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Abstract 

Raman spectroscopy is a fundamental form of molecular spectroscopy that is widely used to 
investigate structures and properties of molecules from their vibrational transitions. It relies on 
inelastic scattering of monochromatic laser light irradiating the specimen. The scattered light after 
appropriate filtering is dispersed onto a detector to determine the shift from the excitation 
wavelength, which appears in the form of characteristic spectral patterns. The technique can 
investigate biological samples and provide real-time diagnosis of diseases. However, despite its 
intrinsic advantages of specificity and minimal perturbation, the Raman scattered light is typically very 
weak and limits applications of Raman spectroscopy due to measurement (im)precision, driven by 
inherent noise in the acquired spectra. In this article, we review the principal noise sources that impact 
quantitative biological Raman spectroscopy. Further, we discuss how such noise effects can be reduced 
by innovative changes in the constructed Raman system and appropriate signal processing methods. 

Key Terms 

Thermal noise: Johnson–Nyquist electronic noise caused by thermal movements of the charge carriers 
(e.g., in the trans-impedance amplifier) independent of any applied voltage. Power spectral density of 
thermal noise is constant and has a Gaussian amplitude distribution at finite bandwidth. 

Power spectral density: Function that describes how power of the signal is distributed over the 
different frequencies. 

Flicker noise (1/f noise): Type of electronic noise with a power spectral density that depends on 
frequency as 1/fa, where the parameter a is usually equal to 1 or greater. 

Shot noise: Type of electronic noise, which results from the discrete nature of the measured quantity. 
Shot noise is observed in current flow due to discrete number of electrons. For the subject under 
consideration, shot noise is associated with the particle nature of light (stream of photons). 

Dark current: The (relatively small) random current flowing through the photosensitive device when 
no photons are entering the device. The current is due to generated electrons and holes in 
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semiconductor crystallographic defects within its depletion region. Intensity of dark current depends 
on temperature of the photosensitive device. 

Signal-to-noise ratio (SNR): A measure that compares the signal intensity to the level of background 
noise present at measurements. Usually, logarithmic scale of dB is applied. This measure is extensively 
used to characterize the measurement capability of a wide variety of electronic, physical and photonic 
signals and devices.  

 

Introduction 

Raman spectroscopy is a widely used spectroscopic technique to observe vibrational, rotation, 
and other low-frequency modes of the investigated specimen. The method utilizes laser light to 
irradiate the sample, which excites the molecule(s) of interest to virtual energy states (Figure 1). In 
classical terms, Raman-active vibrational transitions can be viewed as altering the polarizability of the 
molecule. From the quantum mechanics perspective, the molecule(s) return from the virtual energy 
states to the ground electronic state, but different vibrational states – during which process of 
relaxation, the molecule(s) emits a photon. The difference in energy between the original state and 
this new state leads to a shift in the scattered photon's frequency away from the excitation 
wavelength.  

If the final vibrational state of the molecule is more energetic than the initial state, then the 
Raman-scattered photon will be shifted to a lower frequency (“red-shifted”) in order for the total 
energy of the system to be conserved. This shift in frequency is designated as a Stokes shift. On the 
other hand, if the final vibrational state is less energetic than the initial state, then the scattered 
photon will be shifted to a higher frequency (“blue-shifted”), and this is commonly designated as an 
anti-Stokes shift. This shift appears in the form of characteristic spectral patterns or, Raman 
fingerprints.  

 The Raman-scattered light is collected by suitable lenses or fibers and is sent through a 
monochromator or a dispersion spectrometer before recording on the detector (such as a charge 
coupled device, CCD, or complementary metal-oxide-semiconductor, CMOS, chip). It is important to 
reject wavelengths close to the laser line that are present due to the Rayleigh (elastic) scattering 
contribution. This component has to be removed because it is relatively very intense. Contemporary 
Raman systems employ specialized notch or edge filters for such rejection.  

Evidently, Raman scattering is an inelastic scattering process because of the energy transfer 
between the photons and the molecules during their interaction. The spontaneous Raman effect 
should not be confused with absorption and/or fluorescence where the molecule is excited to a 
discrete (not virtual) energy level. Since vibrational information is specific to the chemical bonds and 
can characterize the specimen functional groups and related components, Raman spectroscopy is 
widely used in chemistry and biology [1-9]. In particular, this has meant that biological specimens (cells, 
tissues and even organs) can be characterized by Raman spectroscopy noninvasively by exposing to 
laser radiation of limited optical power. Recent years have, further, seen the advance and 
popularization of this method primarily due to the considerable improvements in laser technology, 
excitation-collection optics, CCD detectors and advances in signal processing [10-14]. 

 Despite its inherent advantages in chemical specificity and lack of sample preparation or 
perturbation requirements, spontaneous Raman spectroscopy suffers from weak signals in 
comparison to other chemical fingerprinting modalities including fluorescence, absorption and 
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reflectance spectroscopy. For example, the spontaneous Raman signal is at least a few orders of 
magnitude weaker than the Rayleigh scattered light, thus necessitating optical filtering to avoid 
saturation of the detector. The ability to extract information about composition of the investigated 
specimen is usually limited by intensity of noise, which can overwhelm the main signal [13-19]. 
Notably, one of the central hurdles in attaining robust quantitative Raman measurements is the 
presence of a varying luminescence (fluorescence) background. The substantially greater intensity of 
the tissue fluorescence frequently limits analysis to strong Raman bands only, as evidenced by the 
intensity comparison provided in Fig. 2. The associated noise contribution, which may have intensities 
similar to that of the Raman signal depending on the signal acquisition times, further compromise the 
capability of the spectroscopic technique. 

Amplification of Raman scattering light (e.g., by surface enhanced Raman spectroscopy [20]) 
to increase signal and reduce noise have limited applications because such conditions cannot be 
implemented in each case. Also, the amplification effect varies between the measurements resulting 
in severe reproducibility constraints. Further, while the Raman scattering signal at higher excitation 
powers would be enhanced, there are critical limitations to the maximum power that can be employed 
emanating from safety concerns on the investigated specimen. Notably, it would also increase the 
fluorescence background that is the source of specific noise components (including pixel-to-pixel 
detector noise and shot noise), as detailed later in this article. 

 While technological developments within the last decade have helped to enhance the relevant 
signal-to-noise ratio (SNR), this issue still remains a major impediment in a variety of Raman 
spectroscopy applications. In order to ensure low noise in the acquired spectra, one requires 
customized, expensive and often bulky instrumentation, which limits its usage. Therefore, it is 
imperative that appropriate noise sources are identified and reduced as much as possible to assure 
high SNR value – without requiring to resort to unnecessary complexity in terms of hardware and 
software incorporation.  

 

Measures and principles of noise characterization 

The SNR parameter is often estimated separately for each peak of the Raman spectrum 
because optical characteristic of the spectrometer-detector combination can influence the intensity of 
noise at various Raman shifts (Figure 3). Its value at a specific Raman shift equals the averaged peak 
height µP divided by the standard deviation sP of that peak: SNR = µP/sP. The definition determines 
how additive noise influences each separate peak of the measured spectra. The parameter SNR can be 
established by numerous measurements of the Raman spectra and estimation of the average peak 
value and its standard deviation at each Raman shift separately. The presented definition is very 
straightforward but there are several instances in the literature where the SNR, in fact, is estimated 
using standard deviation sS of the whole Raman spectrum instead of sP, estimated at a given Raman 
shift. Usually sS and sP are of different value and such computation may therefore provide inaccurate 
estimates.  

 The SNR, clearly, is driven by the intensity of noise sources during the acquisition process, some 
of which may be amenable to reduction. In other words, technological advances can reduce only 
selected noise sources. Therefore, inherent noise sources of the Raman system have to be identified 
to establish, which of them can be reduced at limited costs or acquisition time. Longer averaging, for 
example, results in gain of Raman signal by increasing number of the acquired electrons and improving 
SNR when the limiting noise source is “white” (e.g., shot noise and thermal noise having flat power 
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spectrum independent from frequency). On the other hand, when 1/f noise is the limiting contribution 
especially at low frequency range, there exists an optimal acquisition time in order to obtain the 
highest SNR value. In such circumstances, prolonged acquisition would actually decrease the resultant 
SNR. Another technique that can reduce noise in the measured spectrum utilizes synchronous 
detection, when the laser power is modulated using selected frequency and the Raman spectrum is 
acquired to detect the part, which is synchronous to the modulated laser beam. A certain measure of 
de-noising can also be performed subsequent to data acquisition by modeling the peaks and reducing 
random component by additional filtering. At least a few independent algorithms can be successively 
applied.  

Notably while the weak Raman effect is an impediment for molecular identifications and 
scientific investigations, problems of biomedical interest frequently involve complex mixtures of 
stochastically varying compositions and spatial distributions of analytes contributing to the acquired 
spectra [10, 14]. Thus, the challenge here is further compounded by the need to quantitatively 
determine chemical markers that facilitate rapid detection of species (such as protein conformations, 
strains of bacteria) or suggest changes in function in biological tissue (e.g. benign versus malignant 
tissue). The overarching challenge is that the combined measurement and analysis has to be rapid 
while also being robust with respect to stochastic variance. 

In the following sections, we elaborate on the noise sources that hinder such quantification 
and classification capabilities and the origins of the noise contributions. We also review emerging 
methods that have been presented to address some of these noise sources and how they influence 
our capability to quantify analytes based on Raman spectra. We discuss the applicability, advantages 
and drawbacks of each of these techniques and assist the reader not only acquire new insights into 
the techniques themselves but also gain an understating of the underlying ideas and principles.  

 

Noise sources 

In this section, the principal, independent sources of noise that manifest themselves in Raman 
spectra acquired from biological samples are considered. When the sources are independent (i.e. 
uncorrelated), their intensity (determined by the variance s2) can be calculated by summing up 
variances of all considered sources. Usually, for such computation, the noise sources are limited to the 
most important ones and identified by their different generation mechanisms [14]: 

     (1) 

where sx is a standard deviation of signal x due to uncertainty in counting statistics of the signal 
photons, sb is a standard deviation of background fluctuations, sd is a standard deviation of detector 
dark current, sf is a standard deviation of flicker noise and sr is a standard deviation of readout noise. 
These noise sources result from the process of Raman spectra measurement and stream nature of the 
collected photons. 

Photons stream or resulting electron stream observed as the voltage drop (Figure 4) exhibits 
shot noise because of its discrete nature. Standard deviation of any signal being a stream of discrete 
events is proportional to the square root of the signal (Poisson statistics) and is a natural limit of such 
signal measurement uncertainty, even when other noise sources can be neglected. Thus, in a case that 
only shot noise of electrons is considered the SNR depends on signal x intensity as: 

.     (2) 
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When shot noise predominates noise in Raman spectra the SNR can be improved by increasing 
averaging time t. The signal x = xot increases proportionally with time t (number of the collected 
electrons) and therefore SNR can be equated to (xot)1/2. 

The next considered noise source is caused by background noise, which is a combined effect 
of the variations in the excitation source and spectrometer-detector combination. The latter 
encompasses the pixel-to-pixel variations that can often be substantive especially when acquisition 
times are relatively large. The background noise can be reduced by changing laser wavelength to the 
near infrared (NIR) region to diminish fluorescence or by applying mathematical algorithms to remove 
background (especially the pixel-to-pixel) variations [21-26]. 

One of the most important noise sources in Raman spectroscopy is generated within the 
applied detectors and is known as dark noise. This is a random stream of electrons caused mainly by 
thermal generation of electrons, independent of the intensity of the collected light. Put another way, 
dark noise originates from the statistical variation in the number of electrons thermally generated 
within the silicon structure of the CCD, which is independent of photon-induced signal, but highly 
dependent on the device temperature. Similar to shot noise, dark noise follows a Poisson relationship 
and is equal to the square root of the number of thermal electrons generated within the image 
exposure time. This noise component, though, can be strongly reduced when the employed detector 
is cooled (Figure 5). Intensity of dark current can vary for various detectors from a few hundreds of e-

/s (electrons per second) to negligible values when the detector is significantly cooled. 

Typically, an additional control unit has to be utilized to keep the detector at stable 
temperature. The control unit can itself generate fluctuations at low frequency range, when the 
detector temperature is stabilized within the acceptable range. Power spectral density of such 
fluctuations depends on frequency as 1/fa where the parameter a is usually close to unity and is called 
1/f noise [27-29]. Another source of 1/f noise in the Raman spectrometer are caused by power 
fluctuations of the emitted laser beam, mainly due to slow temperature variation of the laser [30]. 
These components are represented by standard deviations sf and can overwhelm other noise sources, 
at least in the low frequency domain. 

 Finally, the readout noise, represented by standard deviation sr in Eq. (1), is a combination of 
system noise components intrinsic to the process of transforming the CCD charge carriers into a 
quantitative voltage signal, and the subsequent processing and analog-to-digital conversion. This 
process requires sampling of the voltage drop across the resistance R (Figure 4) and some necessary 
amplification to adjust the voltage drop to the dynamic range of the applied analog-to-digital 
converter. The major contribution to readout noise usually arises from the on-chip preamplifier, and 
this noise is added uniformly to every image pixel. The readout noise depends on quality of the Raman 
system and can be reduced to intensity levels much lower than other mentioned noise sources. 
Additionally, intensity of the readout noise does not depend on time. Thus, lengthening averaging time 
can reduce influence of these noise components and assure high SNR ratio.  

 

 

 

Methods of noise reduction 

Of the mentioned noise sources that hinder the recording of the intrinsic Raman signal, only a 
few of the contributions can be appropriately reduced by different methods including hardware 
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modifications. There is a natural limit of noise which cannot be reduced but its influence on the quality 
of the acquired Raman spectra can be reduced mainly by longer averaging time [21]. As mentioned 
earlier the SNR increases with time as SNR = (xot)1/2 when noise in Raman spectra is dominated by shot 
noise. This principle is equally valid for the dark current noise. When the readout noise is dominant, 
the SNR will increase even faster with averaging time than for shot noise components. Thus, longer 
averaging time can increase SNR to the requisite values with increase in the acquisition time window. 

However, this holds true only when the white noise component is present in the Raman 
spectra. In sharp contrast, for flicker (1/fa) noise (which due to its structure tends to dominate in the 
low frequency region), further increase of acquisition time can result even in reduction of resultant 
SNR. This issue was considered in detail in literature [22]. It was determined that for 1/f noise (a = 1) 
increasing averaging time improves SNR up to a certain threshold level only. The SNR saturates after a 
period of time, which depends on the relative intensities of 1/f noise and white noise components. It 
is also evident that the optimal averaging time become shorter and the maximum possible SNR reduces 
when the parameter a increases. Further, in numerous biological applications the averaging time 
cannot be too long not because of the 1/f noise component issue but because of the potential changes 
in the specimen under investigation. Thus, other methods have to be applied to address the respective 
noise components.  

The dark current noise predominates often in commercial Raman spectrometers in relation to 
the other noise sources and the simplest method of improving the SNR, under such circumstances, is 
to cool down the CCD sensor (Figure 5). Typically, the CCD sensor is of area about a few tens of mm2 
that has to be cooled to reduce dark noise. Thermoelectric cooling is usually employed in portable 
Raman spectrometers because such unit can be easily controlled by an electronic circuit and, 
importantly, because it does not require incorporation of bulky elements of high energy consumption 
[23]. For example, the CCD detector is cooled down by applying a Peltier cooler which comprises of 
two metal plates sandwiched between which is a semi-conducting material. This device acts as a heat 
pump when the current flows between the metal plates. It pulls heat from the CCD detector onto the 
Peltier cooling device, and subsequently dissipates the heat via radiating fins. The CCD detector can be 
kept cooler anywhere from -30oC to -70oC below the ambient temperature. In some cases, CCD 
detectors employ a two-stage Peltier cooler to improve the effectiveness of the device. Such a 
thermoelectric cooling unit, however, stabilizes temperature within some limited range only and may 
cause slow drifts that adversely affect the noise level as well. Better stability is achieved when the CCD 
chip and a multi-stage Peltier cooler are built into a welded chamber vacuumed and hermetically 
sealed to retain a high degree of vacuum and assure more stable cooling performance. Lower and 
more stable temperatures are obtained in laboratory systems when the CCD detector is cooled by 
liquid-nitrogen. In addition, it provides better temperature stability – although its application in 
extensive clinical applications is limited due to necessity for regular refilling of liquid nitrogen and its 
generally unwieldy nature.  

Another important source of noise is the random but fixed variations in pixel-to-pixel response 
on the CCD might actually be more dominant than shot noise. This is especially true when high signal 
levels can be achieved and exposure times can be increased without any significant downside, such as 
when chemical mixtures and powder samples are tested. In such cases, the nearly 1% pixel-to-pixel 
variations may contribute to a larger portion of the overall uncertainty as compared to the shot noise. 
An elegant, and relatively underappreciated, method is to employ difference spectroscopy between 
two frames. As has been discussed by Bell and co-workers [31-33], performing shifted excitation 
Raman difference spectroscopy (SERDS) or shifted subtracted Raman difference spectroscopy (SSRS) 
by tuning the excitation wavelength or diffraction grating, respectively, one can concomitantly perform 
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rejection of the fluorescence background and remove the fixed pattern noise from the acquired 
spectra.  

Alternately, investigators have also employed the principle of phase-sensitive detection (lock-
in amplifier) for noise reduction in the acquires Raman spectra. In this method, one modulates the 
optical power of the laser beam at a given frequency and filters out within the measured Raman 
spectra the component having the same frequency as the modulation of the laser beam [24]. Such 
method has been observed to reduce noise components caused by dark noise of the CCD detector, 
readout and 1/f noise or induced by external light sources that are uncorrelated with the important 
Raman photons. Technically, the process requires multiplication (mixing) of the measured Raman 
spectrum and the reference signal that is used to modulate the laser beam. The product of 
multiplication is proportional to the Raman scattering signal and has to be averaged to filter out the 
stochastic components. Nevertheless, the lock-in amplification method has specific limitations 
especially when employed for investigation of  biological samples, as it requires long averaging time 
and does not reduce fluorescence.  

Finally, an intriguing approach that has come into prominence of late in this area is spatially 
offset Raman spectroscopy (SORS) [25,26]. SORS requires the physical positioning of the excitation 
source and detector to be spatially offset by pre-determined distances. In particular, for a fiber probe 
based system, the excitation and collection fibers in SORS are often separated by several mm, as 
opposed to the conventional fiber probe where all the fibers are grouped together to enhance volume 
fraction of photon collection. This allows probing at greater depths than is traditionally achievable 
using conventional illumination and collection systems. In essence, the SORS geometry allows the SNR 
of the analyte(s) of interest to be maximized by selecting appropriate spatial offset between the 
collection areas [26]. We expect that the convenience and ease of use of this method will allow its 
widespread application in deep tissue measurements highlighting new ways in which the relevant 
noise sources (in this case, the signal from the non-analyte specific region of the tissue) can be 
suppressed. 

Spectral processing 

Despite the advances in the spectroscopic hardware and emerging concepts of robust 
measurement, the acquired Raman spectra (especially in biological samples) reveal substantive 
“uncertainty”, emanating both from the inherent noise of the measurement system and the stochastic 
nature of the Raman scattered light. In other words, further noise reduction beyond a threshold level 
can often be impractical due to prohibitive costs or unacceptable measurement conditions, such as 
excessively long exposure time or too intense irradiation of the biological tissues. Thus, processing 
methods subsequent to spectral recording have to be designed and employed to reduce noise and/or 
suppress its effect in the robust mapping between spectroscopic measurements and biomarker 
information. Specifically, multivariate chemometric techniques have been widely investigated, as they 
are capable of extracting information otherwise hidden from human examination. Indeed, the richness 
and availability of myriad data enable vibrational spectroscopists to both use methods from and 
actively contribute to the development of chemometric techniques. Given the scope of the current 
review, we confine ourselves to a selection of numerical algorithms that seek to improve data quality, 
principally the signal-to-noise ratio. The other category of chemometric applications in spectroscopy 
deals with the classification of information from the data (both supervised and unsupervised methods), 
the prediction of biomarker content based on acquired datasets and the visualization of the resultant 
information. 
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An important avenue for active research in this direction is the selection of suitable features 
(or Raman information) that allow the elimination of uninformative and spurious regions of the spectra 
from the developed models. In a recent study, our laboratory has observed that reduction of the 
wavelengths probed by a factor of 10 did not provide a substantive hurdle to developing a calibration 
model for estimation of blood glucose levels [34,35]. Additionally, selection of limited wavelength 
subsets may provide new impetus to the development of tunable detection filter-based serial Raman 
acquisition systems. These systems would greatly alleviate the large spatial footprint drawback of 
standard Raman systems based on dispersive spectrometers but suffer from longer acquisition time 
requirements. By employing only a fraction of the total set of wavelengths, one can envision a 
significant reduction in the acquisition time because of the serial sampling nature of such systems.  

Existing methods of addressing some of the pre-dominant issues with biological Raman spectra 
include the use of smoothing algorithms (since signals are generally concentrated in lower frequencies 
while noise is spread across the spectrum) and background correction to compensate for the slowly 
varying luminescence background [36]. For example, Fig. 6 shows raw Raman spectra recorded from a 
strongly scattering sample and also its counterpart post smoothing using the widely used Savitzky-
Golay filtering algorithm. The background is typically suppressed by derivative processing or least 
squares polynomial subtraction methods [37]. However, we are generally less enthused about the 
application of these methods for purposes of classification or quantification, as these techniques may 
often introduce spectral artifacts. As alluded to above, much more efficient methods of fluorescence 
background removal would be those based on continuous shift of the excitation wavelength [38-41]. 
These methods are based on the differential shift response of the Raman and fluorescence signals to 
the shift in excitation wavelength, and offer a promising solution that is not limited by photon 
collection problems, unlike time-gating approaches. Here, the Raman peaks can be de-convolved from 
the subtracted signal by taking into account the amplitude and the modulation rate of the excitation 
wavelength [39].  

 
It is worth noting that some studies have attributed the background observed in Raman 

spectra from biological samples to sources other than fluorescence from endogenous chromophores. 
For example, Bonnier and co-workers have suggested the possibility that the background may be 
caused by scattering phenomena [40]. It has previously been observed that the broad background 
appears to shift in the same direction as the excitation wavelength when a tunable laser is employed 
indicating Raman-like scattering origin [41]. Such non-specific scattering baseline could be ascribed to 
the presence of intermolecular effects that depend on the laser exposure, temperature and ligand 
exchange among other things [42]. To potentially alleviate the background arising from such sources, 
immersion of the biological specimen in aqueous solution has been specifically proposed to improve 
the refractive index matching between the tissue and surrounding media [40]. Additionally, water 
solution is necessary to keep the investigated objects alive and helps to enhance their photostability. 
Moreover, it improves heat flow of the irradiated biological membranes and reduces chances of 
eventual tissue overheating due to prolonged irradiation.  

 
There are other interferences present in Raman spectra in addition to the aforementioned 

noise components and (fluorescence and broad-band) background. The acquired Raman spectra 
exhibit often very narrow spikes caused by cosmic irradiation [45]. Cosmic ray interference can be 
reduced by applying an algorithm that estimates a width of the identified spike and removes it by 
replacing the spike value with an average estimate based on the intensity of the neighboring pixels. 
The underlying assumption is that the width of the cosmic ray is smaller than a pre-defined threshold 
and cannot be considered as a Raman feature of interest. Analogous noise can be observed when some 
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of the pixels in the applied optical sensor record extreme values only (maximum or minimum). This 
type of noise is known as salt-and-pepper noise in imaging literature and is also interchangeably 
referred to as the “hot pixel” issue in spectroscopy [46]. It can be problematic when the Raman spectra 
are used to present images of the tissues to identify demarcating borders of the selected regions, such 
as for intra-operative margin assessment of cancerous tissue. The median filter or its modified versions 
are commonly used to remove such high frequency impulse noise [47]. 

It is important to understand that fundamentally, the process of any noise rejection involves 
recognizing some characteristic of noise that is distinct from that of the signal, transforming the data 
such that the relevant measures of the property are highlighted, suppressing the noise-related 
property values and inverse transforming the data to recover high SNR data. As discussed elsewhere 
in the literature [48], the transformation may involve simple smoothing, determining correlations 
using point-wise or multivariate means or statistical reconstruction. For practical purposes, there is no 
single cure-all that can be applied universally. Instead, the quantity of available data frequently dictates 
the optimal method. A particularly interesting approach in this regard is the use of multivariate 
covariance method when large numbers of spectra are available. Briefly, the approach comprises of 
eigenvalue decomposition of the spectra employing a forward transform, such as by using principal 
components analysis (PCA) to transform the dataset into a few orthogonal components [49,50]. After 
choosing the principal components that exhibit sufficient SNR, the chosen data are inverse-
transformed to recreate the original data set with substantially reduced noise content. Such transform 
techniques for noise reduction exploit the property that noise is uncorrelated whereas the 
characteristic spectral patterns show a much higher degree of correlation. In other words, in the 
transform domain, the signal becomes largely confined to the first few eigenvalues while the noise 
content is distributed across a significantly larger number of principal components. It is the signal to 
noise content of a particular principal component that influences the decision of its inclusion when the 
inverse transform operation is performed. Despite the intrinsic attraction for such de-noising 
procedures, it is pertinent to note that the results from any of the above methods must be validated 
rigorously, especially in a prospective manner, if the method is to be routinely employed. 

Finally, processing of the recorded Raman spectra has to be undertaken in biomedical 
applications with the goal of predicting concentrations of biomarkers in complex specimen or 
classifying their function within the context of varied patho-physiological states. This means that the 
pre-processed (and potentially noise suppressed) spectra have to be used in conjunction with the 
reference information content (such as concentrations, histo-pathological classification) to develop a 
model that can prospectively provide the same information in unknown samples [51-55]. The 
developed chemometric algorithms should identify effectively the constituents of the investigated 
specimen and should be robust against noise and interferences present in the recorded Raman spectra. 
Additionally, they should not require intense computing in order to ensure they can be incorporated 
in inexpensive and portable systems, although the constraint in this direction is rapidly decreasing due 
to the explosion of computing power in recent years.  

It should be emphasized that there are no generic guidelines when a particular method for 
noise reduction (hardware implementation or numerical processing) would be optimal for the 
application under consideration. Indeed, the responsibility lies with the investigator to explore 
different methods and determine the potential for improvement of the overall signal quality. For 
example, detector cooling improves the SNR of spectral datasets particularly for NIR applications. 
However, once the system is shot-noise limited, such cooling could even adversely affect as the 
quantum efficiency of sensor chips may reduce at very low temperatures. Similarly, spectral 
smoothing, though extensively used, often results in some unavoidable spectral lines’ deformation, 
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compromising the ability to accurately detect and quantitate the bioanalytes. The spectroscopist must 
be aware, therefore, that the best option for accurate quantitative analysis is to simply acquire higher 
SNR data, if at all feasible.  

Future perspective 

The requirements for quantitative Raman spectroscopic measurements are continuously increasing 
due to the growing number of applications that demand high fidelity and sensitivity data. It is in this 
context that the noise characterization of the Raman measurements (and investigation of the response 
of the developed model to noise) is critically important. Such investigations are imperative for 
successful clinical translation as the confidence in the measurement of a specific diagnostic parameter 
can alter the course of disease management, with ramifications to the health of the patient. The 
response of the prediction algorithm to noise sources in the data set could critically affect the 
diagnostic value of the data. It may also influence the evaluation of one type of protocol against 
another and suggest the use of modified experimental conditions to boost results. A fundamental 
understanding of the noise sources and the possibility (or lack thereof) of reducing them are key to 
elucidating the true scientific content of the data structure and are key to enabling accurate, fast, and 
robust information extraction from the acquired spectral datasets. Clearly, this requires an 
understanding of the interplay between the hardware and software elements. We envision that, in the 
near future, fundamental biochemical insights and a priori knowledge will also be integrated with 
system design and strategies for data processing to guide the information extraction and algorithm 
development process. Future investigations will need to focus on the development of such integrative 
approaches especially to address clinical specimens, where the signals of interest are often very low in 
comparison with the background.  

 

Executive summary 

• Intense noise is a significant challenge in quantitative biological spectroscopic measurements 
and requires detailed consideration. (Measures and principles of noise characterization) 

• Inherent noise can be reduced only to a certain extent due to physical limitations and even 
then such reduction strategies may necessitate impractical approaches, prohibitive costs, 
loss of functionality. (Noise sources) 

• Synchronous detection and longer averaging time of the acquired spectra reduces noise in 
the recorded spectra but can be accepted only in some biological applications. (Methods of 
noise reduction) 

• Spectral pre-processing and optimized classification and regression algorithms can reduce 
the sensitivity to noise levels. We strongly believe that new proposals in this area will emerge 
as the primary thrust for improving overall measurement capability and therefore in further 
popularization of Raman spectroscopy. (Spectral processing) 
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Figure 1. A schematic diagram of Raman spectroscopy setup and spectra processing 

 

 

Figure 2. Representative Raman spectra of cyclo-hexane (red continuous line) and skin tissue (blue 
dashed line) acquired to identify blood glucose level [18]. Despite the large Raman scattering cross-
section of the cyclo-hexane molecule, the endogenous tissue autofluorescence (broad background in 
the blue dashed line) is still significantly larger. Clearly, this is an even bigger problem for quantitation 
of molecules with moderate Raman scattering cross-sections and that have less concentration in the 
biological sample of interest.  
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Figure 3. A fragment of: a) the acquired Raman spectrum and b) its noise component non-uniformly 
distributed versus Raman shift 

 

 

Figure 4. Schematic of the sensor detecting photons by measuring voltage drop across the resistance 
R induced by electron current I 
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Figure 5. Raman spectrum of a representative chemical specimen measured at the same acquisition 
time but at two different temperatures of the CCD sensor: 0oC (red line), -15oC (blue line) 

 

 

Figure 6. Efficiency of processing the acquired Raman spectrum (black line) by smoothing and 
background removal (red line) using Savitzky-Golay filtering for smoothing and polynomial 
approximation for background removal D
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