expressions for an lth partial-wave scattering length al for central potentials with long-range tails of the
form V(r) = −

̵h2

2m
Brn−4

(rn−2 + Rn−2)2 −
̵h2

2m
C

r2(rn−2 + Rn−2) , (r ⩾ rs, R > 0). For C = 0, this family of potentials reduces to the Lenz potentials discussed in a
similar context in our earlier works [R. Szmytkowski, Acta Phys. Pol. A 79, 613 (1991); J. Phys. A: Math. Gen. 28, 7333 (1995)]. The formulas
for al that we provide in this paper depend on the parameters B, C, and R characterizing the tail of the potential, on the core radius rs, as well
as on the short-range scattering length als, the latter being due to the core part of the potential. The procedure, which may be viewed as an
analytical extrapolation from als to al, is relied on the fact that the general solution to the zero-energy radial Schrödinger equation with the
potential given above may be expressed analytically in terms of the generalized associated Legendre functions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140726

I. INTRODUCTION
Scattering lengths are among the most important parameters characterizing atomic collisional processes at ultralow energies.1–4

Therefore, there is a need for developing reliable and effective methods for the calculation of these quantities and a variety of such
procedures—analytical, numerical, or of a mixed character—have been proposed.5–45

Some time ago, in Ref. 19, we presented analytical formulas for partial-wave scattering lengths al for central potentials with the following
three types of long-range tails: (i) the inverse power tail

V(r) = −
h̵2

2m
An

rn (r ⩾ rs), (1.1)

(ii) the so-called Lennard-Jones (n, 2n − 2) tail

V(r) = −
h̵2

2m
An

rn −
h̵2

2m
A2n−2

r2n−2 (r ⩾ rs), (1.2)

and (iii) the so-called Lenz tail

V(r) = −
h̵2

2m
Brn−4

(rn−2 + Rn−2)2 (r ⩾ rs, R > 0). (1.3)
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The expressions for al provided in Ref. 19 involve parameters characterizing tails of particular potentials, the core radius rs, the short-range
scattering lengths als that are due to the core part of the potential and that usually have to be determined numerically, and also some of the
well-known special functions of mathematical physics: the Bessel functions for the tail (1.1), the Whittaker functions for the tail (1.2), and the
associated Legendre functions for the tail (1.3). In brief, the procedure may be viewed as an analytical extrapolation from als to al, with the
use of the fact that in the region r ⩾ rs the general solution to the zero-energy radial Schrödinger equation with the potentials given above are
expressible in terms of the afore-mentioned special functions.

In the present paper, we consider a class of central potentials with still another functional form of the long-range tail, which is

V(r) = −
h̵2

2m
Brn−4

(rn−2 + Rn−2)2 −
h̵2

2m
C

r2(rn−2 + Rn−2)
(r ⩾ rs, R > 0). (1.4)

This tail is seen to generalize the Lenz tail (1.3); moreover, asymptotically, it imitates the Lennard-Jones tail (1.2) since it falls off as

V(r) r→∞
Ð→ −

h̵2

2m
B + C

rn −
h̵2

2m
(−2B − C)Rn−2

r2n−2 + O(r−3n+4
). (1.5)

In the following, we shall prove that also for potentials with the tail (1.4), it is possible to extrapolate analytically from als to al, but this time
with the use of generalized associated Legendre functions.46

The paper is structured as follows: In Sec. II, a definition and some basic facts about partial-wave scattering lengths are reminded, and
then, a particular method enabling one to calculate these quantities is sketched. This method is then used in Sec. III to derive two equivalent
analytical expressions, displayed in Eqs. (3.16a) and (3.16b), for scattering lengths for potentials with the tail given in Eq. (1.4). Special cases
when these two formulas simplify are discussed in Sec. IV. Finally, concluding remarks form Sec. V.

II. THE METHOD
The lth partial-wave scattering length al is defined through the limit relation47

al = −(2l − 1)‼(2l + 1)‼ lim
k→0

tan δl(k)
k2l+1 , (2.1)

[by definition, (−1)!! = 1], where δl(k) is the lth partial-wave scattering phase shift at the particle wave number k (notice that some authors
prefer a definition of al with the double factorials omitted). It can be shown (Ref. 48, Sec. 12) that for potentials that asymptotically fall
off as

V(r) r→∞
Ð→ const × r−n + O(r−n−ε

) (n > 3, ε > 0) (2.2)

the limit in Eq. (2.1) is finite, and thus, al does exist, for partial waves with the angular momentum quantum number l constrained by the
inequality

2l < n − 3. (2.3)

The method of evaluation of al based on the direct use of the definition (2.1) is impractical, as it requires prior knowledge of the functional
form of δl(k) in the neighborhood of the threshold point k = 0. The more convenient approach is the following one (cf. Ref. 19). Let Fl(r) be a
solution to the zero-energy radial Schrödinger equation in the outer domain,

[−
h̵2

2m
d2

dr2 +
h̵2l(l + 1)

2mr2 + V(r)]Fl(r) = 0 (r ⩾ rs), (2.4)

which at r = rs matches smoothly onto an inner-domain solution that is regular at r = 0. The asymptotic form of Fl(r) is

Fl(r) r→∞
Ð→ Al[r

l+1
− alr

−l
], (2.5)

where al is the scattering length and Al is a multiplicative factor. Guided by the form of the right-hand side of Eq. (2.5), we introduce two
auxiliary functions Al(r) and al(r) such that

Fl(r) = Al(r)[rl+1
− al(r)r−l

] (2.6a)

and
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dFl(r)
dr

= Al(r)[(l + 1)rl + lal(r)r−l−1
]. (2.6b)

It is evident that asymptotically, the function al(r) tends to al,

al = lim
r→∞

al(r) (2.7)

and that al(r) may be expressed as

al(r) = r2l+1 rLl(r) − (l + 1)
rLl(r) + l

, (2.8)

where

Ll(r) =
1

Fl(r)
dFl(r)

dr
(2.9)

is the logarithmic derivative of Fl(r). If f l(r) and g l(r) are any two linearly independent solutions to Eq. (2.4), the physical solution Fl(r) is a
linear combination of the two,

Fl(r) = αl f l(r) + βlgl(r). (2.10)

Hence, the logarithmic derivative Ll(r) is

Ll(r) =
f ′l (r) + γlg′l (r)
f l(r) + γlgl(r)

, (2.11)

where the prime means differentiation with respect to r, while γl is the ratio of the coefficients appearing in Eq. (2.10),

γl =
βl

αl
. (2.12)

If in Eqs. (2.8) and (2.11) we set r = rs and solve the resulting system for γl, this gives

γl = −
(r2l+1

s − als)rs f ′l (rs) − [(l + 1)r2l+1
s + lals] f l(rs)

(r2l+1
s − als)rsg′l (rs) − [(l + 1)r2l+1

s + lals]gl(rs)
, (2.13)

where

als = al(rs) (2.14)

is a scattering length due to the core part of the potential. Thus, we see that the scattering length al may be found from Eqs. (2.7) and (2.8)
augmented with Eqs. (2.11) and (2.13). This method is adopted in the present work.

III. SCATTERING LENGTHS FOR POTENTIALS WITH THE TAIL (1.4)
The zero-energy radial Schrödinger equation with the tail potential (1.4) may be written in the form

[
d2

dr2 −
l(l + 1)

r2 +
Brn−4

(rn−2 + Rn−2)2 +
C

r2(rn−2 + Rn−2)
]Fl(r) = 0 (r ⩾ rs) (3.1)

(the constraint R > 0 is assumed to hold throughout the rest of the paper). Below, we shall show that this equation may be solved analytically
in terms of known special functions. To this end, we switch from the independent variable r to the new one

ρ =
rn−2
− Rn−2

rn−2 + Rn−2 (ρs ⩽ ρ ⩽ 1), (3.2)

with
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ρs =
rn−2

s − Rn−2

rn−2
s + Rn−2 , (3.3)

and from the function Fl(r) to the function

F l(ρ) = r−1/2Fl(r). (3.4)

The new function F l(ρ) is found to be a solution to the equation

[
d

dρ
(1 − ρ2

)
d

dρ
+ λ(λ + 1) −

μ2

2(1 − ρ)
−

ν2

2(1 + ρ)
]F l(ρ) = 0 (ρs ⩽ ρ ⩽ 1), (3.5)

with

λ =
1
2

√

1 +
4B

(n − 2)2Rn−2 −
1
2

, (3.6a)

μ =
2l + 1
n − 2

(3.6b)

and

ν =

¿
Á
ÁÀ
(

2l + 1
n − 2

)

2

−
4C

(n − 2)2Rn−2 . (3.6c)

It should be observed that, in virtue of the inequality (2.3), the parameter μ defined above is constrained to obey

0 < μ < 1. (3.7)

Equation (3.5) is the generalized associated Legendre equation. Some investigations concerning its solutions had been carried out by
Bateman49 in the early 1900’s, but systematic studies on the subject began only half a century later with the works of Kuipers and
Meulenbeld;50,51 a summary of relevant results obtained by various researchers up to the year 2000 may be found in the monograph.46 The
solution to Eq. (3.5) is

F l(ρ) = αlP
μ,ν
λ (ρ) + βlP

−μ,−ν
λ (ρ), (3.8)

where

Pμ,ν
λ (ρ) =

1
Γ(1 − μ)

(1 + ρ)ν/2

(1 − ρ)μ/2 2F1(−λ −
μ − ν

2
, λ + 1 −

μ − ν
2

; 1 − μ;
1 − ρ

2
) (3.9)

is the generalized associated Legendre function of the first kind on the cross-cut −1 ⩽ ρ ⩽ 1; here, 2F1(⋅ ⋅ ⋅ ) denotes the hypergeometric
function. The functions Pμ,ν

λ (ρ) and P−μ,−ν
λ (ρ) appearing in Eq. (3.8) are linearly independent since their Wronskian

W[Pμ,ν
λ (ρ), P−μ,−ν

λ (ρ)] = −
2 sin(πμ)
π(1 − ρ2)

(3.10)

does not vanish by virtue of the constraint (3.7) obeyed by μ. Now, as ρ→ 1 − 0 (which corresponds to r →∞), the functions Pμ,ν
λ (ρ) and

P−μ,−ν
λ (ρ) behave as

Pμ,ν
λ (ρ)

ρ→1−0
ÐÐÐÐ→

2ν/2

Γ(1 − μ)
(1 − ρ)−μ/2 + O((1 − ρ)−μ/2+1

) (3.11a)

and

P−μ,−ν
λ (ρ)

ρ→1−0
ÐÐÐÐ→

2−ν/2

Γ(1 + μ)
(1 − ρ)μ/2 + O((1 − ρ)μ/2+1

), (3.11b)

respectively. On combining Eqs. (3.4), (3.8) and (3.11), we see that the asymptotic behavior of the radial wavefunction Fl(r) is
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Fl(r) r→∞
ÐÐÐ→αl

2(ν−μ)/2

Γ(1 − μ)
rl+1

Rl+1/2
+ βl

2(μ−ν)/2

Γ(1 + μ)
Rl+1/2

rl + O((r/R)l−n+3
). (3.12)

Hence, with the use of the method presented in Sec. II, it is found that the scattering length al is

al = R2l+12μ−ν Γ(1 − μ)
Γ(1 + μ)

(r2l+1
s − als)(1 − ρ2

s )[dPμ,ν
λ (ρ)/dρ]ρ=ρs − μ(r2l+1

s + als)P
μ,ν
λ (ρs)

(r2l+1
s − als)(1 − ρ2

s )[dP−μ,−ν
λ (ρ)/dρ]ρ=ρs − μ(r2l+1

s + als)P
−μ,−ν
λ (ρs)

, (3.13)

where als is the short-range scattering length.
The presence of derivatives of the generalized Legendre functions makes the formula displayed in Eq. (3.13) impractical for use in actual

applications. However, at this moment, we may exploit either the relation [Ref. 52, Eq. (25)]

(λ + 1)(1 − ρ2
)

dPμ,ν
λ (ρ)
dρ

= [(λ + 1)2ρ +
μ2
− ν2

4
]Pμ,ν

λ (ρ) − (λ + 1 −
μ − ν

2
)(λ + 1 −

μ + ν
2
)Pμ,ν

λ+1(ρ) (3.14a)

or the relation

λ(1 − ρ2
)

dPμ,ν
λ (ρ)
dρ

= −(λ2ρ +
μ2
− ν2

4
)Pμ,ν

λ (ρ) + (λ +
μ − ν

2
)(λ +

μ + ν
2
)Pμ,ν

λ−1(ρ), (3.14b)

where the latter emerges when the expression in Eq. (3.14a) is combined with the identity [Ref. 52, Eq. (7)]

(2λ + 1)[λ(λ + 1)ρ +
μ2
− ν2

4
]Pμ,ν

λ (ρ) = λ(λ + 1 −
μ − ν

2
)(λ + 1 −

μ + ν
2
)Pμ,ν

λ+1(ρ) + (λ + 1)(λ +
μ − ν

2
)(λ +

μ + ν
2
)Pμ,ν

λ−1(ρ). (3.15)

This allows us to replace the formula in Eq. (3.13) with either of the following two:

al = R2l+12μ−ν Γ(1 − μ)
Γ(1 + μ)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{r2l+1
s [(λ + 1)2ρs − μ(λ + 1) + (μ2

− ν2
)/4]

− als[(λ + 1)2ρs + μ(λ + 1) + (μ2
− ν2
)/4]}Pμ,ν

λ (ρs)

− (r2l+1
s − als)[λ + 1 − (μ − ν)/2][λ + 1 − (μ + ν)/2]Pμ,ν

λ+1(ρs)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{r2l+1
s [(λ + 1)2ρs − μ(λ + 1) + (μ2

− ν2
)/4]

− als[(λ + 1)2ρs + μ(λ + 1) + (μ2
− ν2
)/4]}P−μ,−ν

λ (ρs)

− (r2l+1
s − als)[λ + 1 + (μ − ν)/2][λ + 1 + (μ + ν)/2]P−μ,−ν

λ+1 (ρs)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.16a)

or

al = R2l+12μ−ν Γ(1 − μ)
Γ(1 + μ)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{r2l+1
s [λ2ρs + μλ + (μ2

− ν2
)/4]

− als[λ
2ρs − μλ + (μ2

− ν2
)/4]}Pμ,ν

λ (ρs)

− (r2l+1
s − als)[λ + (μ − ν)/2][λ + (μ + ν)/2]Pμ,ν

λ−1(ρs)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{r2l+1
s [λ2ρs + μλ + (μ2

− ν2
)/4]

− als[λ
2ρs − μλ + (μ2

− ν2
)/4]}P−μ,−ν

λ (ρs)

− (r2l+1
s − als)[λ − (μ − ν)/2][λ − (μ + ν)/2]P−μ,−ν

λ−1 (ρs)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (3.16b)

Equations (3.16a) and (3.16b) constitute the main result of this paper. In Sec. IV, we shall investigate particular cases when these two
expressions may be simplified.
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IV. CASES WHEN EQS. (3.16a) AND (3.16b) SIMPLIFY
A. The case of B = 0

For B = 0, the tail potential (1.4) is

V(r) = −
h̵2

2m
C

r2(rn−2 + Rn−2)
(r ⩾ rs), (4.1)

and it holds that

λ = 0 (4.2)

[cf. Eq. (3.6a)]. As a consequence, Eq. (3.16a) becomes

al = R2l+12μ−ν Γ(1 − μ)
Γ(1 + μ)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{r2l+1
s [ρs − μ + (μ2

− ν2
)/4]

− als[ρs + μ + (μ2
− ν2
)/4]}Pμ,ν

0 (ρs)

− (r2l+1
s − als)[1 − (μ − ν)/2][1 − (μ + ν)/2]Pμ,ν

1 (ρs)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{r2l+1
s [ρs − μ + (μ2

− ν2
)/4]

− als[ρs + μ + (μ2
− ν2
)/4]}P−μ,−ν

0 (ρs)

− (r2l+1
s − als)[1 + (μ − ν)/2][1 + (μ + ν)/2]P−μ,−ν

1 (ρs)

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (4.3)

while Eq. (3.16b) leads to an expression for al of the 0/0 type since it holds that

P±μ,±ν
−1 (ρs) = P±μ,±ν

0 (ρs). (4.4)

B. The case of C = 0
For C = 0, the tail potential (1.4) reduces to the Lenz one displayed in Eq. (1.3),

V(r) = −
h̵2

2m
Brn−4

(rn−2 + Rn−2)2 (r ⩾ rs). (4.5)

From Eqs. (3.6b) and (3.6c), one infers that now the parameters μ and ν are equal,

ν = μ. (4.6)

Since it holds that

Pμ,μ
λ (ρ) = Pμ

λ(ρ), (4.7)

where Pμ
λ(ρ) is the well-known associated Legendre function of the first kind on the cross-cut −1 ⩽ ρ ⩽ 1 (Ref. 53, Sec. 4.3), in the case under

study, Eq. (3.16a) and (3.16b) simplify and go over into

al = R2l+1 Γ(1 − μ)
Γ(1 + μ)

{r2l+1
s [(λ + 1)ρs − μ] − als[(λ + 1)ρs + μ]}Pμ

λ(ρs) − (r2l+1
s − als)(λ + 1 − μ)Pμ

λ+1(ρs)

{r2l+1
s [(λ + 1)ρs − μ] − als[(λ + 1)ρs + μ]}P−μ

λ (ρs) − (r2l+1
s − als)(λ + 1 + μ)P−μ

λ+1(ρs)
(4.8a)

and

al = R2l+1 Γ(1 − μ)
Γ(1 + μ)

[r2l+1
s (λρs + μ) − als(λρs − μ)]Pμ

λ(ρs) − (r2l+1
s − als)(λ + μ)Pμ

λ−1(ρs)

[r2l+1
s (λρs + μ) − als(λρs − μ)]P−μ

λ (ρs) − (r2l+1
s − als)(λ − μ)P−μ

λ−1(ρs)
, (4.8b)

respectively. Up to notational differences, Eq. (4.8a) coincides with Eq. (52) in Ref. 19.
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C. The hard-core potential
The next class of potentials we wish to consider are those with hard cores,

V(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+∞ for r < rs,

−
h̵2

2m
Brn−4

(rn−2 + Rn−2)2 −
h̵2

2m
C

r2(rn−2 + Rn−2)
for r ⩾ rs.

(4.9)

Then, the short-range scattering length is simply

als = r2l+1
s (4.10)

so that either of Eq. (3.16a) or Eq. (3.16b) reduces to

al = R2l+12μ−ν Γ(1 − μ)
Γ(1 + μ)

Pμ,ν
λ (ρs)

P−μ,−ν
λ (ρs)

. (4.11)

The application of the identity [Ref. 46, Eq. (4.2)]

Pμ,ν
λ (ρ) = 2νPμ,−ν

λ (ρ) (4.12)

casts Eq. (4.11) into

al = R2l+12μ Γ(1 − μ)
Γ(1 + μ)

Pμ,−ν
λ (ρs)

P−μ,−ν
λ (ρs)

. (4.13)

The latter formula will be used in Sec. IV D.

D. The pure potential with C < 0
Finally, we wish to consider a potential that is of the form (1.4) throughout the whole space R3, i.e., such that

V(r) = −
h̵2

2m
Brn−4

(rn−2 + Rn−2)2 −
h̵2

2m
C

r2(rn−2 + Rn−2)
(r ⩾ 0), (4.14)

under an additional constraint that it is repulsive near the origin,

FIG. 1. A sample pure potential (4.14) with n = 4, B/R2
= 40, and C/R2

= −6. The potential normalization parameter V0 equals h̵2
/2mR2.
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C < 0 (4.15)

(a sample potential function of that sort is depicted in Fig. 1). An expression for the scattering length for such a potential may be derived
most conveniently from Eq. (4.13) by taking the limit ρs → −1 + 0 (which corresponds to the limit rs → 0). On using Eq. (3.9) and the Gauss’
identity (Ref. 53, p. 40)

2F1(a1, a2; b; 1) =
Γ(b)Γ(b − a1 − a2)
Γ(b − a1)Γ(b − a2)

[Re(b − a1 − a2) > 0], (4.16)

we eventually find that the lth partial-wave scattering length for the pure potential (4.14) constrained by Eq. (4.15) is

al = R2l+1 Γ(1 − μ)Γ(λ + 1 + μ+ν
2 )Γ(−λ + μ+ν

2 )

Γ(1 + μ)Γ(λ + 1 − μ−ν
2 )Γ(−λ − μ−ν

2 )
. (4.17)

V. CONCLUDING REMARKS
The aim of this paper has been to show that there exists still another class of central potentials—those with the long-range tails (1.4)

and the asymptotic representation (1.5)—for which partial-wave scattering lengths al may be obtained in analytical forms. Whilst expressions
for al for potentials with the tails (1.1)–(1.3) considered earlier in Ref. 19 contain Bessel, Whittaker, and the associated Legendre functions,
respectively, the present case involves lesser-known generalized associated Legendre functions.

In two particular cases, namely, for n = 4 and for n = 6, the potentials (1.4) may find applications in atomic physics. If n = 4, the resulting
tail potential

V(r) = −
h̵2

2m
B

(r2 + R2)2 −
h̵2

2m
C

r2(r2 + R2)
(r ⩾ rs) (5.1)

may be used to model a long-range polarization interaction between a charged particle and an atom. On the other hand, with n = 6 one obtains
the potential function

V(r) = −
h̵2

2m
Br2

(r4 + R4)2 −
h̵2

2m
C

r2(r4 + R4)
(r ⩾ rs), (5.2)

which may imitate the van der Waals attraction between two atoms.
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