
APIS – Agent Platform for Integration of Services
Michał Wójcik

Gdańsk University of Technology
Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

Email: michal.wojcik@eti.pg.gda.pl

Paweł Napieracz and Wojciech Jędruch
Gdańsk University of Technology

Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
Email: wjed@eti.pg.gda.pl

Abstract—This paper presents an approach to creating the
platform for development and evaluation of complex tasks
execution algorithms. Proposed solution is based on an agent
paradigm where independent peers can cooperate and negotiate
in order to execute specified tasks which are defined only by
the final output description. Tasks are realized by the means of
services exposed by different peers. In case when there is no
single service fulfilling the submitted task requirements there is
a need for an automated composition of services into a complex
workflow. The platform provides ready to use communication
blocks which can be used for algorithms composition. All the
algorithms developed on the platform are service implementation
independent and are oriented on inter-agent communication.

I. SERVICE COMPOSITION PROBLEM

THE SERVICE composition is not a new problem and
has been already considered in the literature. There is

a number of approaches considering different aspects of the
services:

• Centralized service providers systems (possibly using
distributed resources) which do not provide any kind
of composition [1], but only gives the user access to a
number of different resources in a uniform manner.

• Centralized systems (possibly using distributed resources)
providing workflow static composition and dynamic ser-
vice election features [1]. Those require the user to
define all the tasks in the workflow and the system
itself performs only dynamic services selection based
on the requests QoS parameters. They are often focused
on the specific services architecture instead of generic
algorithms.

• Decentralized agent service providers systems [2]. Those
consider mainly broker agents providing features for dis-
covering and negotiating services execution parameters.
They do not provide any means of workflows composition
but can be used as underlying systems.

• Decentralized agent systems with static workflow compo-
sition [3]. In contrast to centralized systems, can use au-
tonomous agents for dynamic services selection. Agents
acting as services brokers can negotiate compatibility and
QoS parameters of the services.

• Systems, both centralized and decentralized, with dy-
namic workflow composition [4]. Those require from the
users only definition of the required output and optional

Put grant if any

input parameters. Decentralized agent systems with dy-
namic composition are often used in the simulation of
business processes used in the virtual organizations.

It seems natural to use distributed autonomous agent sys-
tems in realization of services composition problem. Dis-
tributed infrastructure provides better handling for faults re-
sulting from particular system elements failures [3] and paral-
lelizated composition processes handled simultaneously by a
number of agent groups.

Most of the services composition systems are focused on
the particular services architectures and description standards
(UDDI, WSDL, OWL-S). The implemented cooperation al-
gorithms are tested together with services efficiency which
does not give the generic knowledge about the algorithms
itself. Moreover, agent solutions not always consider agent
communication standard which makes them even more limited
to a particular solution.

As a part of this work a generic testbed environment, APIS
(Agent Platform for Integration of Services), where agents can
be deployed, was created. Because the platform is not focused
on the particular services architecture it allows for testing
cooperation algorithms in different problem domains. Those
domains are not be limited to any standard service description
and can be defined using simple ontological description. This
allows to focus on cooperation algorithms performance rather
than on services execution performance. The platform provides
means for discovering, negotiating and executing abstract
services using inter-agent communication. In order to preserve
communication comply with standards it is based on the FIPA
communication protocols [5].

Researches presented in the literature shows that I/O de-
scription of services is enough for automatic composition
process. Agents in the APIS platform are capable of mem-
orizing what services are exposed by other agents (knowledge
achieved during workflow composition process) as well as
memorizing a workflow built with those services. This allows
them to once composed complicated workflow be exposed as
a complex service. Of course those complex services are able
to be used in future in composing even more complex ones.
This allows to test algorithms as a tool for emerging services
market.

II. AGENTS AS SERVICE PROVIDERS

According to the most basic definition, an agent is a
computer system that is situated in some environment, and

that is capable of autonomous action in this environment in
order to meet its delegated objectives [6]. It might as well be
an environment of some kind of services. Those can be both,
Web Services distributed on remote machines connected to
the Internet as well as business services representing com-
pany activities mapped into computer system for the sake
of simulations and automation. Agents can be treated as
autonomous services providers and executors existing in such
an environment. Moreover multi agent systems which assume
communication and interaction between agents residing in the
system, are suitable for this cause.

When one agent is going to invoke a service of another one,
there is a need for some kind of agreement between them to be
established. Such an agreement should be made on the basis of
some negotiations and be profitable for both sides. This actions
can be described by Service Level Agreement (SLA) which
is contractual obligations between a service consumer and a
service provider, which can represent guarantees of quality
of service (QoS), non-functional requirements of a service
consumer and promises of a service provider [7]. An SLA
can contain the following components [8]:

• all sides involved into negotiation and execution, those
besides contracting sides are supporting third parties such
as monitoring, auditing, etc.,

• description of the service specifying functionality deliv-
ered under the agreement,

• service level objectives defining the service level of QoS
parameters,

• penalty for cases when service provider fails to comply
with the contract.

III. MODEL OF SELF-ORGANIZATION

This section presents a proposal of solution for the tasks
composition problem. It distinguishes between different roles
which can be taken by composing agents as well as between
different communicative acts used in the composition process.

A. Agent Architecture

Figure 1 presents the APIS agent abstract architecture
overview. It is a variation of the layered architecture where
each of the layer can have a number of sub layers. All the
layers (even the sub layers) can perceive input by a means
of the see function which basically receives messages from
other agents in the environment as well as produce output
made of messages directed to those agents. Layers can be
spawned dynamically by other layers and be attached directly
to agent as well as other layers. All the layers are connected to
agent inner state (for the sake of simplification, the architecture
figure shows only one such a connection) which basically is a
set of a services (both own and those provided by other agents)
known to the agent. Moreover, each of the layers contains
its own state which is shared only with parent layer and sub
layers. This state allows for performing long running actions
based on previous interactions with other agents.

For complex interactions between agents, the sequences of
subsequent perceived environment states is essential. Because

sensor input

Agent
see

sensor input

action

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

see

sensor input

action

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

Environment

action

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

...

services

layer n

layer 2-2-1

layer 2-2

layer 2-1

layer 2

layer 1

see

layer 1

layer 2

layer 2-1

layer 2-2

layer 2-2-1

layer n

services

...

action output

Fig. 1. Agent and its environment in the APIS platform

of that, agent function is defined as a mapping from environ-
ment state sequences to actions:

a : E∗ → A (1)

where:
• A = {α1, α2, . . . , α|A|} is set of all possible agent

actions,
• E = {e1, e2, . . . , e|E|} is set of all possible environment

states.
In this model, the only interaction with environment is done
through messages exchanged between residing agents. The
environment state can be described as one ore more messages
(possibly from different agents) perceived at the same time:

e = {µ1, µ2, . . . , µn} (2)

where:
• µ ∈ M which is a set of all possible messages.

This leads to defining agents actions also as set of messages
(possibly addressed to different receivers):

α = {µ1, µ2, . . . , µn} (3)

Finally, the agent can be defined as mapping from sequences
of messages sets to messages sets:

a : ℘(M)∗ → ℘(M) (4)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

The agent run function can be defined as subsequent envi-
ronment state to action transitions:

r : e0
α0−→ e1

α1−→ e2
α2−→ e3

α3−→ . . .
αu−1−−−→ eu (5)

For the considered system, the actual run is defined as set of
messages to different set of messages transitions:

r : Mi
0

Mo
0−−→ . . .

Mr
u−1−−−−→ Mo

u (6)

where:
• Mi ∈ ℘(M) is a set of messages called input,
• Mo ∈ ℘(M) is a set of messages called output.

The run function can be formally presented as a mapping
of environment states sequences and action sequences to
environment states:

r : E∗ ×A∗ → E (7)

Similarly to agent definition, the standard agent see function
mapping environment state sequences to percepts:

see : E∗ → P (8)

where:
• P = {p1, p2, . . . , p|P |} is a set of all possible percepts

perceived by agents;
can be defined as a mapping from a set of messages to
percepts:

see : ℘(M)∗ → P (9)

and the action function mapping sequence of percepts to
actions:

action : P ∗ → A (10)

as a mapping from sequence of percepts to a set of messages:

action : P ∗ → ℘(M) (11)

In layered architectures, decision function is realized
through a set of behaviours, each associated with one layer.
Because single layer can take part in ongoing inter agent
negotiations, it can produce a number of different actions
(messages sent to different agents) as well as be activated
by a number of different environment states (messages from
different agents) transformed into percepts. Because this is not
a traditional layered approach where behaviours are described
as a pair of condition set and a resulting action there is a
need for additional layer action function which defines how
specified inputs are transformed into outputs:

beh = (P c,Ar, beh_action) (12)

where:
• P c is set of percepts called the condition,
• Ar is set of possible actions called the result,
• beh_action is single layer action function.
A single behaviour action function can be defined as a

mapping of percepts sequences and services sets to actions:

beh_action : P ∗ × ℘(Se) → A (13)

where:
• Se = {se1, se2, . . . , se|S|} is a set of all services.

This can be more specifically defined as a mapping of se-
quences of percepts and services sets to messages sets:

beh_action : P ∗ × ℘(Se) → ℘(M) (14)

In order to compare different approaches to complex service
workflows composition, a number of different utility functions
can be introduced. A successful composition utility function
returns values 1 and 0 determining if a composition process
for a particular task was successful or not:

us : R → {0, 1} (15)

A message utility function gives a natural number telling how
many messages were used for a particular task execution:

um : R → N (16)

and a conversations utility function says how many different
conversations have been started:

uc : R → N (17)

A QoS utility function gives information about values of
different QoS parameters describing the composed business
process execution:

uq : R → ℘(N) (18)

A time utility function tels how much real time (this value
can vary on different hardware environment configurations)
was used for the composition process:

ut : R → R (19)

B. Agent Environment

The APIS platform assumes an agent system where a
number of agents are spawned in order to cooperate. The
multi-agent system can be formally described as:

sys = ⟨A, env⟩ (20)

where:
• A is a set of all agents in the system,
• env = ⟨E , e0, τ⟩ is agent environment with initial state

and state transfer function defined.
The classification of the agent environment in the APIS plat-

form can be considered in two different scenarios concerning
platform life time:

• short-run – all agents spawned at the same time only for
single task execution request,

• long-run – agents can be spawned dynamically during
platform lifetime, many independent task execution re-
quests.

The classification which is common for both situations and
does not change depending on platform life time is (based
on [9]):

• non-deterministic – agents’ actions consequences depend
on inner states of all the agents taking part in a particular

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

interaction, this causes that a single result can not be fully
predicted,

• dynamic – dynamic environments change without agent
interaction, the APIS platform environment can change
only as a result of agents’ action, but not all of the agents
always take part in those interactions so the environment
can change without their knowledge.

In the short-run, agents are spawned only for a single task
execution and removed form platform afterwards. This method
can be used for testing different algorithms and comparing
them with different agents and services configurations. More-
over it can be used for cases when particular task should
be carried on without any dependencies to other possible
tasks. The environment classification in this situation is (based
on [9]):

• episodic – there is no connection between different
scenarios as agents are spawned only for a singe task
execution,

• discrete – there is finite number of environment and
agents states (especially services composition possibili-
ties) resulting from the initial platform configuration.

In the long-run, agents can be spawned and removed dy-
namically during the whole platform life-cycle. This allows
agents to learn new composed services resulting from different
tasks executions. This approach is especially useful in virtual
organizations simulations. The environment classification in
this situation is (based on [9]):

• non-episodic – agents’ decisions concerning the composi-
tion process are based on their knowledge about services,
both exposed by them and other agents, in a long-time
running environment agents learn about new services and
conditions negotiated at some point can influence future
compositions,

• discrete – because number of agents residing on the
platform, and services they know can change, there is
an infinite number of services composition possibilities.

IV. INFRASTRUCTURE

The developed APIS platform [10], [11] is based on the
JADE (Java Agent DEvelopment Framework) which is an
agent development framework allowing for creating distributed
multi agent systems [12]. It is one for the mostly used and
recognizable agent platforms [3], [2], [13].

JADE supports behavior-oriented agent model, that means
all agents actions are in a form of behaviors launched during
agent life cycle. One agent can make use of a number of
different behaviors purposed for realization of different goals.
New behaviors can be added while launching agent as well
as during its life-cycle from other behaviors. This allows for
dynamically adding behaviors related to the decisions made by
an agent and clearly complies with the agent model defined
in this paper.

An agent environment can be build with several nodes
(in JADE called containers) which can run on one or more
physical machines connected with network creating distributed

environment. All the agents reside in those containers. JADE
configuration requires at least one main container responsible
for the whole platform, other dependent containers connect to
the main one. JADE allows for configuration with a number
of backup main containers synchronizing during life-cycle.
Figure 2 shows an example JADE infrastructure. Only few
connection between agents components were shown for the
sake of simplification.

All agents belonging to the same platform can communicate
with each other using ACL (Agent Communication Language),
a standard language for agents communication defined by
FIPA (The Foundation of Intelligent Physical Agents) [5].
Messages content is defined by two things: Semantic Language
(SL) defining grammar of the message and domain ontology
defining vocabulary. The language is defined by FIPA and is
provided in JADE as a SL Codec whereas the ontology must
be provided by the developer.

JADE gives an availability for using few pre-made defined
software agents:

• Agent – common superclass for user defined software
agents,

• ams – Agent Management System, responsible for man-
aging the platform and providing white pages service,
implementation of FIPA AMS service, resides in the main
container,

• df – Directory Facilitator agent, provides yellow pages
functionality, implementation of FIPA DF service, resides
in the main container.

V. AGENTS TYPES

When concerning roles in the complex tasks execution
process, different approaches can be taken. In the simplest
case, all agents are equal (peers) and there are no relations
between them. In order to successfully model virtual organi-
zations, there is a need for introducing some hierarchy and
responsible agents. Moreover, beyond the hierarchy in one
virtual organization, there can be also relationships with some
external peers.

There are different roles, that can be taken by agents in the
tasks execution process:

• client – an agent that searches for agents capable of
executing particular task,

• principal – an agent that has some subordinates from
whom it can request some actions,

• contractor – an agent able to expose some services, their
QoS parameters as well as payment conditions,

• coordinator – additional role for contractor, introduced
for better readability of centralized algorithms,

• subordinate – an agent that has a principal which can
request some actions,

• collaborator – an agents collaborating with other agent
on equal rights in order to perform some actions.

Then, different relationships between agents can be listed:
• client - contractor (coordinator) – client searches for

contractors capable of executing particular tasks, during

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

<<device>>

: Server

<<executionEnvironment>>

<<operatingSystem>>

: Linux

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

main-container : Main Container

<<component>>

<<agent>>

agent-3 : Agent

<<component>>

<<df>>

<<agent>>

df : DF

<<component>>

<<ams>>

<<agent>>

ams : AMS

<<ACL>>

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

container-1 : Container

<<component>>

<<agent>>

agent-2 : Agent

<<component>>

<<agent>>

agent-1 : Agent

<<executionEnvironment>>

<<operatingSystem>>

: Linux

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

main-container : Main Container

<<component>>

<<agent>>

agent-3 : Agent

<<component>>

<<df>>

<<agent>>

df : DF

<<component>>

<<ams>>

<<agent>>

ams : AMS

<<ACL>>

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

container-1 : Container

<<component>>

<<agent>>

agent-2 : Agent

<<component>>

<<agent>>

agent-1 : Agent

<<device>>

: Server

<<executionEnvironment>>

<<operatingSystem>>

: MS Windows

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

container-2 : Container

<<component>>

<<agent>>

agent-4 : Agent<<ACL>>

<<TCP/IP>>

<<TCP/IP>>

<<executionEnvironment>>

<<operatingSystem>>

: MS Windows

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

container-2 : Container

<<component>>

<<agent>>

agent-4 : Agent<<ACL>>

<<TCP/IP>>

<<TCP/IP>>

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

container-1 : Container

<<component>>

<<agent>>

agent-2 : Agent

<<component>>

<<agent>>

agent-1 : Agent

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

main-container : Main Container

<<component>>

<<agent>>

agent-3 : Agent

<<component>>

<<df>>

<<agent>>

df : DF

<<component>>

<<ams>>

<<agent>>

ams : AMS

<<ACL>>

<<executionEnvironment>>

<<javaVirtualMachine>>

: JRE 1.8

<<executionEnvironment>>

<<jadeContainer>>

container-2 : Container

<<component>>

<<agent>>

agent-4 : Agent<<ACL>>

<<TCP/IP>>

<<TCP/IP>>

<<executionEnvironment>>

<<jadeContainer>>

container-2 : Container

<<component>>

<<agent>>

agent-4 : Agent<<ACL>>

<<executionEnvironment>>

<<jadeContainer>>

container-1 : Container

<<component>>

<<agent>>

agent-2 : Agent

<<component>>

<<agent>>

agent-1 : Agent

<<executionEnvironment>>

<<jadeContainer>>

main-container : Main Container

<<component>>

<<agent>>

agent-3 : Agent

<<component>>

<<df>>

<<agent>>

df : DF

<<component>>

<<ams>>

<<agent>>

ams : AMS

<<ACL>>

<<component>>

<<ams>>

<<agent>>

ams : AMS

<<component>>

<<df>>

<<agent>>

df : DF

<<component>>

<<agent>>

agent-1 : Agent

<<component>>

<<agent>>

agent-2 : Agent

<<LAN>>

<<WAN>>

<<component>>

<<agent>>

agent-4 : Agent

<<ACL>>

<<ACL>>

<<TCP/IP>>

<<component>>

<<agent>>

agent-3 : Agent

<<TCP/IP>>

Fig. 2. Example JADE infrastructure

negotiations contractor provides QoS parameters which
are evaluated by client, in particular contractor may
request some fee for its services which can be accepted
or not by client,

• principal - subordinate – those are agents inside the same
agency, where principal belongs to the sub-agency higher
in the hierarchy, there are no payment negotiations and
subordinate is not able to refuse performing requested
tasks unless it is not capable of performing it,

• collaborator - collaborator – those can be agents in the
same agency and both belonging to sub-agencies on the
same level in the hierarchy, they can be requested by
principal to perform some tasks together and they must
jointly work out a solution.

It must be stated than one agents can be in more than
one role at the same time. For example the same agent can
be contractor for external client, collaborator for agents in
the same sub-agency and principal for agents in sub-agencies
lower in the hierarchy at the same time.

VI. COMMUNICATION PROTOCOLS

According to the FIPA standard, there is a number of proto-
cols describing in details communication between agents [14],
[15], [16], [17]. In order to ensure that the APIS platform
is complying with the FIPA standard, all the composition
algorithms should be based on the FIPA protocols. Initially,
for the needs of this work the five protocols were chosen:
cancel, request, query, contract net and iterated contract net
protocols.

The cancel meta protocol allows the initiator to cancel on
going interaction with another participant under any proto-
col [14], [15], [16], [17]. It is done by canceling a message
previously sent by the initiator. The initiator trying to cancel
an interaction, needs to sent cancel message containing the
message that it wans to cancel. Sending this kind of message
should be treated as a wish to completely stop an interaction.
The participant can reply with inform message after suc-
cessful termination or failure message when termination
did not succeed or did end with an error.

The query protocol allows the initiator to ask the participant
if a given proposition is true by sending query-if message
or ask for information concerning a given object by sending
query-ref message [14]. The participant can agree or not
agree to respond by replying with respectively agree or
refuse message. If the participant agreed to respond, it sends
inform message containing true/false reply of information
concerning provided object. It can also send failure mes-
sage if an attempt to acquire the answer finished with an error.

The request protocol allows the initiator to request an
execution of a given action by the participant by sending a
request message [15]. The participant can refuse perform-
ing the given action by replying with a refuse message
or agree by replying with an agree message. Sending the
agree message does not mean that the action was performed,
but only an agreement that it will be performed in a future
(without detailed deadline). Two types of actions can be
distinguished: those which needs only to be executed and
those which must return some outcome. For both cases, after

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

performing the action the participant replies with an inform
message, but in the second case the message also contains an
action outcome. The participant can reply with a failure
message if performing the action finished with an error.

The contract net protocol allows the initiator to gather a
number of proposals of performing some action from one
ore more participants [17]. Firstly, the initiator sends a cfp
message containing action description to potential performers.
The participants can reply with a propose message contain-
ing some conditions of executing the given action or with a
refuse message when they are not interested. After gather-
ing all the replies or exceeding a deadline (specified in the first
cfp message) the initiator browses the proposals and selects
one or more the best ones. Authors of the selected proposals
receive an accept-proposal message and authors of the
rejected ones receive a reject-proposal message. All the
proposals received after the given deadline are automatically
rejected and their authors receive a reject-proposal
message with a corresponding information. Similarly to the
request protocol, after finishing the action, the participants
send an inform message which can contain an action result
or failure message in case of a failure. In any time,
the initiator can cancel the negotiations by using the cancel
protocol.

The iterated contract net enriches the contract net protocol
with a possibility of stating more exact conditions in a nego-
tiation process [17]. After selecting propositions, the initiator
can decide if that was or not the final iteration. If it was the
final iteration, protocol proceeds as in standard contract net
protocol. If it was not the final iteration, the initiator sends
more exact cfp message. This process can be repeated until
the initiator decided, that further negotiations are not required.

VII. ALGORITHMS BUILDING BLOCKS

The idea of the APIS platform is to develop complex tasks
execution algorithms using pre-made block providing all inter-
agent communication actions so the developer can focus on
the algorithms structure. Normally developer would be forced
to implement all the communication stack including packing,
unpacking, sending, receiving and filtering messages within a
number of ongoing conversations.

Figure 3 presents hierarchy of behaviours which can be used
by the developer while creating an active side of the execution
process. Those behaviours are:

• SimpleBehaviour – basic JADE behaviour class for
all agent behaviours,

• BaseCommunicationBehavior – basic communi-
cation stack operations common for all the used proto-
cols,

• CancelBehaviour – implementation of meta cancel
protocol, allows to cancel any ongoing conversation,

• QueryIfBehaviour – implementation of query if
protocol, allows to check if given fact is true according
to other agents, requires only providing the fact and a
receiver,

active behaviours

ContractNetBehaviour

BaseCommunicationBehaviour SimpleBehaviour

RequestBehaviour

QueryIfBehaviour

IteratedContractNetBehaviour

CancelBehaviour

Fig. 3. Active behaviours

• RequestBehaviour – implementation of the request
protocol, allows to request performing some action by
another agent, requires providing the action definition and
a receiver,

• ContractNetBehaviour – implementation of the
contract net protocol, allows to call for proposals of
performing some action, gather those proposal, select
the best one and gather the result, requires providing
the action definition, a list of receivers and a proposals
comparator,

• IteratedContractNetBehaviour – implementa-
tion of iterated contract net protocol, allows to do the
same as the ContractNetBehaviour but with nego-
tiation iterations.

Figure 4 presents hierarchy of behaviours which are auto-
matically used by the passive side of the execution process.
Those can not be used directly by the developer and are
launched automatically by the agent when specified initiating
messages is received. Those behaviours are:

• ResolverBehaviour – basic resolving behaviour im-
plementing common communication stack,

• CancelResolverBehaviour – behaviour launched
when a cancel message is received,

• QueryIfResolverBehaviour – behaviour launched
when a query if message is received, checks submitted
fact and responds with a result,

• RequestResolverBehaviour – behaviour launched
when a request message is received, performs requested
action and responds with a result,

• CallForProposalResolverBehaviour –
behaviour launched when a call for proposal message
is received, prepares proposal and if accepted performs
request action and responds with a result.

While the passive behaviours are fixed, their outputs can be

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

passive behaviours

ResolverBehaviour

CallForProposalResolverBehaviour

CancelResolverBehaviour

QueryIfResolverBehaviour

SimpleBehaviour

RequestResolverBehaviour

Fig. 4. Passive behaviours

resolvers

Resolver

CancelResorlver

CallForProposalResolver

QueryIfResolver

RequestResolver

Fig. 5. Passive behaviours resolvers

changed by the mean of resolvers. The resolvers are interfaces
which can be implemented by the developer and which are
used by the passive behaviours. Figure 5 presents a hierarchy
of resolvers used on the platform. Those interfaces are:

• Resolver – basic interface for all the resolvers,
• CancelResolver – defines actions carried on by the

agent after receiving cancel message,
• QueryIfResolver – defines actions for checking if

giver fact is true,
• RequestResolver – defines actions of executing

specified action and returning its result,
• CallForProposalResolver – defines action of

preparing proposal and if accepted execution specified
action and returning its result.

VIII. SIMPLE COMPOSITION ALGORITHM

In order to show that the platforms fulfills its requirements,
the simple composition algorithm was prepared. During its

implementation no communication based code was prepared.
Figure 6 presents classes which were developed and their
relation to those provided by the platform. Those classes are:

• Coordinator – agent coordinating the composition
process, registers appropriate request resolver,

• Contractor – agent providing some services, registers
appropriate call for proposal resolver,

• ReqResolver – implementation of the request resolver,
when receiving a request to execute some task it starts
the composition behaviour,

• CFPResolver – implementation of the call for proposal
resolver, checks if requested task output can be provided
by any of the services known by the resolver owner and
if yes prepares an appropriate proposal,

• CompositionBehaviour – a behaviour responsible
for composing a new workflow of services in order to
provided desired task output, in order to find subsequent
workflow services it starts underlying contract net be-
haviours.

IX. RUNNING THE ALGORITHM

The designed algorithm was carried on by the following
agents exposing specified services:

• agent-pizza-maker:
– MakePizza : (base, topping, sauce) → (pizza);

• agent-baker:
– MakeBase : (flour, water) → (base);

• agent-sauce-maker:
– MakeSauce : (tomato, water) → (sauce);

• agent-topping-maker:
– MakeTopping : (vegetable) → (topping);

• agent-seller:
– ProvideFlour : () → (flour),
– ProvideWater : () → (water),
– ProvideVegetable : () → (vegetable),
– ProvideTomato : () → (tomato);

• agent-coordinator,
• testRunner.
All the agents with the agent- prefix are contractors without

any hierarchical relationships. The agent-coordinator is an
agent which receives a request from the client (the testRunner
agent). Only services exposed by the agent-seller agent do not
require any input so they should be used as the workflow initial
services.

The subsequent messages exchanged by the agent are pre-
sented in figures from 8 to 11 which were created with APIS
version of JADE sniffer agent. The communication snapshot
presents which messages belong to which conversation. The
explanation of goals of each conversation is presented in ta-
ble I. The final workflow providing desired output is presented
in figure 7 which was created using the APIS service sniffing
tool. Values for the utility functions are:

• us = 1,
• um = 129,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

simple algorithm

BaseAgent

Coordinator Contractor

SimpleBehaviour

CompositionBehaviour

CallForProposalResolver

CFPResolver

Resolver

RequestResolver

ReqResolver

BaseCommunicationBehaviour

ContractNetBehaviour

Fig. 6. Simple algorithm

TABLE I
CONVERSATIONS SUMMARY FOR SIMPLE CENTRALIZED ALGORITHM

conversations protocol desired
output

proposed
service

0 request pizza generated-0
1, 7, 13, 19, 25,
31, 37, 43, 49

request agents -

2, 3, 4, 5, 6 cfp pizza generated-1
8, 9, 10, 11, 12 cfp base generated-2
14, 15, 16, 17, 18 cfp topping generated-3
20, 21, 22, 23, 24 cfp sauce generated-4
26, 27, 28, 29, 30 cfp water generated-5
32, 33, 34, 35, 36 cfp tomato generated-6
38, 39, 40, 41, 42 cfp vegetable generated-7
44, 45, 46, 47, 48 cfp flour generated-8
50, 51, 52, 53, 54 cfp water generated-9

• uc = 55,
• uq = 9,
• ut = 150.5ms.

X. CONCLUSION

The idea of this work was to provide an agent platform
allowing for developing complex tasks execution and services
composition algorithms. In order to focus on the algorithms,
the platform is no based on any services implementation but
only on inter agent communication standard stated by FIPA. It
has been shown how APIS algorithms building blocks comply
with the FIPA communication protocols and that they can be
successfully used in developing execution and composition
algorithm. Moreover it has been shown that platform accom-
panying sniffing tools allow for good algorithms evaluation.
Proposed utility functions can be used for comparing different
algorithms.

Despite the fact that the APIS platform is not based on any
services implementation it can be in future easily enriched

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

REQUEST:0

AGREE:0

REQUEST:1

INFORM:1

CFP:2

CFP:3

CFP:4

CFP:5

REFUSE:2

REFUSE:3

REFUSE:4

CFP:6

PROPOSE:5

REFUSE:6

REQUEST:7

INFORM:7

CFP:8

REFUSE:8

CFP:9

CFP:10

CFP:11

CFP:12

REFUSE:9

REFUSE:11

PROPOSE:10

REFUSE:12

REQUEST:13

INFORM:13

CFP:14

CFP:15

CFP:16

CFP:17

REFUSE:14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Fig. 8. Communication snapshot for simple centralized algorithm

with one by changing appropriate algorithms building blocks.
As future work, the most important possibility is developing
and evaluating more complex execution and composition al-
gorithms, especially distributed ones based on work division.

REFERENCES

[1] P. Czarnul, “A JEE-Based Modelling and Execution Environment
for Workflow Applications with Just-in-Time Service Selection,” in

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Fig. 7. Service generated-0 chain for simple centralized algorithm

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

CFP:17

REFUSE:14

CFP:18

PROPOSE:15

REFUSE:18

REFUSE:16

REFUSE:17

REQUEST:19

INFORM:19

CFP:20

CFP:21

REFUSE:21

PROPOSE:20

CFP:22

CFP:23

CFP:24

REFUSE:24

REFUSE:23

REFUSE:22

REQUEST:25

INFORM:25

CFP:26

CFP:27

CFP:28

CFP:29

CFP:30

REFUSE:27

REFUSE:29

REFUSE:26

PROPOSE:30

REFUSE:28

REQUEST:31

INFORM:31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Fig. 9. Communication snapshot for simple centralized algorithm (continued)

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

CFP:32

CFP:33

REFUSE:32

CFP:34

CFP:35

REFUSE:34

REFUSE:33

CFP:36

REFUSE:35

PROPOSE:36

REQUEST:37

INFORM:37

CFP:38

CFP:39

CFP:40

CFP:41

CFP:42

REFUSE:40

REFUSE:41

REFUSE:39

REFUSE:38

PROPOSE:42

REQUEST:43

INFORM:43

CFP:44

CFP:45

REFUSE:44

CFP:46

REFUSE:45

CFP:47

REFUSE:46

CFP:48

REFUSE:47

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Fig. 10. Communication snapshot for simple centralized algorithm (contin-
ued)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Other
agent
-sauce
-maker

agent-
toppin
g-maker

agent
-baker

agent
-pizza
-maker

agent-
seller

agent
-coord
inator

testR
unner

REFUSE:47

PROPOSE:48

REQUEST:49

INFORM:49

CFP:50

CFP:51

REFUSE:50

REFUSE:51

CFP:52

CFP:53

REFUSE:52

REFUSE:53

CFP:54

PROPOSE:54

ACCEPT-PROPOSAL:30

ACCEPT-PROPOSAL:36

ACCEPT-PROPOSAL:42

ACCEPT-PROPOSAL:48

ACCEPT-PROPOSAL:54

INFORM:30

INFORM:36

INFORM:42

INFORM:48

INFORM:54

ACCEPT-PROPOSAL:20

ACCEPT-PROPOSAL:15

INFORM:20

ACCEPT-PROPOSAL:10

INFORM:15

INFORM:10

ACCEPT-PROPOSAL:5

INFORM:5

INFORM:0

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Fig. 11. Communication snapshot for simple centralized algorithm (contin-
ued)

Proceedings of the 2009 Workshops at the Grid and Pervasive
Computing Conference (GPC), ser. GPC ’09. Washington, DC, USA:
IEEE Computer Society, 2009. doi: 10.1109/GPC.2009.24 pp. 50–57.
[Online]. Available: http://dx.doi.org/10.1109/GPC.2009.24

[2] L. Ehrler, M. Fleurke, M. Purvis, B. Tony, and R. Savarimuthu,
“AgentBased Workflow Management Systems (WfMSs): JBees - A
Distributed and Adaptive WfMS with Monitoring and Controlling
Capabilities,” in Journal of Information Systems and e-Business
Management, Volume 4, Issue 1. Springer-Verlag, 2005. doi:
10.1007/s10257-005-0010-9 pp. 5–23. [Online]. Available: http:
//dx.doi.org/10.1007/s10257-005-0010-9

[3] P. Czarnul, M. Matuszek, M. Wójcik, and K. Zalewski, “BeesyBees
- Efficient and Reliable Execution of Service-based Workflow
Applications for BeesyCluster using Distributed Agents (BEST
PAPER),” in Computer Science and Information Technology (IMCSIT),
Proceedings of the 2010 International Multiconference on Computer
Science and Information Technology, vol. 5, October 2010. doi:
10.1109/IMCSIT.2010.5679922 pp. 173 –180. [Online]. Available:
http://dx.doi.org/10.1109/IMCSIT.2010.5679922

[4] H. Tong, J. Cao, S. Zhang, and M. Li, “A Distributed Algorithm
for Web Service Composition Based on Service Agent Model,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 12, pp.
2008–2021, 2011. doi: 10.1109/TPDS.2011.127. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2011.127

[5] The Fundation of Intelligent Physical Agents, “FIPA specifications,”
Tech. Rep., 2002. [Online]. Available: http://www.fipa.org/repository/
standardspecs.html

[6] M. J. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp.
115–152, 1995. [Online]. Available: http://eprints.ecs.soton.ac.uk/2102/

[7] Q. He, J. Yan, R. Kowalczyk, H. Jin, and Y. Yang, “Lifetime
service level agreement management with autonomous agents for
services provision,” Inf. Sci., vol. 179, no. 15, pp. 2591–2605,
Jul. 2009. doi: 10.1016/j.ins.2009.01.037. [Online]. Available: http:
//dx.doi.org/10.1016/j.ins.2009.01.037

[8] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu,

“Web Services Agreement Specification (WS-Agreement).” [Online].
Available: https://www.ogf.org/documents/GFD.107.pdf

[9] S. J. Russell and P. Norvig, Artificial Intelligence a modern approach,
2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2003.

[10] P. Napieracz, “Porównanie agentowych algorytmów kooperacji w
wykonywaniu złożonych zadań,” Master’s thesis, Politechnika Gdańska,
Wydział Elektroniki, Telekomunikacji i Informatyki, 2014.

[11] M. Wójcik, “Raport techniczny nr 2/2015: Projekt platformy apis (agent
platform for integration of services),” Gdańsk University of Technology,
Faculty of Electronics, Telecommunications and Informatics, Raport
techniczny w fazie wytwarzania, 2015.

[12] T. I. Lab, “JADE (Java Agent DEvelopment Framework) online
documentation,” Tech. Rep. [Online]. Available: http://jade.tilab.com/
documentation

[13] X. Nguyen, R. Kowalczyk, M. Chhetri, and A. Grant, “Ws2jade:
A tool for run-time deployment and control of web services
as jade agent services,” in Software Agent-Based Applications,
Platforms and Development Kits, ser. Whitestein Series in Software
Agent Technologies, R. Unland, M. Calisti, and M. Klusch,
Eds. Birkhauser Basel, 2005, pp. 223–251. [Online]. Available:
http://dx.doi.org/10.1007/3-7643-7348-2_10

[14] The Fundation of Intelligent Physical Agents, “FIPA Query Interaction
Protocol Specification,” Tech. Rep., 2002. [Online]. Available: http:
//www.fipa.org/repository/standardspecs.html

[15] ——, “FIPA Request Interaction Protocol Specification,” Tech. Rep.,
2002. [Online]. Available: http://www.fipa.org/repository/standardspecs.
html

[16] ——, “FIPA Iterated Contract Net Interaction Protocol Specification,”
Tech. Rep., 2002. [Online]. Available: http://www.fipa.org/repository/
standardspecs.html

[17] ——, “FIPA Contract Net Interaction Protocol Specification,”
Tech. Rep., 2002. [Online]. Available: http://www.fipa.org/repository/
standardspecs.html

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

