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Abstract 

 
  In the present study, the buckling analysis of the rectangular nanoplate under biaxial non-uniform 
compression using the modified couple stress continuum theory with various boundary conditions has been 
considered. The simplified first order shear deformation theory (S-FSDT) has been employed and the 
governing differential equations have been obtained using the Hamilton’s principle. An analytical approach 
has been applied to obtain exact results from various boundary conditions. Due to the fact that there is not any 
research about the buckling of nanoplates based on the S-FSDT including the couple stress effect, the 
obtained results have been compared with the molecular dynamic simulation and FSDT papers which use the 
Eringen nonlocal elasticity theory. At the end, the results have been presented by making changes in some 
parameters such as the aspect ratio, the effect of various non-uniform loads and the length scale parameter. 
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1. Introduction 

   Graphene is a thin layer of pure carbon which contains a tightly packed layer of carbon atoms that are bonded 
together in a hexagonal honeycomb lattice [1]. Due to the ultrahigh strength of the graphene, its inclusions are 
effectively used in the enhancement of both strength and fracture toughness in composite materials [2]. For instance, 
in order to improve the fracture toughness of ceramic materials, several research groups fabricated nano composites 
consisting of ceramic matrixes and inclusions in the form of graphene platelets [2, 3]. Moreover, inclusions in the 
form of graphene sheets provide the enhancement of mechanical characteristics in the polymer-based nano 
composites [4]. For instance, partially oxygenated graphene sheets were dispersed in the polymer matrix, and 
mechanical characteristics of the resultant nano composites with various graphene contents were examined [5].  
    In the last several years, many research papers about mechanical behavior of graphene sheets have been 
presented [6-20]. Malekzadeh et al. [8] considered small scale effect on the thermal buckling of orthotropic arbitrary 
straight-sided quadrilateral nanoplates embedded in an elastic medium via the classical plate theory. Zenkour and 
Sobhy [9] analyzed the thermal buckling of a rectangular nano graphene sheet based on the Winkler-Pasternak 
foundation. The sine function and the sinusoidal plate theory were used to derive the equations. Murmu et al. [10] 
conducted the buckling analysis of bi-layer nano graphene in the nonlocal theory under biaxial compression via an 
analytical solution using the classical plate theory with linear strains. Besides, it was demonstrated that the nonlocal 
critical load was always less than the local critical load. Wang et al. [11] investigated the thermal buckling of a 
nanoscale plate via classical and Mindlin plate theories and by using the simply supported boundary condition. 
Malekzadeh and Alibeygi [12] analyzed the thermal buckling of an orthotropic single layer graphene sheet by using 
the nonlinear elastic foundation. The classical theory and the differential quadrature method along with the Winkler 
elastic foundation which was modeled with the nonlinear spring were used. The above -mentioned method serves as 
a bench mark for future research. Mohammadi et al. [13] studied the shear buckling of an orthotropic rectangular 
single layer nanoplate in the thermal environment by the classical plate theory. They showed that the difference 
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between the shear buckling load calculated by isotropic and orthotropic plates decreases by increasing the nonlocal 
parameter. Radic et al. [14] published a study on the mechanical buckling of a multi-layer rectangular graphene sheet 
based on an elastic foundation and found that the nonlocal effect had great influence on higher buckling modes. The 
exact solution for vibrations and the biaxial buckling of a multi-layer graphene sheet based on the Winkler elastic 
foundation were investigated by Murmu et al. [15]. The presented equations utilized the classical plate theory and 
proved that the critical temperature and natural frequencies were further affected by reducing the Winkler coefficient 
in high modes. Anjomshoa et al. [16] derived mechanical buckling equations of multi-layers of a rectangular 
graphene sheet placed on an elastic foundation using the classical plate theory and the finite element numerical 
method. Radebe and Adali [17] studied the buckling of rectangular nanoplates with uncertain orthotropic material 
properties using the non-local theory. They considered the nanoplate as a non-local plate to take the small-size effects 
into account along with the small-scale parameter which was also taken to be uncertain. They studied the effect of the 
small scale on natural frequencies. A new analytical solution for the buckling and vibration analysis of functionally 
graded sandwich beams using a quasi-3D shear deformation theory was presented by Nguyen et al. [18]. Golmakani 
and Rezatalab [19] conducted a study on the biaxial buckling of a single layer graphene plate by considering the 
elastic foundation and the non-uniform mechanical load. The results showed that by neglecting the elastic foundation, 
when the small scale effects were reduced, the critical load also decreased. Jamali et al. [20] presented the uniaxial 
buckling analysis comparison of a nanoplate and a nanocomposite plate with the central square cut out by using the 
domain decomposition method. They showed that the existence of a hole in the plate causes defects in the system and 
weakens the buckling behavior. The dynamic buckling of embedded laminated nanocomposite plates based on the 
sinusoidal shear deformation theory was studied by Zarei et al. [21]. Malikan et al. [22] published the buckling of a 
double-layered nanoplate under shear and thermal loads based on the elastic matrix using the differential quadrature 
method. They showed that the effect of the type of the shear loading on the nonlocal results was more than local 
results. Moreover, in the thermal buckling analysis, the most important results included the boundary conditions 
which had more flexibility and by increasing the dimension’s ratio, the results of the critical temperature were tightly 
close together in the nonlocal and local analysis. 
   The main aim of this study is to give a brief overview of new theoretical considering on nanosheets under the 
biaxial buckling. Regarding the first order shear deformation theory, we could not get the right value for the shear 
correction factor to consider the shear stress distribution in the thickness direction. Therefore, the simplified first 
order shear deformation theory (S-FSDT) that provides a welcome alternative to solve this problem has been 
investigated. In the following sections, the nonlinear strain of Von-Karman has been considered and also the material 
properties have been assumed as orthotropic. In addition, in order to study the length scale and due to presence of the 
variable nonlocal parameter, the modified couple stress effect has been employed because there is a difficulty with 
the Eringen nonlocal elasticity to consider nano materials behavior in deriving of governing equations while it is 
applied on the nonlocal stress resultants. Moreover, the exact solution has been used to solve the stability equations. 
Finally, the effects of different parameters such as changes in the length scale parameter, the aspect ratio and 
boundary effects of edges in various conditions under non-uniform in-plane loads have been demonstrated. 

2. Formulation 

   A rectangular nanoplate with thickness h, the length Lx, and the width Ly is considered (Fig.1). Of the many 
shear deformable plate theories proposed over the years, the FSDT is fundamentally simpler to adopt for modelling 
the shear deformation behavior of plates. Nowadays, the FSDT is widely in use because of its simplicity. It is 
obvious that in the plate analysis, shear deformation effects are significant not only for thick plates but even for thin 
plates [23]. Since the classical plate theory (CPT) does not take shear effects into the account, many theories have 
evolved to address the deficiency. According to the FSDT, the following displacement field can be expressed as: 

     , , , ,U x y z u x y z x y   (1a) 

     , , , ,V x y z v x y z x y   (1b) 

   , , ,W x y z w x y  (1c) 

where u, v and w are displacement components along x, y and z directions, respectively. Moreover,  and  are the 
rotational displacement along the y and x directions, respectively. In this theory, the shear stress in the thickness 
direction is a constant value which in fact is not true. In contrast, in the S-FSDT theory it is assumed that the 
transverse displacement (w) is divided into the bending component (wb) and the shear component (ws) [24] as 
follows: 

( ) ( )w w bending w shear   (2) 
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Fig.1. Schematic diagram of the rectangular nanoplate 

  Moreover, the rotation variable in the S-FSDT is expressed in terms of only the bending component as follows: 
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 By substituting Eqs. (2) and ( 3) into Eq. (1), the S-FSDT displacement field can be written as follows: 
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  In recent years, various size dependent continuum theories such as the couple stress theory, the modified couple 
stress theory, the strain gradient theory and the nonlocal elasticity theory have been proposed. These theories are 
comprised of information about the inter-atomic forces and internal lengths. Among these theories, the nonlocal 
elasticity theory of Eringen has been widely applied. It should be noted that unique results cannot be found in this 
theory because the variable nonlocal parameter has to be used. The classical couple stress theory is one of the higher 
order continuum theories which contains two additional material length scale parameters along with the classical 
constants for an elastic material as elaborated by Mindlin and Tieresten [25], Toupin [26], and Koiter [27]. In fact, 
the couple stress theory is a special case of the micro-polar theory proposed by Cosserat brothers [28]. Recently, a 
modified couple stress theory, which contains only one additional material length scale parameter in addition to the 
classical material constants, was proposed by Yang et al. [29]. The modified couple stress theory is more useful than 
the classical one due to the symmetric couple stress tensor. According to this higher-order continuum theory and 
using the Hamilton’s principle, the governing equations as well as the related boundary conditions along the edges of 
the rectangular nanoplate can be derived. The equations of the total potential energy (V) are expressed as follows: 

V U    (5) 

where U is the strain energy and Ω is the work done by external loads. The virtual strain energy can be calculated as 
follows: 

  0ij ij ij ij

v

U m dV       (6) 

where σij, εij, mij, χij are the stress tensor, the strain tensor, the deviatoric part of the couple stress tensor, and the 
symmetric curvature tensor, respectively [30-31]. 

kk ij= +2  ;ij ij     
1

2
ji k k

ij
j i i j

uu u u
= , i,j,k=1,2,3

x x x x


   
       

 (7) 
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22ij xy ijm G l   (8) 

1 1

2 2
ji

ij i ijk k,j
j i

= , i,j=1,2,3 ;  e U
x x

 
 

     
 (9) 

 
Where λ and μ are Lame constants, l is a material length scale parameter that is related to the size effect, and θ is the 
rotation vector. The tensors associated in the displacement field in Eqs. (7-9) are as follows: 
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By using the principle of minimum potential energy (δV=0), the nonlinear constitutive equations are derived as: 

x,x xy,y , ,
1 1 04 4xz xy yz yyN N Y Y     (12a) 

xy,x y,y , ,
1 1 04 4xz xx yz xyN N Y Y     (12b) 

2 2 2 2 2 2
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(12c) 
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(12d) 

 
Ni, Mi and Qi (i= x, y, xy) and Yij (i= x, y, xy) are the stress resultants and non-zero curvature resultants, respectively, 
as follows: 

 /2

/2
( , , ) , ,

h

x y xy x y xyh
N N N dz  


   (13a) 

 /2

/2
( , , ) , ,

h

x y xy x y xyh
M M M zdz  


   (13b) 

   /2
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Q Q dz 
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  (14) 

The governing equations (Eq. 12) for the rectangular nanoplate can be rewritten as follows: 
4 4 4 4
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The axial and flexural rigidities of the orthotropic nanoplate are given as follows: 
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(16) 

In Eq. (16), Aij, Bij and Dij are the extensional stiffness, the bending stiffness and the extension-bending coupling 
matrix, respectively. Moreover, Ex and Ey are the Young's elasticity modules, νxy and νyx are the Poisson's ratio and 
Gxy, Gxz and Gyz are the shear modules for orthotropic materials, respectively. The stress resultants in Eq. (13) in 
the displacement field by using Eq.16 are defined as follows: 
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The non-uniform in-plane forces in pre-buckling conditions are as follows: 
 
Parabolically varying in-plane load [32]: 
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 (18) 

 
Sinusoidal varying in-plane load [33]: 
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Linearly varying in-plane load [33-34]: 
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 (20) 

 Where in the above-mentioned linear load, η=0 (the uniform load), η=1 (the triangular load). Moreover, N0 is the 
critical in-plane load in buckling conditions. By inserting Eqs. (17) and (18-20) in Eq. (15), and also by considering 
the pre-buckling condition, the stability equations in the form of displacement components based on the S-FSDT 
including the couple stress effect are expressed as follows: 

2 2 2 2 2 2

55 1 22 2 2 2 2 2

4 4 4 4 4 4

2 2 2 2 4 4 4 4

44

1 1 1 1
5 3 0

2 4 2 2

s s b s b s
xx yy

b s b s b s
s

w w w w w w
k N k N

x y x x y y

w w w w w w
A

x y x y x x y y

H H
        

               
         

                      

 

 
4 4 4 2 2 2 2

1 24 2 2 4 2 2 2 211 1

4 4 4 4 4 4

2 2 2 2 4 4 4

2 2

4

66 22

5 1
2 2 2 0

2 4

b b b b s b s
xx yy

b s b s b s
s

w w w w w w w
k N k N

x x y y x x y y

w w w w w w
A

x y x y x x y

D 2D D D

y

         
                   

         
                      

 

(21a-b) 

 

3. Exact solution procedure 

  In this study, different analytical boundary conditions are applied to solve the obtained stability equations which 
can be written in an explicit mathematically form as [35] 

Free edge (F): 2 2sin ( ) 1 cos ( )i i i i iX x x  ; i=1,2      (22a) 

Clamped (C): 2sin ( )i i iX x  ; i=1,2  (22b) 

Simply supported (S): sin( )i i iX x  ; i=1,2  (22c) 

where m and n are the half wave numbers, α1=mπ/Lx, α2=nπ/Ly, x1=x, x2=y or terms used in the x and y directions 
to represent the displacement functions. The displacement function is used in the following form: 

 ,k k i jw x y W X X  ; k=s,b; i=1,2 ; j=1,2  (23) 

By substituting the expression of wk in Eq. (21), the explicit relation for buckling loads with various boundary 
conditions can be obtained. The stability equations and closed-form boundary conditions yield a set of algebraic 
equations as follows: 
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11 12

21 22

.20

.20
b

s

Wk kEq a

Wk kEq b

   
    

     
 (24) 

K, I and j (i, j=1, 2) are the coefficients of constant terms for which the following equation is employed to obtain the 
critical load: 

   .21 .21 , b sq Eq a Eq b  u W W   (25) 

   , det 0J jacobian q u J    (26) 

 

4. Results and Discussion 

   The results of the validation and the comparison with other research results should obviously be carried out 
before investigating various parameters of this study. Therefore, Tables 1 and 2 are examined in order to compare 
and validate these formulation results with those of other studies. In order for the results to be compared in Tables 1 
and 2, [19] and [36] studies are employed while their results were obtained using the first order shear deformation 
theory, the differential quadrature method (DQM) as well as the Eringen nonlocal elasticity theory. The [37] study is 
added for further confirmation due to the minor errors in the numerical solutions while its results were obtained 
through the molecular dynamics solution. Therefore, observing numerical solutions alone does not enable us to 
ascertain the fact that the present results are validated due to the difference between the results in both cases. 
However, by examining Tables 1 and 2, one can strongly express that the modified first order shear deformation 
theory (S-FSDT) results appropriately correspond to the molecular dynamic results. Since this solution is an exact 
one, this proximity of the results clearly confirms this premise that accurate and appropriate results are obtained by 
combining the modified first order shear deformation theory and exact solution of the results. Comparing the results 
shown in Tables 1 with results in Table 2 confirms that the removal of the shear stress correction factors in plates 
affects the critical load results. Because, when compared with the accurate results, the generated difference in the 
contractual FSDT by employing this factor is removed in the S-FSDT. According to Tables 1 and 2, the thinner the 
plate, the closer the results become to the FSDT results and numerical solutions, while their accuracy decreases; 
because, the FSDT is not applicable in analyzing thin plates and the classical plate theory (CPT) is more applicable 
in this case. In order to solve stability equations, the parameters in Table 3 which were obtained from related research 
were employed. 
 
E=1TPa, υ=0.3, h=0.34 nm, μ=1.81nm2, β=Lx/Ly=1, k1=1, k2=1, ks=5/6, SSSS [19, 36-37] 
 
E=1TPa, υ=0.3, h=0.34 nm, β=1, k1=1, k2=1, l=2.91nm, η=0, SSSS [Present] 

 
Table 1. Comparison of results of the critical biaxial buckling load for a single-layered graphene sheet and all edges simply 

supported obtained from the DQ method [19, 36], and the molecular dynamics simulation [37]. 
 

Critical buckling load (Pa.m)   

Present study 
FSDT-DQM 

[19] 
FSDT-DQM 

[36] 
MD results 

[37] 
Lx=Ly 

(nm) 

1.0835 1.0749 1.0809 1.0837 4.99 

0.6538 0.6523 0.6519 0.6536 8.080 

0.4330 0.4356 0.4350 0.4331 10.77 

0.2615 0.2645 0.2639 0.2609 14.65 

0.1720 0.1751 0.1748 0.1714 18.51 

0.1198 0.1239 0.1237 0.1191 22.35 

0.0896 0.0917 0.0914 0.0889 26.22 

0.0696 0.0707 0.0705 0.0691 30.04 
0.0559 0.0561 0.0560 0.0554 33.85 

0.0454 0.0453 0.0451 0.0449 37.81 

Fig. 2 is presented to show the impact of uniaxial and biaxial loadings. The graphene sheet is determined as 
square and rectangular in the above-mentioned figure. This investigation is carried out under monotonic and linear 
loadings due to the changes in m and n parameters. In the first case, critical load results obtained from k1=0, k2=1 
fully corresponds to the results of k1=1,k2=0 (β=1); whereas, by investigating the second case and rectangular plates 
(β=2), it is observed that the results obtained from k1=1, k2=0 show higher values. Moreover, it is observed that the 
critical load increases with an increase in m and n values. 
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Table 2. Comparison of the present results with those of the DQ method [36] and the molecular dynamics (MD) simulation 
[37] for different aspect ratios of orthotropic single-layered graphene sheets under the uniform biaxial compression. 

 

Critical buckling load (Pa.m) 

FSDT-DQM [36] MD results [37] 
S-FSDT, Exact 
Present study 

Lx/Ly 

0.5115 0.5101 0.5105 0.5 
0.5715 0.5693 0.5698 0.75 
0.6622 0.6595 0.6599 1.25 
0.7773 0.7741 0.7747 1.5 
1.0222 1.0183 1.0180 1.75 
1.1349 1.1297 1.1301 2 

Table 3. Mechanical properties of the nanoplate [22] 

Material Elasticity parameters 

nanoplate Ex=1765GPa,  Ey=1588GPa,  vxy=0.3,  vyx=Ey×vxy/Ex,  h=0.34nm 

 
Fig. 2. The effect of the load direction versus wave numbers (β=Lx/Ly, Ly=10.2nm, l=2h, SSSS, η=1) 

 
    In Fig. 3, the changes of the length scale parameter against different boundary conditions are investigated. As 
can be seen, critical load results at a variety of boundary conditions increases with an increase in the l parameter as 
compared with the case in which this impact is disregarded (l=0). According to Fig. 3, the highest critical load is 
obtained at the CFCF boundary condition and the lowest one is obtained at the SFSF boundary condition. We 
conclude that the impact of the length scale parameter on the CFCF boundary condition is much higher than its 
impact on other boundary conditions. 

 
Fig. 3. The length scale parameter versus boundary conditions (η=0.5, k1=k2= 1, l*=l/h, m=n=1) 
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    In order to determine the impact of the length scale parameter (l) on buckling results, Fig. 4 is provided in which 
two boundary conditions of CCCC and SSSS with two loading modes are investigated. As the results indicate, the 
critical load value at CCCC boundary condition is higher than the SSSS value. When disregarding the impact of the 
length scale, the impact of the loading and boundary condition type is insignificant. In contrast, the increased length 
parameter results in a higher difference between any loading type in two boundary conditions. This can be inferred 
from the difference between the results of CCCC, η=0 and SSSS, η=0 at l*>3. 

 
Fig. 4. Variation of the length scale parameter versus the loading type in various boundary conditions (k1=k2=1, l*=l/h, m=n=1) 

 
   The impact of loading types on the nanoplate with the length change of the plate at the CFCF boundary condition 
was investigated in Fig. 5. As can be seen, within the range of 0<Lx/h<10, the highest value for the slope of diagram 
is observed and the highest critical load is obtained. In addition, when loading is considered as a hyperbolic function, 
the critical load has the lowest value. In fact, in the linear loading, as the in-plane load gets farther from the plate 
center, the critical load will increase. A possible reason can be the combination of the in-plane torsion to the in-plane 
pressure. Consequently, as the load center distances from the plate centre in x and y directions, the pressure decreases 
and it is substituted by the in-plane torsion while the plate buckles as it twists. Clearly, a higher in-plane torsional 
force is needed to move the plate into the bucking region. 

 
Fig. 5. The effect of various loadings versus the length to the thickness ratio (k1=k2= 1, l=0.5h, m=n=1, CFCF) 

5. Conclusion 

   This study investigated the biaxial non-uniform buckling of a nano graphene sheet. For this purpose, the refined 
first order shear deformation theory was employed to obtain the governing equations by taking Von-Karman 
nonlinear strains into account. The size-dependent effect was investigated by using the modified couple stress theory. 
Moreover, the exact solution was used to extract the results by changing various parameters. In conclusion, some of 
the important results achieved from the present study are as follows: 
* By increasing the parameter β, the impact of uniaxial loads on the results of the critical buckling loads increases. 
* The maximum critical load is at the CFCF boundary condition and the minimum is at the SFSF. 
* The length scale impact on the results of any boundary conditions increases with an increase in l parameters. 
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