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The paper presents a new analytical approach to modelling the curvature of a communication route by making use of differential
equations. The method makes it possible to identify both linear and nonlinear curvature. It enables us to join curves of the same
or opposite signs of curvature. Solutions of problems for linear change of curvature and selected variants of nonlinear curvature
in polynomial and trigonometric form were analyzed. A comparison of determined horizontal transition curves was made and
examples of negotiating these curves into a geometric system were given.

1. Introduction

A rapid progress in computer calculation technique algo-
rithms based on current knowledge and inspired by further
prospecting is also taken into account in the field of geometri-
cal shaping of communication routes. In the sphere of shaping
the communication routes, vehicular roads and railway lines,
the development of satellite measuring technique GNSS [1, 2]
also plays a crucial role. A particular significance here will be
attached to the question of vehicular dynamics.Therefore the
modelling of curvature will obtain a key role.

This subject also includes the design of elements of the
route of diversified curvature [3].The elaboration of amethod
for a precise determination of the coordinate route points
seems to be the most appropriate area of action. To perform
this activity use is made of tools necessary to provide ana-
lytical solutions, that is, the most advantageous for practical
application. The junction of elements of a vehicular route or
railway line of diversified curvature should ensure a continu-
ous change of the unbalanced side acceleration, in an advan-
tageous way for interaction dynamics within the road-vehicle
system. This is strictly connected with the proper shaping of
the curvature.

Themost developed investigation branch concerning this
problem has been for years the study of transition curves
connecting straight lengths of route with circular arcs. The
problem of transition curves is related to vehicular roads and

railway routes. However, it is easy to note that there is a
distinct disproportion in taking interest in this problem. A
search for new solutions is going on this sphere on vehicular
roads (e.g., [4–12]). As regards the railway lines, the situation
is entirely different. Publications on new transition curves are
relatively rare and in the majority were published long ago
(e.g., [13–17]).

The application of transition curves is aimed at ensuring a
continuous change of the unbalanced side acceleration bet-
ween intervals of motor road (or railway route) of diversi-
fied curvature in an advantageous way for the interaction
dynamicswithin the road-vehicle system. Such a requirement
relates to all sorts of transition curves. Under this situation it
might appear that there is one particular algorithm to create
them, common to all the analyzed curves. In fact most of the
solutions that have been known so far appear independently
and bear various names (sometimes coming from the name
of their author). A general knowledge of the determination of
transition curves equations would make it possible to com-
pare various forms of curves with each other and to make an
assessment of their practical application.

Twenty years ago this issue had already been sufficiently
explained with respect mainly to railway routes [16]. Atten-
tion was then concentrated on working out a technique of
identification of unbalanced accelerations occurring on vari-
ous types of transition curves. It was based on a comparative
analysis of some selected transition curves with the use of
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a dynamicmodel. In themethod accelerationwas a factor that
excited the transverse vibrations of the carriage [18].Themain
conclusion resulting from the considerations was to prove
the relation existing between the response of the system and
the class of the excitation function.The dynamic interactions
were smaller (i.e., more advantageous) if the class of the
function was higher. It turned out that evidently the largest
acceleration values were noted on the cubical parabola (class
of function C0). With respect to Bloss curve and a cosine
curve (class C1) they are significantly smaller, whereas on
sine curve (class C2) they are the smallest.

After years the mentioned identification method of
unbalanced accelerations [16] provided a source of inspira-
tion for the elaboration of a new technique for modelling the
geometric system of the communication route based on join-
ing two points of the route with diversified curvature.

2. Analytical Method of
Modelling the Curvature

Ameasure of the route bending is the ratio of the angle which
determines the direction of the vehicle’s longitudinal axis after
covering a certain arc (Figure 1). The curvature of curve 𝐾 at
point𝑀 is called the boundary which is aimed at by the rela-
tion of acute angle ΔΘ between tangents to curve𝐾 at points
𝑀 and𝑀

1
, to the length of arc Δ𝑙when point𝑀

1
tends along

curve 𝐾 to point 𝑀

𝑘 = lim
Δ𝑙→0



ΔΘ

Δ𝑙


=

𝑑Θ

𝑑𝑙
. (1)

If the operation procedure by the use of rectangular coor-
dinates 𝑥, 𝑦 is to be continued, it is necessary to take into con-
sideration the sign of the curvature. As illustrated in Figure 1
angle ΔΘ = Θ

1
− Θ > 0; the curvature is assumed here that

it has a positive value which, as can be seen, accompanies the
curves with downward convexities. A negative value of cur-
vature corresponds to angle ΔΘ < 0 and appears on curves
of an upward convexity.

Making a generalization of the identification method
applied to unbalanced accelerations occurring on various
types of transition curves [16], it is possible to search for cur-
vature function 𝑘(𝑙) among the solutions of the differential
equation

𝑘
(𝑚)

(𝑙) = 𝑓 [𝑙, 𝑘, 𝑘

, . . . , 𝑘

(𝑚−1)
] , (2)

with conditions for the transition curve at the outset (for 𝑙 =

0) and at the end (for 𝑙 = 𝑙
𝑘
)

𝑘
(𝑖)

(0
+
) = {

𝑘
1

for 𝑖 = 0

0 for 𝑖 = 1, 2, . . . , 𝑛
1
,

𝑘
(𝑗)

(𝑙
−

𝑘
) = {

𝑘
2

for 𝑗 = 0

0 for 𝑗 = 1, 2, . . . , 𝑛
2
,

(3)

where 𝑘
1
and 𝑘

2
indicate the curvature magnitudes on both

ends of the curve (taking note of an adequate sign).The order
of the differential equation (2) is 𝑚 = 𝑛

1
+ 𝑛
2

+ 2, and

Δx

Δy

x

y

M

K
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Figure 1: Schematic diagram for the explanation of the notion of
curvature.

the obtained function 𝑘(𝑙) is of class C𝑛 in the range ⟨0, 𝑙
𝑘
⟩,

where 𝑛 = min(𝑛
1
, 𝑛
2
).

The application of themethodunder considerationmakes
it possible to combine various geometric elements, for exam-
ple, a straightwith a circular arc, and also, after introducing an
adequate sign of curvature, two circular arcs of a consistent
run or converse arcs.

On determining the curvature function 𝑘(𝑙) a fundamen-
tal task is to find the coordinates that correspond to a curve in
the rectangular coordinate system 𝑥, 𝑦. A solution for such a
system is required by the satellite measuring technique GNSS
[19–21], which becomes an aid in the determination of the
coordinate points in a uniform, 3D-system of coordinates
WGS 84 (the world geodetic system 1984). Next themeasured
ellipsoidal coordinates (GPS) are transformed to Gauss-
Kruger (𝑋, 𝑌) conformal coordinates [22]. An assumption is
made that the beginning of system𝑥,𝑦 is at the terminal point
of the input curve (with curvature 𝑘

1
), while the axis of

abscissae is tangent to this curve at this point.
The equation of the sought after connection can be

written in parametric form

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙,

𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙.

(4)

Parameter 𝑙 is the position of a given point along the
curve length. FunctionΘ(𝑙) is determined on the basis of the
formula

Θ (𝑙) = ∫ 𝑘 (𝑙) 𝑑𝑙. (5)

The presented method of modelling the curvature has a
universal character. It can be applied to both vehicular roads
and railway routes. In the case of railway routes there arises an
additional possibility, for modelling in a similar way, the
superelevation ramp, understood here as a determined differ-
ence of heights of the rail.The principle of operation is similar
to curvaturemodelling.The only differences are that 𝑘

1
has to

be replaced by the value of superelevation ℎ
1
at the beginning

of the superelevation ramp and 𝑘
2
has to be replaced by the

value of superelevation ℎ
2
at the end of the superelevation
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ramp. The ramp length, of course, corresponds to the length
of the transition curve.Using the sameprocedure it is possible
to find the unbalanced acceleration 𝑎(𝑙).

3. Transition Curve of Linear Curvature

3.1. Finding Out the Curvature Equation. Linear change of
curvature along a defined length 𝑙

𝑘
is obtained by assuming

two principal conditions

𝑘 (0
+
) = 𝑘
1
,

𝑘 (𝑙
−

𝑘
) = 𝑘
2
,

(6)

and a differential equation

𝑘

(𝑙) = 0. (7)

After the determination of constants the solution of the
differential problem (6), (7) is as follows:

𝑘 (𝑙) = 𝑘
1
+

1

𝑙
𝑘

(𝑘
2
− 𝑘
1
) 𝑙. (8)

Function Θ(𝑙) is obtained from formula (5). In the case
under consideration

Θ (𝑙) = 𝑘
1
𝑙 +

1

2𝑙
𝑘

(𝑘
2
− 𝑘
1
) 𝑙
2
. (9)

3.2. The Determination of the Transition Curve Length (for
Railway Lines). With regard to rail tracks the transition curve
must satisfy two kinematic conditions

𝜓max ≤ 𝜓dop (10)

𝑓max ≤ 𝑓dop, (11)

where 𝜓max is the maximum value of acceleration increment
on transition curve inm/s3,𝜓dop is permissible value of accel-
eration increment in m/s3, 𝑓max is the maximum speed of
lifting the wheel on superelevation ramp in mm/s, and 𝑓dop is
permissible value of speed of lifting the wheel in mm/s.

The unbalanced acceleration 𝑎(𝑙) occurring on the tran-
sition curve results from speed V of the train, magnitude of
curvature, and ordinates of the superelevation ramp; its
course is similar to 𝑘(𝑙) and ℎ(𝑙). Analogously with (8)

𝑎 (𝑙) = 𝑎
1
+

1

𝑙
𝑘

(𝑎
2
− 𝑎
1
) 𝑙, (12)

where 𝑎
1
and 𝑎

2
are accelerations at ends of the transition

curve

𝑎
1
=

V2

rad
𝑘
1
− 𝑔

ℎ
1

𝑠
, 𝑎

2
=

V2

rad
𝑘
2
− 𝑔

ℎ
2

𝑠

(13)

(ℎ
1
and ℎ

2
are ordinates of the superelevation ramp at its

ends).
On the assumption that the speed of the train V = const.,

the formula for acceleration increment 𝜓(𝑙) is as follows:

𝜓 (𝑙) = V
𝑑

𝑑𝑙
𝑎 (𝑙) =

V
𝑙
𝑘

(𝑎
2
− 𝑎
1
) . (14)

As can be seen the acceleration increment is here a con-
stant value. However, from condition (10) it follows that

𝑙
𝜓

𝑘
≥

V
𝜓dop

𝑎2 − 𝑎
1

 . (15)

The superelevation ramp equation in the case under con-
sideration is similar to (8) and (12)

ℎ (𝑙) = ℎ
1
+

1

𝑙
𝑘

(ℎ
2
− ℎ
1
) 𝑙. (16)

The speed of lifting the wheel 𝑓(𝑙) on the superelevation
ramp (assuming that the travelling speed of the train V =
const.) is determined by the equation

𝑓 (𝑙) = V
𝑑

𝑑𝑙
ℎ (𝑙) =

V
𝑙
𝑘

(ℎ
2
− ℎ
1
) . (17)

Thus, also𝑓(𝑙) is here a constant value, but fromcondition
(11) it follows that

𝑙
𝑓

𝑘
≥

V
𝑓dop

ℎ2 − ℎ
1

 . (18)

The assumed length of the transition curvemust fulfill the
condition

𝑙
𝑘
≥ max (𝑙

𝜓

𝑘
, 𝑙
𝑓

𝑘
) . (19)

3.3. Coordinates of Transition Curve Connecting Uniform Cur-
vatures. The determination of 𝑥(𝑙) and 𝑦(𝑙) by using (4) will
need the expansion of integrands intoMaclaurin series. After
completing the whole procedure the following parametric
equations are obtained:

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙

= 𝑙 −
𝑘
2

1

6
𝑙
3
−

𝑘
1

8𝑙
𝑘

(𝑘
2
− 𝑘
1
) 𝑙
4

+ [
𝑘
4

1

120
−

1

40𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
5
+

𝑘
3

1

72𝑙
𝑘

(𝑘
2
− 𝑘
1
) 𝑙
6

− [
𝑘
6

1

5040
−

𝑘
2

1

112𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
7

− [
𝑘
5

1

1920𝑙
𝑘

(𝑘
2
− 𝑘
1
) −

𝑘
1

384𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)
3
] 𝑙
8

+ [
𝑘
8

1

362880
−

𝑘
4

1

1728𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2

+
1

3456𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)
4
] 𝑙
9
⋅ ⋅ ⋅
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𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙

=
𝑘
1

2
𝑙
2
+

1

6𝑙
𝑘

(𝑘
2
− 𝑘
1
) 𝑙
3
−

𝑘
3

1

24
𝑙
4
−

𝑘
2

1

20𝑙
𝑘

(𝑘
2
− 𝑘
1
) 𝑙
5

+ [
𝑘
5

1

720
−

𝑘
1

48𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
6

+ [
𝑘
4

1

336𝑙
𝑘

(𝑘
2
− 𝑘
1
) −

1

336𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)
3
] 𝑙
7

− [
𝑘
7

1

40320
−

𝑘
3

1

384𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
8

− [
𝑘
6

1

12960𝑙
𝑘

(𝑘
2
− 𝑘
1
) −

𝑘
2

1

864𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)
3
] 𝑙
9
+ ⋅ ⋅ ⋅ .

(20)

Equations (20) for 𝑘
1
= 0 describe the curve in the form

of clothoid used to connect a straight with a circular arc.

3.4. Coordinates of Transition Curve Connecting Inverse Cur-
vatures. At inverse arcs (i.e., with diversified curvature signs)
there arises the problem related to the determined coordi-
nates 𝑥(𝑙) and 𝑦(𝑙), due to the course of function Θ(𝑙). For
sign 𝑘

1
= sign 𝑘

2
function Θ(𝑙) is a monotonic function,

whereas for sign 𝑘
1

̸= sign 𝑘
2
in the diagram of function Θ(𝑙)

there appears an extremum at point 𝑙
0
, where

Θ

(𝑙
0
) = 𝑘 (𝑙

0
) = 𝑘
1
+ (𝑘
2
− 𝑘
1
)
𝑙
0

𝑙
𝑘

= 0. (21)

Values 𝑙
0
and Θ(𝑙

0
) follow from the relations:

𝑙
0
= −

𝑘
1

𝑘
2
− 𝑘
1

𝑙
𝑘

Θ(𝑙
0
) = −

𝑘
2

1

2 (𝑘
2
− 𝑘
1
)
𝑙
𝑘
.

(22)

Figure 2 illustrates a scheme of angle Θ(𝑙) for the con-
nection of inverse circular arcs of radii 𝑅

1
= 1200m and

𝑅
2
= 700m.The length of the transition curve 𝑙

𝑘
= 60m was

determined for speed value V = 90 km/h using the procedure
as described at Section 3.2 (the assumed superelevation
values were ℎ

1
= 20mm and ℎ

2
= 45mm).

In this situation the parametric equations of transition
curve (20) are effective for 𝑙 ∈ ⟨0, 𝑙

0
⟩; for 𝑙 ∈ (𝑙

0
, 𝑙
𝑘
⟩ functions

0

0.005

0.01

0.015

0 20 40 60 80
−0.005

−0.01

−0.015

−0.02

Q
(r
ad
)

l (m)

Figure 2: Diagram of angle Θ(𝑙) defined by (9) for circular
arcs connection of curvatures 𝑘

1
= 1/1200 rad/m and 𝑘

2
=

−1/700 rad/m by means of transition curve of length 𝑙
𝑘
= 60m.

cosΘ(𝑙) and sinΘ(𝑙) should be expanded to Taylor series.
After integration of the equations take the following form:

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙

= 𝑥 (𝑙
0
) + cos(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
) (𝑙 − 𝑙

0
)

− [
1

6𝑙
𝑘

(𝑘
2
− 𝑘
1
) sin(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
3

− [
1

40𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2 cos(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
5

+ [
1

336𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)
3 sin(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
7

+ ⋅ ⋅ ⋅

(23)

𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙

= 𝑦 (𝑙
0
) + sin(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
) (𝑙 − 𝑙

0
)

+ [
1

6𝑙
𝑘

(𝑘
2
− 𝑘
1
) cos(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
3

− [
1

40𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)
2 sin(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
5

− [
1

336𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)
3 cos(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
7

+ [
1

3456𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)
4 sin(−

1

2

𝑘
2

1

𝑘
2
− 𝑘
1

𝑙
𝑘
)] (𝑙 − 𝑙

0
)
9

+ ⋅ ⋅ ⋅ .

(24)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Mathematical Problems in Engineering 5

On completing the parametric equations (20) and (23)
along with (24) a correct solution of the task for the case
of diversified curvature signs is obtained (Figure 3). From a
practical point of view the determination of the magnitude of
the tangent slope angle at the end of the transition curve is
very important. It amounts to

Θ(𝑙
𝑘
) =

1

2
(𝑘
1
+ 𝑘
2
) 𝑙
𝑘
. (25)

A knowledge of Θ(𝑙
𝑘
) makes it possible to add the tran-

sition curve to the other one having curvature 𝑘
2
at its initial

point (satisfying the tangency condition of both the curves).

4. Transition Curve of Polynomial Curvature

From the point of view of vehicles’ dynamics, the transition
curve of linear change of curvature is not the most advan-
tageous solution [23]. A definitely better one is nonlinear
solution whose characteristics are interesting enough to be
comparedwith the Bezier curves preferable lately in literature
[4, 7].

The differential equation (2) allows to appoint an unlim-
ited number of curves with nonlinear curvature change. In
the case of geometric layout of communication routes it will
be appropriate to consider the transition curves of poly-
nomial and trigonometric curvature. In fact such forms of
curves are used in the standard ways to connect a straight line
with a circular arc.

4.1. Formulation of the Curvature Equation. To formulate the
curvature equation in the polynomial form, let us assume the
following boundary conditions:

𝑘 (0
+
) = 𝑘
1
, 𝑘 (𝑙

−

𝑘
) = 𝑘
2

𝑘

(0
+
) = 0, 𝑘


(𝑙
−

𝑘
) = 0

(26)

and the differential equation

𝑘
(4)

(𝑙) = 0. (27)

After solving the differential problem (26), (27) the
following formula for curvature 𝑘(𝑙) is obtained:

𝑘 (𝑙) = 𝑘
1
+

3

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
2
−

2

𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
3
. (28)

The form of function Θ(𝑙) determined on the basis of (5)
and (28) is as follows:

Θ (𝑙) = 𝑘
1
𝑙 +

1

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
3
−

1

2𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
4
. (29)

On rail routes the length of the transition curve is
determined like at Section 3.2 for solution of linear curvature.
The following conditions should be fulfilled here:

𝑙
𝜓

𝑘
≥

3

2

V
𝜓dop

𝑎2 − 𝑎
1

 ,

𝑙
𝑓

𝑘
≥

3

2

V
𝑓dop

ℎ2 − ℎ
1

 .

(30)

0

0.1

0.2

0.3

0.4

0 20 40 60 80
x (m)

y
(m

)

Figure 3: Diagram of horizontal ordinates 𝑦(𝑥) defined by (20),
(23), and (24) for the joint of circular arcs of curvatures 𝑘

1
=

1/1200 rad/m and 𝑘
2

= −1/700 rad/m with transition curve of
length 𝑙

𝑘
= 60m (using different horizontal and vertical scales).

The adopted length of the transition curve must satisfy
condition (19).

4.2. Coordinates of Transition Curve Connecting Uniform Cur-
vatures. On expanding functions cosΘ(𝑙) and sinΘ(𝑙) into
Maclaurin series and after integration, the following paramet-
ric equations are acquired:

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙

= 𝑙 −
𝑘
2

1

6
𝑙
3
+ [

𝑘
4

1

120
−

𝑘
1

5𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
5

+ [
𝑘
1

12𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
6

− [
𝑘
6

1

5040
−

𝑘
3

1

42𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) +

1

14𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
7

− [
𝑘
3

1

96𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) −

1

16𝑙
5

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
8

+ [
𝑘
8

1

362880
−

𝑘
5

1

1080𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) +

𝑘
2

1

36𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)
2

+
1

72𝑙
6

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
9
+ ⋅ ⋅ ⋅

𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙

=
𝑘
1

2
𝑙
2
− [

𝑘
3

1

24
−

1

4𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
4

−
1

10𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
5
+ [

𝑘
5

1

720
−

𝑘
2

1

12𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
6

+
𝑘
2

1

28𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
7
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Figure 4: Diagram of curvature 𝑘(𝑙) described by (28) for the
connection of circular arcs of curvatures 𝑘

1
= 1/1200 rad/m and

𝑘
2

= −1/700 rad/m with the use of transition curve of length 𝑙
𝑘

=

90m.

− [
𝑘
7

1

40320
−

𝑘
4

1

192𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) +

𝑘
1

16𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
8

+ [
𝑘
1

18𝑙
5

𝑘

(𝑘
2
− 𝑘
1
)
2
−

𝑘
4

1

432𝑙
3

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
9
+ ⋅ ⋅ ⋅ .

(31)

Equations (31) for 𝑘
1

= 0 describe the so-called Bloss
curve which can be used to join a straight to a circular arc.

4.3. Coordinates of Transition Curve Connecting Inverse Cur-
vatures. When the arcs are inverse (i.e., the curvature signs
are different, Figure 4) there occurs a problem relating to the
determined coordinates 𝑥(𝑙) and 𝑦(𝑙) which results from
function Θ(𝑙). For sign 𝑘

1
= sign 𝑘

2
function Θ(𝑙) is a mono-

tonic function, while for sign 𝑘
1

̸= sign 𝑘
2
in the diagram of

function Θ(𝑙) there appears extremum at point 𝑙
0
, where

Θ

(𝑙
0
) = 𝑘 (𝑙

0
) = 𝑘
1
+

3

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
2

0
−

2

𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
3

0
= 0.

(32)

Parametric equations of transition curve (31) are valid for
𝑙 ∈ ⟨0, 𝑙

0
⟩.The determination of value 𝑙

0
makes it necessary to

solve (32) which is cubic. The sought-after value 𝑙
0

∈ ⟨0, 𝑙
𝑘
⟩,

satisfying conditions of the problem is defined by the formula

𝑙
0
= [

1

2
− cos(

𝜑

3
+

𝜋

3
)] 𝑙
𝑘
, (33)

where angle 𝜑 follows from the relation

cos𝜑 =
𝑘
1
+ 𝑘
2

𝑘
2
− 𝑘
1

. (34)

Under such circumstances in order to determine para-
metric equations of the transition curve for 𝑙 ∈ (𝑙

0
, 𝑙
𝑘
⟩, func-

tions cosΘ(𝑙) and sinΘ(𝑙) should be expanded into Taylor

series; after integration the following parametric equations of
the transition curve are obtained:

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙

= 𝑥 (𝑙
0
) + cosΘ(𝑙

0
) (𝑙 − 𝑙

0
)

−
1

6
sinΘ(𝑙

0
)Θ

(𝑙
0
) (𝑙 − 𝑙

0
)
3

−
1

24
sinΘ(𝑙

0
)Θ


(𝑙
0
) (𝑙 − 𝑙

0
)
4

− {
1

40
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

+
1

120
sinΘ(𝑙

0
)Θ
(4)

(𝑙
0
)} (𝑙 − 𝑙

0
)
5

−
1

72
cosΘ(𝑙

0
)Θ

(𝑙
0
)Θ


(𝑙
0
) (𝑙 − 𝑙

0
)
6

+ {
1

336
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
3

−
1

336
cosΘ(𝑙

0
)Θ

(𝑙
0
)Θ
(4)

(𝑙
0
)

−
1

504
cosΘ(𝑙

0
) [Θ


(𝑙
0
)]
2

} (𝑙 − 𝑙
0
)
7

+ {
1

384
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ


(𝑙
0
)

−
1

1152
cosΘ(𝑙

0
)Θ


(𝑙
0
)Θ
(4)

(𝑙
0
)} (𝑙 − 𝑙

0
)
8

+ {
1

3456
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
4

+
1

1296
sinΘ(𝑙

0
)Θ

(𝑙
0
) [Θ


(𝑙
0
)]
2

+
1

1728
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ
(4)

(𝑙
0
)

−
1

10368
cosΘ(𝑙

0
) [Θ
(4)

(𝑙
0
)]
2

} (𝑙 − 𝑙
0
)
9
+ ⋅ ⋅ ⋅

𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙

= 𝑦 (𝑙
0
) + sinΘ(𝑙

0
) (𝑙 − 𝑙

0
)

+
1

6
[cosΘ(𝑙

0
)Θ

(𝑙
0
)] (𝑙 − 𝑙

0
)
3

+
1

24
[cosΘ(𝑙

0
)Θ


(𝑙
0
)] (𝑙 − 𝑙

0
)
4

− {
1

40
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

−
1

120
cosΘ(𝑙

0
)Θ
(4)

(𝑙
0
)} (𝑙 − 𝑙

0
)
5

−
1

72
[sinΘ(𝑙

0
)Θ

(𝑙
0
)Θ


(𝑙
0
)] (𝑙 − 𝑙

0
)
6
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− {
1

336
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
3

+
1

336
sinΘ(𝑙

0
)Θ

(𝑙
0
)Θ
(4)

(𝑙
0
)

+
1

504
sinΘ(𝑙

0
) [Θ


(𝑙
0
)]
2

} (𝑙 − 𝑙
0
)
7

− {
1

384
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ


(𝑙
0
)

+
1

1152
sinΘ(𝑙

0
)Θ


(𝑙
0
)Θ
(4)

(𝑙
0
)} (𝑙 − 𝑙

0
)
8

+ {
1

3456
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
4

−
1

1296
cosΘ(𝑙

0
)Θ

(𝑙
0
) [Θ


(𝑙
0
)]
2

−
1

1728
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ
(4)

(𝑙
0
)

−
1

10368
sinΘ(𝑙

0
) [Θ
(4)

(𝑙
0
)]
2

} (𝑙 − 𝑙
0
)
9
+ ⋅ ⋅ ⋅ ,

(35)

where

Θ(𝑙
0
) = 𝑘
1
𝑙
0
+

1

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
3

0
−

1

2𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
4

0

Θ

(𝑙
0
) =

6

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
0
−

6

𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
2

0

Θ


(𝑙
0
) =

6

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
) −

12

𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) 𝑙
0

Θ
(4)

(𝑙
0
) = −

12

𝑙
3

𝑘

(𝑘
2
− 𝑘
1
) .

(36)

Making use of parametric equations (31) and also (35) one
can obtain a correct solution of the problem with diversified
signs of curvature.

Value of the tangent slope at the end of the transition
curvemakes it possible to connect to it a curve of curvature 𝑘

2

satisfying simultaneously the tangency condition of both the
curves. The above value is the same as in the case of linear
curvature. It is defined by (25).

5. Transition Curve of Curvature in
Trigonometric Form

5.1. Formulation of Curvature Equation. As before boundary
conditions (26) and another differential equation are
assumed.

𝑘
(4)

(𝑙) +
𝜋
2

𝑙
2

𝑘

𝑘

(𝑙) = 0. (37)

As soon as the differential problem (26), (37) has been
solved, a formula for curvature, is obtained

𝑘 (𝑙) =
1

2
(𝑘
1
+ 𝑘
2
) −

1

2
(𝑘
2
− 𝑘
1
) cos 𝜋

𝑙
𝑘

𝑙. (38)

The form of function Θ(𝑙) determined by the use of (5)
and (38) is as follows:

Θ (𝑙) =
1

2
(𝑘
1
+ 𝑘
2
) 𝑙 −

1

2
(𝑘
2
− 𝑘
1
)
𝑙
𝑘

𝜋
sin 𝜋

𝑙
𝑘

𝑙. (39)

The length of the transition curve on railway routes
follows from conditions:

𝑙
𝜓

𝑘
≥

𝜋

2

V
𝜓dop

𝑎2 − 𝑎
1

 ,

𝑙
𝑓

𝑘
≥

𝜋

2

V
𝑓dop

ℎ2 − ℎ
1

 .

(40)

The assumed length of the curve must satisfy the condi-
tion (19).

5.2. Ordinates of Transition Curve Connecting UniformCurva-
tures. After the expansion of functions cosΘ(𝑙) and sinΘ(𝑙)

intoMaclaurin series to be next integrated the following para-
metric equations are obtained:

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙

= 𝑙 −
𝑘
2

1

6
𝑙
3
+ [

𝑘
4

1

120
−

1

60

𝜋
2

𝑙
2

𝑘

𝑘
1
(𝑘
2
− 𝑘
1
)] 𝑙
5

− [
𝑘
6

1

5040
−

1

504

𝜋
2

𝑙
2

𝑘

𝑘
3

1
(𝑘
2
− 𝑘
1
)

−
1

1680

𝜋
4

𝑙
4

𝑘

𝑘
1
(𝑘
2
− 𝑘
1
) −

1

2016

𝜋
4

𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
7

+ [
𝑘
8

1

362880
−

1

12960

𝜋
2

𝑙
2

𝑘

𝑘
5

1
(𝑘
2
− 𝑘
1
)

−
1

5184

𝜋
4

𝑙
4

𝑘

𝑘
2

1
(𝑘
2
− 𝑘
1
)
2

−
1

12960

𝜋
4

𝑙
4

𝑘

𝑘
3

1
(𝑘
2
− 𝑘
1
) −

1

90720

𝜋
6

𝑙
6

𝑘

𝑘
1
(𝑘
2
− 𝑘
1
)

+
1

25920

𝜋
6

𝑙
6

𝑘

(𝑘
2
− 𝑘
1
)
2
] 𝑙
9
+ ⋅ ⋅ ⋅

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 Mathematical Problems in Engineering

𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙

=
1

2
𝑘
1
𝑙
2
− [

1

24
𝑘
3

1
−

1

48

𝜋
2

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
4

+ [
1

720
𝑘
5

1
−

1

144
𝑘
2

1

𝜋
2

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)

−
1

1440

𝜋
4

𝑙
4

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
6

− [
1

40320
𝑘
7

1
−

1

2304
𝑘
4

1

𝜋
2

𝑙
2

𝑘

(𝑘
2
− 𝑘
1
)

+
1

2304

𝜋
4

𝑙
4

𝑘

𝑘
1
(𝑘
2
− 𝑘
1
)
2
−

1

3840

𝜋
4

𝑙
4

𝑘

𝑘
2

1
(𝑘
2
− 𝑘
1
)

+
1

80640

𝜋
6

𝑙
6

𝑘

(𝑘
2
− 𝑘
1
)] 𝑙
8
+ ⋅ ⋅ ⋅ .

(41)

Equations (41) for 𝑘
1

= 0 describe the curve known as
cosinusoid which can be used to connect a straight with a
circular arc.

5.3. Transition Curve Coordinates Connecting Inverse Curva-
tures. Near inverse arcs in the diagram of functionΘ(𝑙) there
appears the extremum at point 𝑙

0
, where

Θ

(𝑙
0
) = 𝑘 (𝑙

0
) =

1

2
(𝑘
1
+ 𝑘
2
) −

1

2
(𝑘
2
− 𝑘
1
) cos 𝜋

𝑙
𝑘

𝑙
0
= 0.

(42)

The transition curve parametric equations (41) are effec-
tive for 𝑙 ∈ ⟨0, 𝑙

0
⟩. To determine value 𝑙

0
one must solve (42).

The equation can be written in the form

cos 𝜋

𝑙
𝑘

𝑙
0
=

𝑘
1
+ 𝑘
2

𝑘
2
− 𝑘
1

. (43)

It is easy to prove that for sign 𝑘
1

̸= sign 𝑘
2
it is necessary

to satisfy the condition |𝑘
1
+𝑘
2
| < |𝑘
2
−𝑘
1
|, thus |(𝑘

1
+𝑘
2
)/(𝑘
2
−

𝑘
1
)| < 1. The formula for length 𝑙

0
is as follows:

𝑙
0
=

1

𝜋
(arccos𝑘1 + 𝑘

2

𝑘
2
− 𝑘
1

) 𝑙
𝑘
. (44)

For 𝑙 ∈ (𝑙
0
, 𝑙
𝑘
⟩ functions cosΘ(𝑙) and sinΘ(𝑙) should

be expanded into Taylor series. The integration provides the
following equations:

𝑥 (𝑙) = ∫ cosΘ (𝑙) 𝑑𝑙

= 𝑥 (𝑙
0
) + cosΘ(𝑙

0
) (𝑙 − 𝑙

0
)

−
1

6
sinΘ(𝑙

0
)Θ

(𝑙
0
) (𝑙 − 𝑙

0
)
3

−
1

24
sinΘ(𝑙

0
)Θ


(𝑙
0
) ⋅ (𝑙 − 𝑙

0
)
4

− {
1

40
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

+
1

120
sinΘ(𝑙

0
)Θ
(4)

(𝑙
0
)} (𝑙 − 𝑙

0
)
5

− {
1

72
cosΘ(𝑙

0
)Θ

(𝑙
0
)Θ


(𝑙
0
)

+
1

720
sinΘ(𝑙

0
)Θ
(5)

(𝑙
0
)} (𝑙 − 𝑙

0
)
6

+ {
1

336
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
3

−
1

336
cosΘ(𝑙

0
)Θ

(𝑙
0
)Θ
(4)

(𝑙
0
)

−
1

504
cosΘ(𝑙

0
) [Θ


(𝑙
0
)]
2

−
1

5040
sinΘ(𝑙

0
)Θ
(6)

(𝑙
0
)} (𝑙 − 𝑙

0
)
7

+ {
1

384
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ


(𝑙
0
)

−
1

1920
cosΘ(𝑙

0
)Θ

(𝑙) Θ
(5)

(𝑙)

−
1

1152
cosΘ(𝑙

0
)Θ


(𝑙
0
)Θ
(4)

(𝑙
0
)

−
1

40320
sinΘ(𝑙

0
)Θ
(7)

(𝑙
0
)} (𝑙 − 𝑙

0
)
8

+ {
1

3456
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
4

+
1

1296
sinΘ(𝑙

0
)Θ

(𝑙
0
) [Θ


(𝑙
0
)]
2

+
1

1728
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ
(4)

(𝑙
0
)

−
1

12960
cosΘ(𝑙

0
)Θ

(𝑙
0
)Θ
(6)

(𝑙
0
)

−
1

6480
cosΘ(𝑙

0
)Θ


(𝑙
0
)Θ
(5)

(𝑙
0
)

−
1

10368
cosΘ(𝑙

0
) [Θ
(4)

(𝑙
0
)]
2

−
1

362880
sinΘ(𝑙

0
)Θ
(8)

(𝑙
0
)} (𝑙 − 𝑙

0
)
9
+ ⋅ ⋅ ⋅
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𝑦 (𝑙) = ∫ sinΘ (𝑙) 𝑑𝑙

= 𝑦 (𝑙
0
) + sinΘ(𝑙

0
) (𝑙 − 𝑙

0
)

+
1

6
cosΘ(𝑙

0
)Θ

(𝑙
0
) (𝑙 − 𝑙

0
)
3

+
1

24
cosΘ(𝑙

0
)Θ


(𝑙
0
) ⋅ (𝑙 − 𝑙

0
)
4

− {
1

40
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

−
1

120
cosΘ(𝑙

0
)Θ
(4)

(𝑙
0
)} (𝑙 − 𝑙

0
)
5

− {
1

72
sinΘ(𝑙

0
) 𝑄

(𝑙
0
)Θ


(𝑙
0
)

−
1

720
cosΘ(𝑙

0
)Θ
(5)

(𝑙
0
)} (𝑙 − 𝑙

0
)
6

− {
1

336
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
3

+
1

336
sinΘ(𝑙

0
)Θ

(𝑙
0
)Θ
(4)

(𝑙
0
)

+
1

504
sinΘ(𝑙

0
) [Θ


(𝑙
0
)]
2

−
1

5040
cosΘ(𝑙

0
)Θ
(6)

(𝑙
0
)} (𝑙 − 𝑙

0
)
7

− {
1

384
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ


(𝑙
0
)

+
1

1920
sinΘ(𝑙

0
)Θ

(𝑙
0
)Θ
(5)

(𝑙
0
)

+
1

1152
sinΘ(𝑙

0
)Θ


(𝑙
0
)Θ
(4)

(𝑙
0
)

−
1

40320
cosΘ(𝑙

0
)Θ
(7)

(𝑙
0
)} (𝑙 − 𝑙

0
)
8

+ {
1

3456
sinΘ(𝑙

0
) [Θ

(𝑙
0
)]
4

−
1

1296
cosΘ(𝑙

0
)Θ

(𝑙
0
) [Θ


(𝑙
0
)]
2

−
1

1728
cosΘ(𝑙

0
) [Θ

(𝑙
0
)]
2

Θ
(4)

(𝑙
0
)

−
1

12960
sin𝑄 (𝑙

0
) 𝑄

(𝑙
0
) 𝑄
(6)

(𝑙
0
)

−
1

6480
sin𝑄 (𝑙

0
) 𝑄


(𝑙
0
) 𝑄
(5)

(𝑙
0
)

−
1

10368
sinΘ(𝑙

0
) [Θ
(4)

(𝑙
0
)]
2

+
1

362880
cosΘ(𝑙

0
)Θ
(8)

(𝑙
0
)} (𝑙 − 𝑙

0
)
9
+ ⋅ ⋅ ⋅ ,

(45)

where

Θ(𝑙
0
) =

1

2
(𝑘
1
+ 𝑘
2
) 𝑙
0
±

𝑙
𝑘

𝜋
√−𝑘
1
𝑘
2

Θ

(𝑙
0
) = ∓

𝜋

𝑙
𝑘

√−𝑘
1
𝑘
2

Θ

(𝑙
0
) = ∓

𝜋

𝑙
𝑘

√−𝑘
1
𝑘
2

Θ


(𝑙
0
) =

1

2

𝜋
2

𝑙
2

𝑘

(𝑘
1
+ 𝑘
2
)

Θ
(4)

(𝑙
0
) = ±

𝜋
3

𝑙
3

𝑘

√−𝑘
1
𝑘
2

Θ
(5)

(𝑙
0
) = −

1

2

𝜋
4

𝑙
4

𝑘

(𝑘
1
+ 𝑘
2
)

Θ
(6)

(𝑙
0
) = ∓

𝜋
5

𝑙
5

𝑘

√−𝑘
1
𝑘
2

Θ
(7)

(𝑙
0
) =

1

2

𝜋
6

𝑙
6

𝑘

(𝑘
1
+ 𝑘
2
)

Θ
(8)

(𝑙
0
) = ±

𝜋
7

𝑙
7

𝑘

√−𝑘
1
𝑘
2
.

(46)

In expressions with double signs ± and ∓, the upper one
corresponds to the case 𝑘

1
> 0, 𝑘

2
< 0, while the lower one

refers to 𝑘
1
< 0, 𝑘

2
> 0.

The value of tangent slope at the end of the transition
curvemakes it possible to connect to it a curve of curvature 𝑘

2

satisfying the tangency condition of both the curves. The
value is the same as in the previous cases. It is determined
by (25).

6. Comparison of Horizontal Ordinates of
Determined Transition Curves

6.1. The Shaping of Horizontal Ordinates of Comparable
Curves. If the analysis is carried out for railway routes, then
the necessity of meeting kinematic conditions (10) and (11)
will require a diversification of the lengths of the compared
with each other curves (using the same speed of trains).
Moreover, it is necessary to individually consider cases of
connecting homogeneous curvatures (sign 𝑘

1
= sign 𝑘

2
) and

inverse arcs (sign 𝑘
1

̸= sign 𝑘
2
).

It is assumed that at joints of consistent arcs with radii
𝑅
1
= 1200m and 𝑅

2
= 700m an attempt is made to attain a

speed V = 110 km/h. Hence it is necessary to employ on arcs
superelevation of ℎ

1
= 80mmand ℎ

2
= 115mm, respectively.

The retention of the same kinematic parameters can provide
diversified lengths of the transition curve:

(i) for a curve of linear curvature 𝑙
𝑘
= 40m,

(ii) for a curve of polynomial curvature 𝑙
𝑘
= 60m,

(iii) for a curve of trigonometric curvature 𝑙
𝑘
= 62, 832m.
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The above length relations result directly from the equa-
tions given at Sections 3.2, 4.1, and 5.1.

Figure 5 gives diagrams of horizontal ordinates for com-
pared transition curves of positive and negative curvature
values. As seen the curvature ordinates of linear curvature
evidently deviate from the ordinates of other curves. In turn,
curves of polynomial and trigonometric curvature are in
principle consistent. A difference can only be noted in the
final area. And so, the class of the function describing the
curvature plays here a significant part: with respect to a curve
of linear curvature it is a function of class C0, while regarding
the other two curves it is a function of class C1.

At the joint of inverse arcs of radii 𝑅
1
= 1200m and 𝑅

2
=

700m an attempt is made to reach the speed of V = 90 km/h.
Hence it follows that it is necessary to apply superelevation
along arcs attaining ℎ

1
= 20mm and ℎ

2
= 45mm, respec-

tively. By the use the same kinematic parameters it is possible
to obtain the following lengths of the transition curve:

(i) for a curve of linear curvature 𝑙
𝑘
= 60m,

(ii) for a curve of polynomial curvature 𝑙
𝑘
= 90m,

(iii) for a curve of trigonometric curvature 𝑙
𝑘
= 94, 248m.

Figure 6 presents diagrams of horizontal ordinates of
compared transition curves for positive and negative values
of curvature.

As can be seen, like in the case of consistent arcs, the curve
ordinates of linear curvature deviate significantly from the
ordinates of the remaining curves, but the shape of these
curves also differs one from the other. The class of function
describing the curvature is still important. However, in the
range of the same class various geometric solutions are
possible.

6.2. Negotiation of Transition Curves in a Geometric System.
The transition curves do not appear alone in a geometric
system but must be connected with some arcs in the neigh-
borhood. If the input arc is circular, then its equation is as
follows:

(i) for 𝑘
1
> 0

𝑦 (𝑥) = 𝑅
1
− √𝑅
2

1
− 𝑥2, (47)

(ii) for 𝑘
1
< 0

𝑦 (𝑥) = − (𝑅
1
− √𝑅
2

1
− 𝑥2) , (48)

where 𝑥 < 0.

However, if the output arc is also a circular arc, then it is
expressed in the following equation:

(i) for 𝑘
2
> 0

𝑦 (𝑥) = 𝑦
𝑆
− √𝑅
2

2
− (𝑥
𝑆
− 𝑥)
2

𝑥
𝑆
= 𝑥
𝐾

−
𝑠
𝐾

√1 + 𝑠
2

𝐾

𝑅
2
, 𝑦

𝑆
= 𝑦
𝐾

+
1

√1 + 𝑠
2

𝐾

𝑅
2
,

(49)
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Figure 5: Diagrams of horizontal ordinates of curves joining
consistent arcs for positive and negative values of curvature (using
different horizontal and vertical scales): curve of linear curvature:
line in violet colour, curve of polynomial curvature in green colour,
and curve of trigonometric curvature in red colour.
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Figure 6: Diagrams of horizontal ordinates of curves connecting
inverse arcs for positive and negative values of curvature (using
different horizontal and vertical scales): the curve of linear curvature
is in violet color, the curve of polynomial curvature is in green color,
and the curve of trigonometric curvature is in red color.

(ii) for 𝑘
2
< 0

𝑦 (𝑥) = 𝑦
𝑆
+ √𝑅
2

2
− (𝑥
𝑆
− 𝑥)
2

𝑥
𝑆
= 𝑥
𝐾

+
𝑠
𝐾

√1 + 𝑠
2

𝐾

𝑅
2
, 𝑦

𝑆
= 𝑦
𝐾

−
1

√1 + 𝑠
2

𝐾

𝑅
2
,

(50)

where 𝑥 > 𝑥
𝐾
.

In (49) and (50) 𝑥
𝐾
denotes the abscissae of the transition

curve end,𝑦
𝐾
is the ordinate of the transition curve end,while

𝑠
𝐾
is the value of tangent at the end of the transition curve.

Values for numerical examples under consideration are given
in Table 1.

Figures 7 and 8 illustrate the geometric systems made up
of two circular arcs of consistent curvature, connected with
various types of transition curves. As seen the application of a
given type of transition curve leads to an adequate position of
the output circular arc.The position of this arc by the use of a
linear transition curve clearly deviates from such cases where
advantage is taken of curves with polynomial and trigono-
metrical curvature.With regard to the latter amutual position
of the circular arc varies insignificantly.
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Table 1: Comparison of values 𝑥
𝐾
, 𝑦
𝐾
, and 𝑠

𝐾
for numerical examples analyzed.

Curve 𝑙
𝑘
[m] Θ(𝑙

𝑘
) [rad] 𝑠

𝐾
𝑥
𝐾
[m] 𝑦

𝐾
[m]

Case 1: 𝑘
1
= 1/1200 rad/m and 𝑘

2
= 1/700 rad/m

Curve C0 40 0,045238 0,045269 39,988 0,825
Curve C1 (p) 60 0,067857 0,067961 59,963 1,821
Curve C1 (t) 62,832 0,071060 0,071180 62,796 1,940

Case 2: 𝑘
1
= 1/1200 rad/m and 𝑘

2
= −1/700 rad/m

Curve C0 60 −0,017857 −0,017859 59,999 0,143
Curve C1 (p) 90 −0,026786 −0,026792 89,991 0,627
Curve C1 (t) 94,248 −0,028050 −0,028057 94,238 0,714

Case 3: 𝑘
1
= −1/1200 rad/m and 𝑘

2
= 1/700 rad/m

Curve C0 60 0,01786 0,017859 59,999 −0,143
Curve C1 (p) 90 0,026786 0,026792 89,991 −0,627
Curve C1 (t) 94,248 0,028050 0,028057 94,238 −0,714

Case 4: 𝑘
1
= −1/1200 rad/m and 𝑘

2
= −1/700 rad/m

Curve C0 40 −0,045238 −0,045269 39,988 −0,825
Curve C1 (p) 60 −0,067857 −0,067961 59,969 −1,821
Curve C1 (t) 62,832 −0,071060 −0,071180 62,976 −1,940

0
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y
(m
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−40 −20

Figure 7: Examples of geometric systems consisting of two circular
arcs with consistent curvature (brown line) connected with different
transition curves, for positive values of curvature (using different
horizontal and vertical scales): curve of linear curvature in violet
line, curve of polynomial curvature in green, and curve of trigono-
metric curvature in red.
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Figure 8: Examples of geometric systems consisting of two circular
arcs with consistent curvature (brown line) connected with different
transition curves, for negative values of curvature (using different
horizontal and vertical scales): curve of linear curvature in violet
line, curve of polynomial curvature in green, and curve of trigono-
metric curvature in red.
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Figure 9: Examples of geometric systems consisting of two inverse
circular arcs (brown line), connected with different types of transi-
tion curves, for positive values of input curvature (using different
horizontal and vertical scales): curve of linear curvature in violet
line, curve of polynomial curvature in green, and curve of trigono-
metric curvature in red.

Figures 9 and 10 illustrate geometric systems made up of
two inverse circular arcs connected with various types of
transition curves.

Here the layout of the output circular arc is much more
diversified.The position of the arc obtained by the application
of the transition curve of linear curvature diverts by several
dozenmeters from situationswhere curves of polynomial and
trigonometric curvature have been used. The difference for
curves of polynomial and trigonometric curvature attains, in
the numerical example analyzed, an order of several meters.

The presented examples are taken, in the very nature of
things, at random. They reveal wide possibilities for the pre-
sented analytical method in modelling geometric systems. Its
application makes it possible to generate diversified layout of
the communication routes adapted to the field conditions and
other circumstances. Simultaneously the method ensures
correctness of the obtained solution in view of the kinematic
parameters magnitudes in force.
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Figure 10: Examples of geometric systems consisting of two
inverse circular arcs (brown line), connected with different types
of transition curves, for negative values of input curvature (using
different horizontal and vertical scales): curve of linear curvature
in violet line, curve of polynomial curvature in green, and curve of
trigonometric curvature in red.

7. Conclusions

The presented universal method of modelling geometrical
system of a communication route is based on the determina-
tion of an adequate curvature equation by using differential
equations.The technique enables us to design connections of
various geometrical elements of the route indicating diversifi-
cation in its curvature. It is characterized by an analytical way
of recording certain functions, and moreover it is possible to
specify in advance the class of these functions.

The sought-after connection is recorded in the form of
parametric equations 𝑥(𝑙) and 𝑦(𝑙), where parameter 𝑙 is
the position of a given point along the length of the curve.
The determination of 𝑥(𝑙) and 𝑦(𝑙) needs the expansion of
integrand functions into Maclaurin series and with regard to
inverse curvatures into Taylor series.

The determination of coordinates of an adequate tran-
sition curve in rectangular coordinate system 𝑥, 𝑦 makes
it possible for an easy transfer of it to Gauss-Kruger (𝑋, 𝑌)

conformal coordinates and its subsequent layout in field
making use of the satellite measuring technique GNSS.

The method can be applied to identify various types
of transition curves. The paper gives examples of solving
the problem involving linear change of curvature and the
curvature in polynomial and trigonometric form.

The performed comparative analysis reveals a wide range
of possibilities which are offered by the presented design
method. Its application enables us to generate diversified
layout of the route. It simultaneously ensures a complete
control of correctness of the obtained solutions in view of
satisfying the geometric and kinematic conditions.

The presented method of modelling curvature has a
universal character. It can be used for vehicular roads and
railway lines, as well. In the case of railway lines there
arises an additional possibility of modelling, in a similar way,
the superelevation ramp understood here as a determined
difference in the height of the rail courses.
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