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Antenna optimization 
using machine learning 
with reduced‑dimensionality 
surrogates
Slawomir Koziel 1,2*, Anna Pietrenko‑Dabrowska 2 & Leifur Leifsson 3

In modern times, antenna design has become more demanding than ever. The escalating requirements 
for performance and functionality drive the development of intricately structured antennas, where 
parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments 
to geometry are necessary for optimal results. However, direct manipulation of antenna responses 
evaluated with full-wave electromagnetic (EM) simulation models using conventional nature-inspired 
methods entails significant computational costs. Alternatively, surrogate-based techniques show 
promise but are impeded by dimensionality-related challenges and nonlinearity of antenna outputs. 
This study introduces an innovative technique for swiftly optimizing antennas. It leverages a machine 
learning framework with an infill criterion employing predicted enhancement of the merit function, 
utilizing a particle swarm optimizer as the primary search engine, and employs kriging for constructing 
the underlying surrogate model. The surrogate model operates within a reduced-dimensionality 
domain, guided by directions corresponding to maximum antenna response variability identified 
through fast global sensitivity analysis, tailored explicitly for domain determination. Operating within 
this reduced domain enables building dependable metamodels at a significantly lower computational 
cost. To address accuracy loss resulting from dimensionality reduction, the global optimization phase 
is supplemented by local sensitivity-based parameter adjustment. Extensive comparative experiments 
involving various planar antennas demonstrate the competitive operation of the presented technique 
over machine learning algorithms operating in full-dimensionality space and direct EM-driven bio-
inspired optimization techniques.

Keywords  Antennas, EM-based design, Global search, Sensitivity analysis, Surrogate modeling, Nature-
inspired algorithms

Designing modern antennas poses a significant challenge. On the one hand, there has been an unprecedented 
increase in performance demands observed over the recent years, driven by emerging application areas like 
mobile communications1, 5G/6G technology2, internet of things, IoT3, medical imaging4, vehicular radars5, 
energy harvesting6, radio-frequency identification7, etc. On the other hand, antenna systems are expected to 
provide a number of functionalities (multi-band8 and MIMO operation9, pattern diversity10,11, reconfigurability12, 
beam steering13), many of which are oriented toward re-use of the same hardware for various operating bands14, 
reducing the physical space occupied by the radiators15. As a matter of fact, compact size has become one of 
the most important prerequisites16–19, resulting in the development of a variety of techniques for the design of 
electrically small antennas20–22. Meeting the aforementioned requirements fosters the development of rather 
sophisticated structures featuring a number of auxiliary components (slots23, stubs24, impedance transformers25, 
shorting pins26), defected ground structures27, metamaterial components28, substrate integrated waveguide (SIW) 
cavities29, or multi-layer implementations30. Needless to say, with the increase of topological complexity, appro-
priate tuning of antenna geometry parameters becomes imperative yet intricate. On the one hand, dimension 
adjustment has to realized using electromagnetic (EM) models to maintain reliability, but also because of the 
lack of alternatives. For example, equivalent circuit representations often observed in antenna-related works31,32 
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exhibit no design utility, their role being a sort of post-design illustration of antenna properties. Furthermore, the 
tuning process has to be simultaneously carried out for a number of parameters, several antenna characteristics, 
and it is often subject to constraints33,34.

In engineering practice, antenna parameter tuning is still widely addressed using interactive methods, namely, 
parametric studies guided by the designer’s insight35,36. Notwithstanding, yielding optimum designs is contin-
gent upon formal numerical optimization, which are imperative to account for interactions between multiple 
parameters and accommodate various performance demands. Unfortunately, although a plethora of matured 
algorithms are available, EM-driven antenna optimization is severely hindered by the associated computational 
expenses. While the costs of local (e.g., gradient-based) search are typically borderline-acceptable (dozens to 
hundreds of EM analyses), global optimization37–39 is typically unmanageable when using the most popular class 
of metaheuristic algorithms40–44. Yet, globalized parameter tuning is often recommended, e.g., for problems that 
are inherently multimodal (e.g., radiation pattern synthesis of antenna arrays45,46, design of frequency selective 
surfaces47 or coding metasurfaces48), development of miniaturized structures49,50, of when a sufficiently good 
starting point is unavailable, e.g., antenna re-design for center frequencies considerably misaligned with those 
at the available design51.

In contemporary times, bio-inspired population-based methods have become the prevalent choice for global 
search52–55. This class encompasses widely used techniques such as evolutionary algorithms (EAs), evolutionary 
strategies, genetic algorithms (GAs)56–58, differential evolution (DE), firefly algorithm, particle swarm optimizers 
(PSO)59–61, harmony search62, grey wolf optimization37, ant systems63, and invasive weed optimization64. Recently, 
the proliferation of such methods has been notable (e.g. 65–68.); however, the practical distinctions among these 
algorithms appear to be minor. The ability to perform global search is typically attributed to the exchange of 
information between the members of a population undergoing processing by the algorithm, facilitated by recom-
bination and mutation operators (GAs, EAs56), or by mimicking social behaviour (or hunting/preying habits)69, 
e.g., randomized biasing of design relocation toward locally or globally best solution identified thus far59. The 
downside of bio-inspired methods is their inferior computational efficiency. These algorithms typically need 
thousands of objective function calls to produce a satisfactory solution. Such costs are often prohibitive when 
considering direct EM-driven antenna design unless each simulation can be completed swiftly (e.g., within a 
few seconds) or if there are sufficient resources available for parallelization70.

A workaround for the aforementioned cost issues has been offered by surrogate modeling techniques71–73. In 
practice, surrogate-assisted frameworks are most often implemented in the form of iterative procedures, where 
the fast replacement model (kriging74, neural networks75, Gaussian process regression76, etc.) is rendered using 
EM analysis results garnered during the optimization process and used to yield further approximations of the 
optimum design77. The infill criteria employed in optimization aim at exploring the design variable space (in 
particular, enhancing the model’s accuracy78) or exploiting it (identifying the optimal design79). Although these 
methods are often categorized as machine learning algorithms80–82, the main challenge lies in constructing the 
surrogate model itself. This challenge is a result of the curse of dimensionality and antenna response nonlinearity. 
Consequently, surrogate-based bio-inspired methods are typically showcased with relatively simple test cases 
with only a few independent parameters83–85. Various techniques have been developed to address dimensional-
ity issues. Some of these include modeling within constrained domains86–89 (though applying this concept for 
global optimization may pose challenges), employing multi-fidelity simulations90, and utilizing response feature 
technology91. The latter has proven suitable for local optimization92 as well as surrogate modeling93. Feature-
based methods involve re-stating the optimization problem using suitably assigned characteristic points of the 
system outputs and their weakly nonlinear dependence design variables94. However, this technique’s effectiveness 
depends on characteristic points over the entire design space.

This research presents an innovative approach to globally tuning antenna parameters at low cost. Our method-
ology involves a machine learning procedure using the merit function enhancement predicted by the underlying 
surrogate as the infill criterion and employs a bio-inspired algorithm as the core search engine. The underlying 
metamodel is developed by means of kriging interpolation and is established within a reduced-dimensionality 
domain, which is crucial for computational efficiency. This domain is defined using a small number of directions 
(up to fifty percent of the original design variable space dimensionality) associated with maximum variability 
in antenna response. We employ a fast global sensitivity analysis (FGSA) technique to identify these domain-
defining vectors, custom-developed for domain determination. Unlike traditional GSA approaches, our technique 
relies on a few random data samples and spectral analysis of antenna response variations extracted from the 
nearest neighbours of respective points. Operating within this reduced domain permits building dependable 
metamodels at low cost. Additionally, the global optimization phase is supplemented by local gradient-based 
tuning to offset any accuracy loss due to dimensionality reduction. We extensively validate our technique using 
several microstrip antennas and compare it to direct EM-driven nature-inspired optimization, multiple start gra-
dient search, and a machine learning framework operating in full-dimensionality space. The results demonstrate 
consistent performance across the test case set, competitive outcomes measured by the mean merit function 
value, and low running costs, averaging only 300 EM evaluations of the antenna under design.

Machine‑learning‑based global optimization by means of dimensionality‑reduced 
surrogates
In this section, we present the strategy for globally optimizing antenna structures as proposed in this study. 
Our technique primarily revolves around a machine learning (ML) framework utilizing kriging interpolation 
surrogates, with a particle swarm optimizer (PSO) being the core optimization procedure. These surrogates are 
constructed within a reduced-dimensionality domain, established through fast global sensitivity analysis (FGSA). 
FGSA is specifically designed to swiftly determine the most critical directions in the parameter space on a global 
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scale. The domain spanned along these directions captures the majority of antenna response variability, while its 
low dimensionality enables the construction of reliable surrogates using only limited training data samples. The 
ML search process, guided by the predicted objective function improvement as criterion for infill point genera-
tion, is further supplemented by local gradient-based parameter tuning.

The subsequent part of this section is structured as follows: “Design task formulation” section revisits the 
formulation of the optimization task. Fast regression-based global sensitivity analysis is discussed in “Fast global 
sensitivity analysis” section, while “Global search stage” section delves into the global search stage. Details of 
the local tuning algorithm are provided in “Final tuning” section. Finally, the entire procedure is summarized 
in “Complete optimization procedure” section.

Design task formulation
Meticulous adjustment of parameters is imperative to ensure the best possible operation of antennas. One of 
the key aspects of this process is appropriate quantification of design quality. This is typically arranged through 
a scalar cost function, defined so that its lower value are associated with a better design. If several objectives 
are present, they are typically aggregated (using, e.g., a weighted function approach95) or cast into constraints96.

Figure 1 provides information about the notation utilized in this context. With this terminology, the simu-
lation-driven antenna optimization task can be posed as

here x* stands for the optimum parameter vector. Antenna responses are evaluated by means of EM simulation.
More often than not, there are constraints imposed upon task (1) denoted as gk (inequality conditions) and hk 

(equality conditions), cf. Figure 1. Constraint handling may be implicit96, where the problem (1) is re-stated as

In (2), UP is composed of the cost function U and the penalty functions. We have

where ck(x) evaluate constraint violations, while coefficients βk control the impact of penalty terms on UP.
Figure 2 illustrates various scenarios of antenna design optimization. It is worth noting that the penalty 

functions depicted therein account for the relative constraint violation concerning the assumed acceptance level 
(e.g., − 10 dB for |S11|). Utilizing the second power ensures that UP becomes a differentiable function of constraint 
violation at the boundary of the feasible region, thereby facilitating its exploration. The latter is crucial because 
one or more constraints are typically active at the optimal design. The frequency spectrum F of interest may 
constitute a single continuous range of frequencies for a single-band antenna, particularly for broadband anten-
nas, i.e., F = [f1 f2], or it may represent a number of target operating frequency ranges for a multi-band antenna, 
i.e., F =

[

f1.1f1.2
]

∪
[

f2.1f2.2
]

∪ · · · ∪
[

fN .1fN .2

]

 , where N is a number of bands.

Fast global sensitivity analysis
The global search algorithm introduced in this study relies on data-driven surrogate models. The major bottle-
neck of behavioural modelling of antenna structures is a combined effect of the parameter space dimensionality, 
nonlinearity of antenna outputs, but also wide ranges of design variables. Dimensionality reduction is a key factor 
that may facilitate the construction of reliable surrogates at reasonable computational expenses.

(1)x∗ = argmin
x∈X

U(x)

(2)x∗ = argmin
x

UP(x)

(3)UP(x) = U(x)+

ng+nh
∑

k=1

βkck(x)

Fig. 1.   Antenna optimization: notation and terminology.
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In the realm of global search, the approaches available in the literature include variable screening (e.g., Pearson 
correlation coefficients97, partial correlation coefficients98, Morris method99), but also global sensitivity analysis 
(GSA), e.g., Sobol indices100, regression-based methods101, or Jansen method102. The purpose of these methods is 
to determine relative impact of the specific parameters, which allows the user to exclude those that are of minor 
significance. However, the majority of the mentioned approaches are costly, i.e., entail large number of samples, 
required to evaluate the sensitivity indicators. Furthermore, in antenna design, the exclusion of individual vari-
ables is usually not advisable because most of geometry parameters affect antenna responses through combined 
effects with other parameters. This prompts to the development of an alternative GSA approach, which is to 
satisfy the following conditions:

•	 Low computational cost (e.g., less than a hundred EM simulations);
•	 The ability to determine essential directions in the design variable space that are of importance from the 

perspective of their effects on antenna characteristics, rather than to identify individual parameters.

In the following, we will provide the outline and elucidate the details of the proposed fast GSA (referred to 
as FGSA) developed to comply with the aforementioned conditions.

Fast global sensitivity analysis
Figure 3 shows the operating flow of the fast GSA technique (referred to as FGSA). Spectral analysis of the 
relocation matrix S yields the eigenvectors ej, representing the parameter space directions that have decreasing 
effects on the antenna response variability. The importance of particular directions in the above sense is quanti-
fied using the corresponding eigenvalues λj. The vectors ej, j = 1, …, n, constitute an orthonormal basis in the 
design variable space X.

The outcome of FGSA will allow us to define a reduced-dimensionality domain of the metamodel, which 
will be used in the global optimization phase of our algorithm, cf. “Global search stage” section. The domain is 
determined by a few essential eigenvectors. Their number is determined as the smallest integer Nd ∈ {1, 2, …, 
n} that satisfies

According to (8), Nd is the minimum number of vectors for which the overall (relative) least-square antenna 
response variability exceeds the user-defined threshold Cmin. For the sake of verification experiments described 

(8)

√

∑Nd
j=1 �

2
j

√

∑n
j=1 �

2
j

≥ Cmin.

Fig. 2.   Examples of parameter tuning scenarios for antenna structures.
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in “Verification experiments” section, we set Cmin = 0.9, i.e., it is assumed that the domain-defining directions 
should account for at least ninety percent of the overall response variability.

Examples  To illustrate FGSA, let us consider a few examples, starting from a linear function f(x) = f([x1 
x2]T) = 3x1 − 2x2, shown in Fig. 4. Linearity of f allows us to immediately identify the direction of maximum 
variability, which is the gradient g = [3 − 2]T. Applying FGSA with twenty random observables leads to the same 
result (cf. Figure 4b). Two additional examples have been shown in Fig. 5. These are also arranged to allow visual 
assessment of the direction of maximum variability (as the vector perpendicular to the function ‘ripples’), which 
is confirmed using FGSA, again, executed using twenty random observables.

The final example is an antenna illustrated in Fig. 6a. The design variable space contains ten parameters, 
x = [l1l2l3r l4l5rw1w2w3w4w5]

T . The FGSA procedure has been executed using fifty random observables uni-
formly allocated in X = [l u]T, which is a set delimited by the bounds l = [20.0 3.0 0.6 3.0 0.6 0.5 2.5 0.5 2.5 0.5]T, 
and u = [50.0 5.0 0.85 5.0 0.85 1.5 3.5 1.5 3.5 1.5]T.

1. Input parameters:
- Parameter space X;
- Computational model R(x);
- Number of samples Ns;

2. Generate Ns random vectors xs
(k) X, k = 1, …, Ns, preferably in a uniform manner. Here, 

we use modified Latin Hypercube Sampling (LHS) 104;
3. Acquire EM simulation data R(xs

(k)), k = 1, …, Ns;
4. For each k = 1, …, Ns, find xc

(k) = xs
(jmin) such that 

In other words, xc
(k) is the vector closest to xs

(k) in the norm sense;
5. Compute (normalized) relocation vectors 

( ) ( )
( )

( ) ( )

k k
k c s
s k k

c s

x xv
x x

                                                       (5)

and the corresponding (normalized) response variabilities 
( ) ( )

( )

( ) ( )

( ) ( )k k
k c s

s k k
c s

r R x R x
x x

                                                 (6)

for k = 1, …, Ns;
6. Define a Ns n relocation matrix S as

(1) (1)

( ) ( )

( )

( )s s

T
s s

N N T
s s

r

r

v
S

v
                                                         (7)

The rows of S represent relocation vectors normalized with respect to their importance in 
terms of how they affect the circuit response in the norm sense;

7. Perform spectral analysis of S 105 in order to find its eigenvectors ej (principal 
components) and the corresponding eigenvalues j, j = 1, …, n. The eigenvalues are 

ordered, so that 1 2  … n.

Fig. 3.   Pseudocode of the proposed fast global sensitivity analysis (FGSA). The eigenvectors ej represent the 
parameter space directions having major effects on antenna responses; the importance is quantified using the 
eigenvalues λj

103,104.
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                               (a)                                                                (b)

Fig. 4.   FGSA illustration using a linear function f(x) = f([x1 x2]T) = 3x1 − 2x2: (a) surface plot of the function 
(gray), twenty random observables xs

(k) (circles), and relocation vectors xc
(k) − xs

(k) (line segments); (b) relocation 
matrix vectors rs

(k)vs
(k) (thin lines), the largest principal component e1 (thick solid line), and the normalized 

gradient g = [3 − 2]T/131/2 (thick dotted line). In this example, all function variability occurs along the gradient 
g (the function is constant in the direction orthogonal to g), which is well aligned with the vector e1, obtained 
using the proposed FGSA.

                              (a)                                                                  (b)

                               (c)                                                                 (d)

Fig. 5.   FGSA illustration using nonlinear functions of two variables: (a) surface plot of the first function 
(gray), twenty random observables xs

(k) (circles), and relocation vectors xc
(k) − xs

(k) (line segments), as well as the 
principal component e1 (thick arrow); (b) relocation matrix vectors rs

(k)vs
(k) (thin lines), and the largest principal 

component e1 (thick solid line); (c) and (d) surface plot and relocation matrix vectors for the second function. 
It can be noticed that the vector e1 obtained using FGSA visually corresponds to the direction of the largest 
variability of the function f(x).
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The EM-evaluated reflection characteristics have been illustrated in Fig. 6c for several randomly-selected 
parameter vector x(j), j = 1, …, 4, and designs perturbed along the eigenvectors ek, i.e., x(j) + hek, k = 1, …, n. As 
expected, on the average, the response variability is the largest for k = 1, and it is gradually reduced for increas-
ing k.

The actual response variability was estimated using Nr = 50 random designs, xr
(k), k = 1, …., Nr, along with 

the perturbations xr
(k.j) = xr

(k) + hej, j = 1, …, n. Using the EM simulation data R(xr
(k)), k = 1, …, Nr, and R(xr

(k.j)), 
k ∈ {1, …, Nr}, j ∈ {1, …, n}, the response variability factors were obtained as

for j = 1, …, n. Note that dRj stand for the average response variability along the eigenvector ej. Normalized 
values of dRj agree well with the normalized eigenvalues λj, as indicated in Fig. 6b. This, again, demonstrates the 
relevance of FGSA.

The principal benefit of FGSA is its efficacy. As mentioned earlier, most of global sensitivity analysis tech-
niques (e.g., Sobol indices100, regression-based methods101), while offering a better accuracy, require much larger 
datasets, often ranging from hundreds to even thousands of samples. FGSA is executed with only a few dozen 
observables. Another advantage of this technique is its ability to identify principal directions that are arbitrarily 
allocated (i.e., do not have to coincide with the coordinate system axes). The latter allows exploring joint param-
eter effects on antenna responses, rather than eliminating individual parameters.

(9)dRj =
1

Nr

Nr
∑

k=1

∥

∥

∥
Rf

(

x
(k)
r

)

− Rf

(

x
(k·j)
r

)∥

∥

∥

j 1 2 3 4 5 6 7 8 9 10

j 1.00 0.67 0.54 0.43 0.40 0.32 0.24 0.23 0.19 0.13

dRj 1.00 0.76 0.52 0.46 0.25 0.40 0.29 0.26 0.25 0.19

(a) (b)

                            Design 1                                                 Design 2                                                   Design 3

(c)
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Fig. 6.   FGSA illustration using a triple-band dipole: (a) antenna architecture; the antenna is implemented 
by etching the slots (shown white) in the upper metallization (gray). The structure is realized on a dielectric 
substrate of thickness 0.76 mm (cf. Table 2 for more details); (b) normalized eigenvalues of the relocation matrix 
S obtained using FSGA based on fifty random samples, as well as average EM-simulated variability indicators 
dRj computed as in (9); (c) reflection responses at three random designs (left, middle, and right panels), and 
designs perturbed along the first four principal components, x + hek with h = 0.1 (from top to bottom) obtained 
using FGSA. Responses at design x shown as solid line, responses at perturbed design shown using dashed 
lines. It can be observed that response variability is gradually reduced for increasing k, which demonstrates that 
subsequent eigenvectors correspond to directions having less and less effect on antenna characteristics.
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It should be emphasized that FGSA allows us to evaluate the average effects of particular parameter space 
directions on the antenna responses. These may slightly change in various parts of the parameter space. However, 
quantification of the average effect is exactly what we need because the purpose of FGSA is dimensionality reduc-
tion for global optimization. Furthermore, for most antenna structures, the changes of specific parameters (or 
combinations thereof) have similar effect on antenna responses regardless of a particular design. For example, 
adjusting a slot size in the dual- or triple-band antennas affect one of the resonant frequencies in a similar way 
(i.e., if shortened, the frequency is increased, cf. “Verification experiments” section).

Dimensionality‑reduced model domain
FGSA aims to identify Nd directions within space X, which are essential in terms of their effects on antenna 
response variability. These directions (eigenvectors ej, j = 1, …, Nd) are used here to define the dimensionality-
reduced region Xd. The set Xd serves as a region of validity of the fast metamodel constructed to predict the 
antenna responses therein. The same region will also be used as a search domain for the global optimization stage.

The set Xd is defined as

Thus, Xd is an intersection of the original domain X and the set of vectors xc + a1e1 + … + aNdeNd, where 
xc = [l + u]/2 is the center of X, and aj, j = 1, …, Nd, are real numbers. Figure 7 provides a conceptual illustration 
of Xd.

Reducing dimensionality is essential for the accuracy of the surrogate (here, rendered as a kriging interpola-
tion model78). In particular, as dim(Xd) = Nd < n, a usable metamodel can be built with the use of a amount of 
training data. Reducing the training set carried over to improved efficiency of the search process. Meanwhile, 
the surrogate’s region of validity encapsulates directions that are significant for the antenna response variability, 
thereby ensuring its design utility.

Global search stage
The first (global) optimization stage incorporates two steps. It is commenced by constructing an initial surrogate 
model within domain Xd determined using the procedure explained in “Dimensionality-reduced model domain” 
section. Subsequently, a machine learning process is launched, by means of which the globally optimum design 
is sought for. In each iteration of this process, the PSO algorithm yields the next (infill) point by minimizing 
surrogate-predicted objective function. Meanwhile, the surrogate itself is refined based on the accumulated 
EM simulation data. These two steps are elucidated in “Initial surrogate” and “Machine-learning-based global 
optimization” sections.

Initial surrogate
The first surrogate is established in the reduced-dimensionality region Xd using kriging78. The kriging model 
setup is as follows: (i) second-order polynomial as a trend function, (ii) Gaussian correlation functions 
R(h) = exp(− ∑j=1,…,nhjθj), where h = [h1 … hn]T, and θj are the model’s hyperparameters. The training dataset size 
is NiNd, where Ni is the user-defined multiplier (here, set to Ni = 20). The samples xB

(k), k = 1, …, NiNd, are allocated 
uniformly in Xd, and the model stmp(x) is constructed using the dataset {xB

(k),R(xB
(k))}k = 1, …, NiNd, with the antenna 

responses R(xB
(k)) acquired using EM analysis. Subsequently, the infill points are generated by increasing the 

mean square error (MSE) predicted by the current surrogate model

(10)Xd =







x ∈ X : x = xc +

Nd
�

j=1

ajej







∩ X.

(11)x
(NiNd+j)
B = argmax

x∈Xd

MSE(stmp(x))

x1

x3

x2

xc

Original parameter

space X

Affine subspace

xc + jajej

Surrogate model domain 

Xd = X {xc + jajej}

e1 e2

Fig. 7.   Reduced-dimensionality domain Xd. Here, the original parameter space is three dimensional, whereas 
Xd is determined by two eigenvectors e1 and e2. Note that Xd is a set theory intersection of X and the affine 
subspace xc + Σj=1,2 ajej.
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for j = 1, 2, …. The model refined based on the extended training set {xB
(k),R(xB

(k))}k = 1, …, NiNd + j, until the cross-
validated105 relative RMS error falls below the user-defined threshold Emax, or the total number of samples exceeds 
2NiNd (maximum computational budget).

This arrangement places new training samples in locations corresponding to the maximum predicted model 
error, which improves the surrogate’s global accuracy over the domain Xd. Upon the conclusion of this stage, the 
current model stmp(x) becomes the initial surrogate s(0)(x). The process of constructing the initial metamodel 
has been depicted in Fig. 8.

Machine‑learning‑based global optimization
The global optimization stage is a machine learning framework utilizing the initial model s(0) obtained using the 
guidelines elucidated in “Global search stage” section and the subsequent surrogates s(j), j = 1, 2, …, constructed 
from the EM data acquired in the process.

The parameter vector x(i+1) is generated for i = 0, 1, 2, …, by solving the nonlinear minimization task

The function US in (12) has the same analytical form as elucidated in “Design task formulation” section. 
The subscript S is used to indicate the dependence of US on the metamodel s(i)(x), which is used instead of EM 
analysis when solving (12).

A solution to (12) is obtained in a global sense over the surrogate model domain Xd by means of PSO106, which 
is perhaps the most widely used bio-inspired routine in engineering. Nevertheless, the particular algorithm choice 
is of little importance as (12) is straightforward to handle because of the low evaluation cost of US(x,s(i)(x)). In 
particular, the CPU cost of solving (12) can be neglected when compared with EM analysis of the underlying 
antenna structure, even if PSO operating under a large computational budget (e.g., 10,000 objective function 
evaluations or so).

It should be emphasized that the formulation (12) is equivalent to using the predicted merit function improve-
ment as an infill criterion107. The parameter vectors x(i) generated by (12) approximate the optimum design. 
Furthermore, they are employed to refine the surrogate model. More specifically, the model s(i)(x) is rendered 
using the dataset {xB

(k),R(xB
(k))}k = 1, …, 2NiNd + i, where xB

(2NiNd+i) = x(i) for i = 1, 2, ….
The termination criteria for the global search phase are as follows (treated as a logical alternative): (i) 

||x(i+1) − x(i)||< ε (convergence in argument), (ii) no improvement of the EM-evaluated merit function over the 
last Nno_improve iterations. The control parameters are set to ε = 10−2 and Nno_improve = 20 in the validation part of the 
paper (“Verification experiments” section).

Final tuning
The parameter vector produced during the global optimization phase is further enhanced through local param-
eter tuning over the original design variable space X. This is to ensure that a truly optimum design is found. 
Recall that global optimization is performed in the dimensionality-reduced domain Xd, which, although defined 
to cover the most important directions within X, does not account for the entire space.

Here, the specific routine is the trust-region (TR) algorithm108, recalled below. The TR procedure solves the 
problem (1), x∗ = argmin

x∈X
U(x) , over the original space X. It works iteratively by generating subsequent approxi-

mations to x*, marked as x(i), i = 0, 1, … The design x(i+1) is obtained as

(12)x(i+1) = arg min
x∈Xd

US

(

x, s(i)(x)
)

.

Fig. 8.   Initial surrogate model construction.
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where L(i)(x) = R(x(i)) + JR(x(i))⋅(x − x(i)) is a linear approximation model of R at the current iteration point x(i). The 
function UL

(i) coincides with U yet it is computed based on L(i)(x) rather than directly EM-simulated antenna 
responses R(x). This is emphasized by explicitly indicating the dependence of UL on L(i)(x). The size parameter 
d(i) is modified based using conventional rules108. The algorithm is stopped either if ||x(i+1) − x(i)||< εTR, or if 
d(i) ≤ εTR, whichever occurs first. The user-defined parameter εTR is a control variable of the algorithm (here, set 
to εTR = 10−3).

The antenna response Jacobian JR(x(i)) is estimated by means of finite differentiation (FD)109 during the 
initial iterations. The associated cost is n EM analyses. When ||x(i+1) − x(i)||≤ 10εTR, i.e., the process approaches 
convergence, FD is replaced by a Broyden update110. Therein, the matrix JR is updated using information about 
the design relocation and antenna response at the latest iteration111:

where f (i+1) = R
(

x(i+1)
)

− R
(

x(i)
)

, and h(i+1) = x(i+1) − x(i) . This enables considerable computational savings 
as evaluation of (14) does not involve EM analysis.

Complete optimization procedure
The global search procedure suggested in this study utilizes the algorithmic component introduced in “Fast 
global sensitivity analysis” and “Global search stage” sections: fast global sensitivity analysis (FGSA), surrogate 
modelling using kriging, surrogate-assisted machine learning framework, as well as local parameter tuning using 
the trust-region algorithm.

The control variables of the presented algorithm have been collected in Table 1. The meaning and the default 
values of these parameters were already discussed in the previous parts of the paper. It should be emphasized 
that apart from the parameters related to the termination condition (ε, Nno_improve, εTR), which permits adjustment 
of the search process resolution, there are only three control variables: Nr, Ni, and Emax.

None of them is critical. On the one hand, changing the number of random observables for FGSA does not 
have a dramatic effect on the sensitivity analysis outcome as the effects of particular parameter space directions 
are averaged over the parameter space. On the other hand, Ni and Emax are only used for initial surrogate model 
rendition, which is subsequently refined within the machine learning optimization loop. This means that the 
algorithm does not require tuning for any specific problem. To demonstrate this feature, identical setup will be 
used (as specified in the last column of Table 1) for validation experiments discussed in “Verification experi-
ments” section.

Figures 9 and 10 showcase the operating steps and the flow diagram of the proposed methodology. The major 
steps include global sensitivity analysis (Step 2), determination of the model’s domain and initial model rendition 
(Steps 3 and 4), machine learning global search stage (Steps 6 through 10), and local parameter tuning (Step 12). 
Global optimization involves iterative generation of the candidate designs as well as surrogate model refinement 
using the EM data garnered during the search process.

Verification experiments
The global search procedure presented in “Machine-learning-based global optimization by means of dimensional-
ity-reduced surrogates” section is showcased with the help of four planar antennas. These antennas are optimized 
for various case-dependent scenarios, including matching improvement at target operating frequencies, match-
ing improvement over a continuous frequency spectrum, and maximization of in-band gain. Our framework’s 
performance is juxtaposed against bio-inspired optimization (specifically, PSO), multiple-start gradient-based 
search, and a machine-learning procedure operating in the original parameter space. The key performance 
factors include design quality, dependability of the optimization process, and its cost efficiency. The remaining 

(13)x(i+1) = arg min
x;�x−x(i)�≤d(i)

UL

(

x, L(i)(x)
)

(14)J
(i+1)
R = J

(i)
R +

(

f (i+1) − J
(i)
R · h(i+1)

)

· h(i+1)T

h(i+1)Th(i+1)
, i = 0, 1, . . .

Table 1.   Proposed algorithm: control parameters.

Parameter Meaning Default value

Nr
Number of random observables for fast global sensitivity analysis (FGSA), cf. “Fast global sensitivity analy-
sis” section 50

Ni

Multiplier for the number of uniformly-distributed data samples for initial surrogate model construction; 
the actual number of samples is NiNd, with Nd being the dimensionality of the reduced domain Xd (cf. 
“Initial surrogate” section)

20

Emax Maximum value of relative RMS error of the initial surrogate model (error estimated using cross-validation) 20%

ε Termination threshold for convergence in argument, cf. “Machine-learning-based global optimization” 
section 10−2

Nno_improve
Termination threshold for no objective function value improvement, cf. “Machine-learning-based global 
optimization” section 10

εTR Termination threshold for local parameter tuning stage, cf. section “Final tuning” section 10−3
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Fig. 9.   Pseudocode of the proposed procedure. The essential part of the algorithm is dimensionality-reduced 
surrogate established in the domain defined using the proposed fast global sensitivity analysis scheme.

Fig. 10.   Flow diagram of the FGSA-based optimization procedure.
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parts of this section are arranged as follows: “Test cases” section outlines the test cases. The experimental setup 
and results are presented in “Results” section, followed by a discussion of the results in “Discussion” section.

Test cases
Our verification antenna set consists of four microstrip structures:

•	 Dual-band uniplanar dipole fed by a coplanar-waveguide (CPW) (Antenna I)112;
•	 CPW-fed triple-band dipole (Antenna II)113;
•	 Compact ultra-wideband (UWB) monopole (Antenna III)114;
•	 Quasi-Yagi antenna with integrated balun (Antenna IV)115.

The antenna geometries can be found in Fig. 11. Table 2 puts together data on material parameters, design var-
iables, target center frequencies, and lower and upper bound vectors l and u defining the original design variable 
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Fig. 11.   Test cases: Antennas I, II, III, and IV112–115. Antennas geometries are shown in panels (a) through (d), 
respectively. The ground planes for Antennas III and IV are marked using the light-shade grey.

Table 2.   Verification antenna structures. $ Dimensions in mm, except relative one (with subscript r), which are 
unitless.

Parameter

Antenna structure

Antenna I Antenna II Antenna III Antenna IV

Substrate RO4350 (εr = 3.5, h = 0.76 mm) RO4350 (εr = 3.5, h = 0.76 mm) RF-35 (εr = 3.5, h = 0.762 mm) RO4003 (εr = 3.38, h = 1.5 mm)

Design parameters$ x = [l1 l2 l3 w1 w2 w3]T x = [l1 l2 l3r l4 l5r w1 w2 w3 w4 w5]T x = [L0 dR R rrel dL dw Lg L1 R1 
dr crel]T

x = [La Lb Lc Ld W wa Da Db Dc Dlr 
Drr Sr wbr wcr]T

Other parameters$ l0 = 30, w0 = 3, s0 = 0.15, o = 5 l3 = l3rl1 and l5 = l5rl3; l0 = 30, w0 = 3, 
s0 = 0.15, o = 5 w0 = 1.7 Dl = DlrLa, Dr = DrrLa, S = SrW, 

wb = wbrW/2, wc = wcrW, w0 = 3.4

EM model CST Microwave Studio CST Microwave Studio CST Microwave Studio CST Microwave Studio

Target operating frequencies 
[GHz]

2.45 GHz
5.3 GHz

2.45 GHz
3.6 GHz
5.3 GHz

3.1–10.6 GHz 2.5 GHz

Design goals Minimize reflection at all operat-
ing frequencies

Minimize reflection at all operat-
ing frequencies

Minimize reflection within the 
entire UWB band

Maximize realized gain 
in ± 100 MHz bandwidth centred 
at ft; Constraint: |S11|≤ − 10 dB 
at the same bandwidth

Parameter space X l = [15 3 0.35 0.2 1.8 0.5]T u = [50 
12 0.85 1.5 4.3 2.7]T

l = [20 3 0.6 3 0.6 0.2 0.2 0.2 0.2 
0.2]T u = [50 5 0.85 5 0.85 2.2 4.2 
2.2 4.2 2.2]T

l = [4.0 0.0 3.0 0.1 0.0 0.0 4.0 0.0 2.0 
0.2 0.2]T u = [15.0 6.0 8.0 0.9 5.0 
8.0 15.0 6.0 5.0 1.0 0.9]T

l = [15 5 1 15 25 0.5 1 1.5 1.5 0.05 
0.4 0.5 0.5 0.5]T u = [35 25 8 40 60 
2.5 3.0 4.5 4.5 0.25 0.9 1.0 1.0 1.0]T
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space X. The EM models are prepared in CST Microwave Studio116. Frequency characteristics are computed using 
the time-domain solver. For Antennas I and II, the design goal is matching improvement at individual (target) 
frequencies. Antenna III is optimized for best impedance matching within the UWB band (3.1–10.6 GHz), 
whereas the goal for Antenna IV is maximization of the in-band gain within 200 MHz band centred at 2.5 GHz.

The presented optimization problems are intricate due to the nonlinearity of antenna responses and broad 
geometry parameter ranges, but also design variable space dimensionality (from six variables for Antenna I to 
fourteen for Antenna IV). The average upper-to-lower bound ratio is 4.2, 8.4, 2.8, and 2.6 for Antennas I through 
IV; however, for Antenna III, the parameters with the zero lower bound have been excluded from calculations.

Results
The arrangements used for the suggested framework and the benchmark techniques are encapbulated in Table 3. 
Our algorithm is run using the default values for the control variables, see Table 1. The first benchmark algorithm 
(Algorithm I) is perhaps the most popular (and exemplary) nature-inspired routine, i.e., particle swarm opti-
mizer (PSO)106. It is run in two versions, with the computational budget of 500 (Version I) and 1,000 (Version II) 
objective function evaluations. Note that these budgets are low for population-based methods yet considerable 
given that PSO directly optimizes EM simulation models. The second routine (Algorithm II) is a multiple-start 
gradient procedure (here, we use the trust-region algorithm, similar to that outlined in “Final tuning” section). 
It is employed to showcase that the verification problems considered here are multimodal. The third benchmark 
algorithm (Algorithm III) is a machine-learning procedure employing the same type of surrogate model (krig-
ing) and the same infill criterion as the proposed technique; however, it operates in the original parameter space 
of full dimensionality. This algorithm is included to showcase the advantages of dimensionality reduction fully.

The results for Antennas I, II, III, and IV are compiled in Tables 4 through 7, respectively. All algorithms 
were executed ten times each, and the data in the tables represent the mean values of the performance indicators 
(merit function value and its standard deviation, CPU cost). Additionally, the success rate is reported, indicating 
the number of runs (out of ten) for which the given algorithm successfully identified a design with operating fre-
quencies sufficiently close to the target values. Furthermore, Figs. 12, 13, 14 and 15 depict the antenna responses 
upon completing the global search stage and at the final designs for representative algorithm runs.

Discussion
In this section, we analyze the numerical data presented in Tables 4, 5, 6 and 7 and provide a summary of the 
performance of the suggested algorithm. We also discuss its comparison with benchmark methods. The follow-
ing observations emerge from our analysis:

Table 3.   Benchmark algorithms.

Algorithm Algorithm type Setup

This work FGSA-based surrogate-assisted machine-learning framework with dimensionality 
reduction

Control parameters: Nr = 50, Ni = 20, Emax = 20%, ε = 10−2, Nno_improve = 20, εTR = 10−3 
(see Table 1 for explanation of terms)

I Particle swarm optimizer (PSO) Swarm size N = 10, standard control parameters (χ = 0.73, c1 = c2 = 2.05); number of 
iterations set to 50 (version I) and 100 (version II)

II Trust-region gradient based optimizer108
Random initial design, response gradients estimated using finite differentiation, 
termination criteria based on convergence in argument and reduction of the trust 
region size108

III Machine-learning procedure

Algorithm setup:
Initial surrogate set up to ensure relative RMS error not higher than 20% with the 
maximum number of training samples equal to 400
Algorithm operates in the original parameter space (no dimensionality reduction)
Infill criterion: minimization of the predicted objective function

Table 4.   Results for Antenna I. $ The cost expressed in terms of the number of EM simulations of the antenna 
structure under design. # Number of algorithms runs at which the operating frequencies were allocated in the 
vicinity of the target frequencies.

Optimization algorithm

Performance figure

Average objective function value (dB) Standard deviation of objective function (dB) Computational cost$ Success rate#

Algorithm I: PSO (50 iterations)  − 18.2 3.2 500 9/10

Algorithm I: PSO (100 iterations)  − 19.3 2.7 1000 10/10

Algorithm II: Trust-region gradient-based 
algorithm  − 13.5 4.3 84.2 6/10

Algorithm III: Machine learning operating in 
the original parameter space X  − 20.7 1.3 457.8 10/10

Proposed algorithm  − 20.6 1.8 221.8 10/10
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•	 Global optimization capability and design reliability The numerical data indicates that the proposed optimi-
zation framework achieves a perfect success rate, i.e., it is capable of yielding acceptable design at each run 
(i.e., 10/10). Its operation is consistent for all four antenna structures. Meanwhile, the results for Algorithm 
II (multiple-start gradient search) corroborate that all considered tasks are multimodal: the success rate is 
only 6/10, 4/10, 5/10, and 1/10 for Antennas I through IV, respectively. Algorithm I (PSO) performs better; 
however, its average success rate is only 8/10 for the budget of 500 EM analyses. It is improved but still not 
perfect for all antennas for the budget of 1,000, which—as expected—indicates that nature-inspired search 
normally requires much higher number of objective function evaluations to ensure success. The machine 
learning framework (Algorithm III) outperforms PSO, and its success rate is as good as that of the proposed 
technique (10/10 for all problems but Antenna III). Yet, due to operating in the full-dimensionality param-
eter spaces, its computational cost is higher. The competitive reliability-wise performance of the proposed 
procedure is also reflected in the standard deviation of the objective function values reported in Tables 4, 5, 6 
and 7. As it can be observed, standard deviation is the lowest for our algorithm (only matched by Algorithm 
II for some test cases), which is another indication of excellent repeatability of results.
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Fig. 12.   Antenna I reflection characteristics at the designs found using the proposed algorithm: starting point 
x(0) found through global search (- - -), final design (—). The pictures (a)–(d) show results for four exemplary 
runs. Target center frequencies denoted as vertical lines.
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Fig. 13.   Antenna II reflection characteristics at the designs found using the proposed algorithm: starting point 
x(0) found through global search (- - -), final design (—). The pictures (a)–(d) show results for four exemplary 
runs. Target center frequencies denoted as vertical lines.
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Fig. 14.   Antenna III reflection characteristics at the designs found using the proposed algorithm: starting point 
x(0) found through global search (- - -), final design (—). The pictures (a)–(d) show results for four exemplary 
runs. Target operating bandwidth marked using the horizontal line at the acceptance threshold of − 10 dB.

                                         (a)                                                                                      (b)                                    

)d()c(

2 2.2 2.4 2.6 2.8 3

Frequency [GHz]

-20

-10

0

10

|S
1
1
|,

G
ai

n
[d

B
]

2 2.2 2.4 2.6 2.8 3

Frequency [GHz]

-20

-10

0

10

|S
1
1
|,

G
ai

n
[d

B
]

2 2.2 2.4 2.6 2.8 3

Frequency [GHz]

-20

-10

0

10

|S
1
1
|,

G
ai

n
[d

B
]

2 2.2 2.4 2.6 2.8 3

Frequency [GHz]

-20

-10

0

10

|S
1
1
|,

G
ai

n
[d

B
]

Fig. 15.   Antenna IV reflection (black) and realized gain (gray) characteristics at the designs found using the 
proposed algorithm: starting point x(0) found through global search (- - -), final design (—). The pictures (a)–(d) 
show results for four exemplary runs. Vertical and horizontal lines mark the target bandwidth 2.4–2.6 GHz, and 
the intended impedance matching bandwidth level of − 10 dB.

Table 5.   Results for Antenna II. $ The cost expressed in terms of the number of EM simulations of the antenna 
structure under design. # Number of algorithms runs at which the operating frequencies were allocated in the 
vicinity of the target frequencies.

Optimization algorithm

Performance figure

Average objective function value (dB) Standard deviation of objective function (dB) Computational cost$ Success rate#

Algorithm I: PSO (50 iterations)  − 10.8 4.1 500 5/10

Algorithm I: PSO (100 iterations)  − 13.8 3.0 1000 8/10

Algorithm II: Trust-region gradient-based 
algorithm  − 7.8 4.8 105.8 4/10

Algorithm III: Machine learning operating in 
the original parameter space X  − 13.5 3.5 470.0 10/10

Proposed algorithm  − 15.4 2.4 303.7 10/10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21567  | https://doi.org/10.1038/s41598-024-72478-w

www.nature.com/scientificreports/

•	 Design quality The objective function value is employed here as the design quality metric. For Antennas I 
through III, it is the maximum level of in-band |S11|. For Antenna IV it is the end-fire realized gain at the 
center frequency. The numerical results of Tables 4, 5, 6 and 7 demonstrate that our algorithm produces 
designs of the highest quality in comparison to all benchmark techniques. The second best method is Algo-
rithm III (machine learning working in the original design variable space X), for which the design quality is 
essentially the same as for the proposed approach for Antennas I and IV. Multiple-start gradient optimiza-
tion produces inferior results on the average because for most runs, the search process is stuck in poor local 
optima. The performance of the PSO algorithm improves between the budget of 500 and 1,000 objective 
function evaluations, which, again, corroborates the previous observation that this sort of methods normally 
require significantly higher budgets to become reliable optimizers. It is especially noticeable for Antenna 
IV, where machine learning frameworks allow for achieving end-fire gains better by over 1 dB than the PSO 
algorithm.

•	 CPU efficiency The CPU efficiency of the presented framework is excellent, especially keeping in mind its 
global search ability. The average CPU expenses associated with the algorithm are 300 EM analyses of the 
respective device per run, and the complexity scales almost linearly w.r.t. the number of antenna design 
variables (cf. Figure 16). Clearly, our procedure is more expensive than local optimization; however, in this 

Table 6.   Results for Antenna III. $ The cost expressed in terms of the number of EM simulations of the antenna 
structure under design. # Number of algorithms runs at which the maximum in-band matching was reduced 
below − 10 dB.

Optimization algorithm

Performance figure

Average objective function value (dB) Standard deviation of objective function (dB) Computational cost$ Success rate#

Algorithm I: PSO (50 iterations)  − 12.3 2.8 500 9/10

Algorithm I: PSO (100 iterations)  − 12.6 2.0 1000 10/10

Algorithm II: Trust-region gradient-based 
algorithm  − 7.8 3.2 99.2 5/10

Algorithm III: Machine learning operating in 
the original parameter space X  − 11.8 1.4 471.6 9/10

Proposed algorithm  − 13.2 1.2 308.1 10/10

Table 7.   Results for Antenna IV. & The values reported in the table refer to the realized gain at the target 
operating frequency of 2.5 GHz. $ The cost expressed in terms of the number of EM simulations of the antenna 
structure under design. # Number of algorithms runs at which the operating frequencies were allocated in the 
vicinity of the target frequency.

Optimization algorithm

Performance figure

Average objective function value (dB)&
Standard deviation of objective function 
(dB) Computational cost$ Success rate#

Algorithm I: PSO (50 iterations) 6.1 0.7 500 9/10

Algorithm I: PSO (100 iterations) 6.8 0.5 1000 10/10

Algorithm II: Trust-region gradient-based 
algorithm  − 1.1 2.5 144.3 1/10

Algorithm III: Machine learning operating in 
the original parameter space X 7.9 0.3 583.3 10/10

Proposed algorithm 8.0 0.2 370.4 10/10
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Fig. 16.   Average CPU cost of the proposed global search framework as a function the number of antenna 
parameters. The cost is presented as the number of EM analyses. Vertical bars showcase standard deviation of 
the running cost computed based on ten independent runs.
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work, we are concerned with comparison of the efficiency of global search procedures. When compared 
with Algorithm III, the expenses incurred by the proposed approach are forty percent lower on the average. 
Assuming that the minimum budget of Algorithm I necessary to ensure that its performance is more or less 
comparable to machine learning routines is 2,000 objective function calls, the cost of our technique would 
be then lower by 85 percent.

•	 Comparison with the machine learning procedure operating over the original space X (Algorithm III) indi-
cates a major role of dimensionality reduction in enhancing the dependability and cost efficiency of the search 
process. It should be noted that both the cost of FGSA and final tuning have been included into the overall 
expenses. Yet, even with these extra costs, our technique offers over forty percent savings over Algorithm 
III. Also, for some of the test cases (Antennas II and III) it yields designs of higher quality. Operating in 
lower-dimensionality domain dramatically reduces the cost of setting up surrogate model while improving 
its predictive power. For the particular examples considered in this section, and surrogate model domain 
dimensionalities are Nd = 3 for Antenna I, Nd = 5 for Antenna II, Nd = 4 for Antenna III, and Nd = 5 for Antenna 
IV, which corresponds to reduction factors of 2.0, 2.0, 2.8, and 2.8, respectively with the average of 2.4.

The observations formulated above indicate that the proposed machine learning framework does exhibit 
global search capability, and offers consistent performance for a variety of test cases that include antenna opti-
mization under different scenarios (multi-band, broadband, high gain). In a large part, excellent reliability and 
repeatability of results, as well as low computational cost, are possible due to the involvement of global sensitivity 
analysis, and the resulting dimensionality reduction. The latter allows for constructing decent-quality surrogate 
models at low CPU cost when compared to what is required in full-dimensional parameter spaces. This carries 
over to improved efficacy and the quality of the designs generated by the presented algorithm. Further, the pro-
posed framework has just a few control variables. Apart from those related to the termination criteria (which, 
in fact, decide upon the resolution of the optimization process), there are only three parameters, the values of 
which are not critical, as shown by utilizing identical setup for all verification antenna structures.

Conclusion
This paper introduced an innovative technique for global optimization of antenna structures. The presented 
approach capitalizes on dimensionality reduction realized through dedicated fast global sensitivity analysis 
(FGSA) procedure. FGSA allows us to determine the directions within the parameters space that are important 
for their effects on antenna responses. Restricting the global search stage to the sub-space spanned by a few 
directions facilitates the construction of fast replacement models (surrogates), working as predictors within the 
machine learning loop. The latter employs predicted objective function improvement as an infill criterion and 
enables rapid identification of the parameter space regions encapsulating high-quality designs. The final design 
is obtained using auxiliary local (gradient-based) tuning over the original parameter space. The incorporation 
of the aforementioned tools leads to a framework that operates consistently and reliably while exhibiting low 
computational cost. These features have been corroborated through extensive numerical validation that involves 
four antenna structures of distinct characteristics. The associated optimization tasks are challenging both in terms 
multimodality, nonlinearity of antenna responses, as well as large parameter spaces (dimensionality from six to 
fourteen, broad spectra of evaluation frequencies, and wide ranges of designable parameters). Notwithstanding, 
the proposed approach demonstrated consistency and perfect success rate over multiple algorithm runs, but also 
competitive performance w.r.t. the benchmark methods. Meanwhile, its computational efficiency is significantly 
better than that of nature-inspired methods directly handling the EM antenna models. The presented machine 
learning framework is generic, i.e., it does not make any underlying assumptions about the antenna under design 
or its characteristics. It is easy to set up due to a small number of control parameters, and relatively straight-
forward to implement. Consequently, it might become an attractive alternative for existing methods whenever 
global search capability is required at reasonable computational expenses. One of the goals of the future work 
is to investigate the effects of selecting the dimensionality of the reduced domain. At the qualitative level, it is 
expected that reducing dimensionality (i.e., reducing the threshold Cmin) would expedite the optimization process 
while being detrimental to the reliability. Whereas, increasing the dimensionality might further improve the 
design quality while increasing the running time.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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