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A B S T R A C T   

Wildfires have significant impacts on both environment and economy, so understanding their behaviour is 
crucial for the planning and allocation of firefighting resources. Since forest fire management is of great concern, 
there has been an increasing demand for computationally efficient and accurate prediction models. In order to 
address this challenge, this work proposes applying a parameterised stochastic model to study the propagation of 
environmental events, focusing on the bias introduced by climatic variables such as wind. This model’s propa-
gation occurs in a grid where cells are classified into different compartments based on their state. Furthermore, 
this approach generalises previous non-stochastic models, which are now considered particular cases within this 
broader framework. The use of the Monte Carlo method is highlighted, which allows for obtaining probabilistic 
estimates of the state of the cells in each time step, considering a level of confidence. In this way, the model 
provides a tool to obtain a quantitative estimate of the probability associated with each state in the spread of 
forest fires.   

1. Introduction 

Natural phenomena are complex systems characterised by the 
interaction of multiple variables with interconnected dependencies. 
Consequently, modelling them can be challenging due to the involve-
ment of various factors, such as environmental conditions, physical 
forces, biological interactions, and stochastic processes. Moreover, these 
factors often interact with each other in a non-linear manner, making it 
difficult to establish simple cause-effect relationships. 

Another significant challenge is the inherent uncertainty associated 
with natural phenomena. Propagation and quantification of uncertainty 
play a critical role when dealing with such systems since some variables 
are inherently uncertain and subject to random fluctuations or even the 
same conditions could lead to different outcomes. More, while models 
aim to depict the intricacy of natural occurrences, they often present a 
simplified version of reality. They rely on assumptions and approxima-
tions to strike a balance between accuracy and computational feasibility. 
In this regard, the lack of high-quality information often hinders model 
validation and, consequently, the testing of hypotheses. 

This paper focuses on forest fires as a natural phenomenon under 

study. In this background, a wide range of fire spread models have been 
developed that consider physical aspects related to the combustion 
process (Asensio and Ferragut, 2002; Mandel et al., 2008; Muzy et al., 
2008). These models often use mathematical tools, such as partial dif-
ferential equations and ordinary differential equations, to describe the 
spread process. However, the parameters of these equations do not 
directly correspond to the aspects identified as the most influential in the 
fire spread such as the spatial relationships (Ganteaume et al., 2013), 
slope or wind (Pitts, 1991; Viegas, 2004). 

For this reason, to address spatial relationships more precisely, 
agent-based models (ABM) emerge as a viable solution to overcome such 
limitations, as they take into account the dynamic interaction and 
unique behaviour of multiple agents immersed in a spatial environment, 
allowing us to discover complex patterns. When it comes to forest fires, 
cellular automata (CA) and graph-based models can be distinguished. 
Regarding CA models, it is common to consider the region where the fire 
occurs as a two-dimensional square grid (2D-CA models), where each 
element represents a land parcel and the interaction is determined by 
local rules enhanced by climatic variables (Karafyllidis and Thanailakis, 
1997; Hernández Encinas et al., 2007; Jiang et al., 2021). However, 
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depending on the context, the use of hexagonal grids (Hernández 
Encinas et al., 2007) could be more suitable for mitigating the limita-
tions of square grids as representation elements. At the same time, 
network-based modelling (Hajian et al., 2016) is also used where the 
landscape is represented as a network of nodes, and the fire spread time 
is modelled as the shortest path problem. 

Simulators and Geographic Information Systems (GIS) models play a 
key role in forest fire prevention and prediction. Forest fire simulators 
use mathematical models and geospatial data to realistically simulate 
how a fire would spread under certain conditions. Importantly, GIS 
models are not strictly ABS, as they do not imply autonomy, autonomous 
behaviour, and decision-making of individual agents, although they are 
computational systems that integrate geographic data and spatial anal-
ysis tools to represent and manipulate geographic information. Well- 
known examples include FARSITE (Farsite, 2004), WFDS (Noonan- 
Wright et al., 2011), and FBP (Andrews, 2007). Moreover, worth high-
lighting studies (Tuyen et al., 2021; Bui et al., 2018) include machine 
learning tools to understand and represent this kind of natural 
phenomena. 

Currently, we propose a new and more realistic model (Boters Pitarch 
et al., 2023), which is based on previous work developed in Signes Ponnt 
et al. (2017), Signes-Pont et al. (2021), Signes Pont et al. (2019). We 
hypothesize that the phenomenon spreads in the same direction θ and the 
intensity ρ of the wind to reach longer distances. Therefore, we use these 
two variables, θ and ρ, as expansion vectors for the model, which follows 
the scheme based on the Susceptible-Infected-Recovered (SIR) model. The 
improvements of our proposal are both the innovative approach to 
modelling, with a flexible and probabilistic neighbourhood relationship 
between cells that adapts to weather conditions, and an update rule that 
leverages prior probabilities through the Bernoulli random variable to 
work with uncertainty. All this provides a highly effective stochastic 
model. This combination of both spatial flexibility and stochasticity 
makes our model a powerful tool for predicting real-world phenomena 
such as wildfire spreads or pest plants propagation, since we take into 
account the most important variables in the representation. 

The outline of this research is as follows: after Introduction, Section 2 
recalls the main hypotheses of the model. Section 3 realizes the sensi-
bility analysis in order to know the impact of the different parameters on 
the global studied expansion. Section 4 demonstrates how our model 
reduces the Moore and Von Neumann dynamics to particular cases. 
Section 5 uses our model as the Monte Carlo method to obtain an esti-
mate of the probability of being susceptible (infected, recovered, etc…) 
for every single cell, according to a given confidence level. Finally, 
Section 6 presents concluding remarks and proposes future topics for 
this research. 

2. Key elements of the model 

The main idea of our model is to consider both the spatial features of 
the system and the environmental variables. The expansion of the phe-
nomenon occurs on a square grid with size N, where each cell can have 
one of three possible states: susceptible (healthy), infected or dead 
(fired), following the well-known SIR scheme and expansion only occurs 
through contact between infected and healthy cells in a 2D-CA model. 
To determine the cells that may become infected a neighbourhood 
relationship takes into account environmental variables θ and ρ and an 
update criterion uses this probability to determine the new state of each 
cell. The variables θ and ρ are considered the expansion vectors (based 
on polar coordinates) that represent the orientation of the expansion and 
the power respectively, to determine the scope or even the number of 
exposed cells. 

Definition 2.1. An exposed cell is a susceptible cell that has a non-zero 
probability of infection. 

It is important to point out that each exposed cell is updated inde-
pendently by performing a single Bernoulli test, see Eq. (3). In case of 
success, the cell is infected, while in case of failure, it remains healthy. 
Fig. 1 shows the workflow and how given a direction θ we may get 
different outcomes. 

2.1. Technical aspects 

Now, we formalize the main elements above. Let us consider both the 
flexible neighbourhood relationship Rk that depends on θ and ρ and the 
update criterion that determines the state of each cell. A more detailed 
explanation is available in Section 3 of Boters Pitarch et al. (2023). The 
neighbourhood relation is depicted by function Rk, see Eq. (3) 

Rk : [0, 1] × [0, 2π[ ↦ RN×N

(ρ, θ) ↦
(

rk
ij

)N− 1

i,j=0

(1)  

Where rk
ij stands for the probability that cell (i, j) is infected at generation 

k. 

Remark 2.1. Our approach follows a dynamic modelling scheme, 
however, time is divided into discrete units called generations. For 
instance, the initial state is generation 0, the first step is generation 1 and 
so on. 

Construction is as follows: 

1.For generation k, the new infected cell will be determined by the 
location of the infected ones at generation k − 1 and their possible 
contact will occur due to the action of the wind. Therefore, we 
define: 

Ik− 1 :=
{(

i, j
)
: mk− 1

ij = 1
}

(2)  

as the set of index pairs defining the infected cells at generation k − 1. 
2.We use the θ direction of the wind, together with basic trigono-
metric functions (similar to polar coordinates) to determine which 
cells will be exposed and their infection probabilities. See Fig. 1. 
3.We set a partition P = {0,u1,u2,u3,1}of the interval [0,1], which 
aims to establish the infection capacity for further cells. Thus, it al-
lows us to understand the number of potentially affected cells, i.e., 
the scope. In this first approach, we assume a limited infection ca-
pacity and therefore the partitions are of this size. 
4.Finally, by means of the above procedure, we will get a square 
matrix P(i,j) with size N for every (i,j) ∈ Ik− 1. Then, Rk(ρ, θ) will be the 
aggregate of all previous matrices, i.e. 

Rk

(

ρ, θ
)

=
∑

(i,j)∈Ik− 1

P(i,j)

Remark 2.2. The neighbourhood relationship construction can result 
in rk

ij values that exceed unity. In such cases, any susceptible cell with a 
probability of infection higher than one will be considered infected in 
the next generation. This also occurs in other works, see Karafyllidis and 
Thanailakis (1997), Hernández Encinas et al. (2007). 

Regarding the grid update criterion, we perform the following 
approach outlined in Eq. (3), where mk

ij refers to the state (0-susceptible, 
1-infected, 2-dead) of the cell (i, j) at generation k. 
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∀ mk
ij = 2 ⇒ mk+1

ij = 2

∀ 1⩽mk
ij < 2 ⇒ mk+1

ij = mk
ij +

1
ΔID

∀ mk
ij = 0 ⇒ mk+1

ij :=

⎧
⎪⎨

⎪⎩

Be
(

rk
ij

)
if 0 ⩽ rk

ij < 1

1 if rk
ij⩾ 1

(3) 

Thus, using Eq. (3), we can conclude that an infected cell remains as 
infected during ΔID generations. In addition, dead elements are not 
recovered. Furthermore, as can be seen in Property 3.1 of Boters Pitarch 
et al. (2023), we can theoretically compute the number E of infections 
expected by the model, given its parameters. This measure can be of 
great help in our study to understand their impact and for a future search 
according to a real case. 

2.2. Limitations of the model 

When assessing the suitability of our model for representing different 
issues, it is crucial to take into account its limitations. These limitations 
are intricately related to both the 2D-CA models and the neighbourhood 
relationship Rk. 

Our model is well-suited for scenarios influenced by wind and limited 
terrain, such as forest fires, pest plant spread, or object tracking by ocean 
currents. It could accurately represent the phenomenon’s spread and 
expansion in such cases. It should be noted that, due to the 2D-CA 
approach, our model performs better the flatter the terrain. However, a 
careful selection of the parameters may overcome this drawback. 

On the other hand, the simplicity of the neighbourhood relationship 
in our model may not adequately capture the complexity of certain 
problems. While this simplicity facilitates the interpretation of the 
model, it also limits its ability to address phenomena involving more 
complex interactions between individual agents or even non-local 
neighbourhoods. For example, problems such as population dynamics 
influenced by traffic networks or complex population growth may 
require alternative ABM modelling schemes for more realistic repre-
sentations, as seen in previous work (Gómez et al., 2010; Huang et al., 
2019). 

3. Study of the parameters 

Compared with Karafyllidis and Thanailakis (1997), Hernández 
Encinas et al. (2007) which use similar schemes, one of the main ad-
vantages of our model, is the existence of parameters that allow 
modulating and tuning the expansion rate. The aim of this section is to 
improve our understanding of the interdependencies between parame-
ters and justify why measure E of expected infections (see Property 3.1 of 
Boters Pitarch et al. (2023)) serves as a leading indicator of the spread 
rate. Table 1 presents a summary of the role played by each parameter. 

Regarding the interdependence of the variables, it should be noted 
that the delay parameter ΔID is independent of the others, as its function 
is solely focused on determining the number of generations between the 
infected and dead states. However, partitions P = {0, u1, u2, u3, 1} are 
key parameters as they define the extent of infection for each generation. 
For instance, when ρ > u2, the loss factor C impacts the neighbourhood 
relationship and consequently, the propagation rate. Similarly, if ρ < u1, 
the parameter p0 influences the situation; otherwise, it does not. 
Therefore, we can assert that there is a strong interdependence between 
the partitions and C and p0. Simultaneously, it can be deduced that there 
is no possible dependence between C and p0 since they come into play 
when intensity takes different values. Tables 2 and 3 show the interde-
pendence between variables, showing how the marginal infection ca-
pacity E, varies at a greater or lesser rate depending on the features of 
the partition. 

Thus, Table 2 shows that for any partition, when C increases, the 
value of E decreases, i.e. the probability of infection for distant cells 
decreases and therefore the expected number of cells decreases as well. 
However, in Table 3 we see that if p0 increases, so does the value of E, 
since in the absence of wind, the value of p0 indicates the probability of 
infection of the cells. Also, in both tables, we can see how the impact of 
these parameters depends on the partitions. 

As an example, for P 1 we have a very small u1, which implies that 
the absence of wind is somewhat unusual, i.e. a limited impact of p0 as 
shown in Table 3. In contrast, the value (1 − u2) is relatively large. This 
means that the infection reaches distant cells more easily, and therefore 
a large impact of the parameter C can be expected, as shown in Table 2, 
for column P 1. 

Another important aspect to address is the range of values these 
parameters can take. Regarding the partitions, the values should be 
determined based on the wind intensity which depends on the envi-
ronmental phenomenon and its location. Sometimes, there is not enough 
knowledge of this influence, so we consider it an adjustable parameter. 
For C and p0, we can use the specific information of the phenomenon. As 
an example, it is well-known that high temperatures and low humidity 
favour a quick expansion of forest fires (Ganteaume et al., 2013; Pitts, 
1991; Viegas, 2004). This could lead to determine a low loss value C and 
a high p0 value in such cases. Therefore, these values may vary even 
within the same phenomenon if the environmental conditions are 
significantly different. This is a potential aspect for improvement in our 

Fig. 1. Model flow overview per generation when u1⩽ρ⩽u2.  

Table 1 
Description of the role of the main parameters.   

Role 

ΔID delay between infected and dead state 
P partition which determines the influence of the wind intensity 
C loss factor for far cells 
p0 infection probability for surrounding cells, when the wind has no effect  

J. Boters Pitarch et al.                                                                                                                                                                                                                         

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Ecological Informatics 77 (2023) 102266

4

model that we address in Section 6. 
After discussing the interdependency and range parameters can take, 

our aim now is to justify why E is a reliable measure to anticipate the rate 
of expansion and therefore to establish a hierarchy and a direct search 
for the optimal parameters. When we want to conclude the impact of 
parameters on the expected rate of expansion, the study cannot be 
limited to specific data from a particular phenomenon, since there is a 
great variety of climatic conditions and potential wind-driven events. 
This could introduce a bias into our study so, the best way for conducting 
the aforementioned study is to simulate climatic data by means of 

θ ∼ Unif (0, 2π) and ρ ∼ Unif (0, 1).

First of all, we set an arbitrary partition 

P := {0, 0.1, 0.5, 0.9, 1}

and check whether those parameter combinations with higher expected 
marginal infection are the ones that give rise to a higher expansion rate. 
In Fig. 2, you can see the surface generated by calculating E over its 
parameters C,p0. 

Thus, in Fig. 3, we can see how those parameter combinations with 
higher E in Tables 2 and 3 have a higher rate of expansion which leads us 
to think that there is an important connection between E and the spread 
rate. 

However, this is not enough to complete the study. To validate this 
assumption, we calculate the Pearson correlation between E and the 
average spread rate dk, given by 

dk =
S0 − Sk

k
, k⩾ 1  

where Sk refers to the number of susceptibles cells at generation k, see 
Fig. 4. This allows us to investigate whether a linear relationship exists 
between the two measures or not. 

Remark 3.1. The parameters used to carry out the correlation study 
are 

P 1 = {0, 0.01, 0.2, 0.5, 1},P 2 = {0, 0.05, 0.3, 0.65, 1}

P 3 = {0, 0.1, 0.5, 0.9, 1}, P 4 = {0, 0.25, 0.5, 0.75, 1}

C ∈ {1,2,3}, p0 ∈ {0.1,0.4, 0.7, 1} and ΔID ∈ {1,2,3}. We consider them 
as a wide range of parameters which provide us with enough informa-
tion to draw conclusions. 

One of the main weaknesses of the marginal infectiousness measure 
is that it assumes all cells around the infected cell are susceptible (can 
become infected). This is certainly true in the early stages of the spread 
but, as the spread progresses, the number of infected or dead cells grows 
fast. However, the Pearson correlation values are consistently high 
(above 0.9) for the first 10 generations for all ΔID ∈ {1,2,3}. Therefore, 
we can state the presence of a strong linear relationship between the 
marginal infection and the spread rate that points to the marginal 
infection value can serve as an effective indicator of the expected 
spread pace, based on our model parameters. 

4. Space of solution of our model 

In this section, our aim is to study the solution space of our model. 
Obviously, this space is determined by the climatic conditions, since it 
depends on θ and ρ and on the chosen parameters. 

First, we will focus on the well-known Moore and Von Neumann 
dynamics. These dynamics have been applied in a wide range of situa-
tions (Chen and Mynett, 2003; Chen and Horng, 2010; Roy et al., 2021). 
However, since our model is parameterisable, an interesting question is 
whether our model can meet the same dynamics, given particular pa-
rameters. In other words, are Moore’s and Von Neumann dynamics 
included in the solution space of our model?. 

Recall that in the performance of our model, the partitions are a 
critical parameter, since they determine when the wind direction θ and 
the intensity ρ have an influence. So when ρ < u1, the wind is considered 
to have no influence since the intensity does not exceed a minimum 
threshold to guide the expansion of the phenomenon. For u1 = 1, the 
interaction only occurs between the infected cell and the surrounding 
healthy cells (with a probability of infection p0). Therefore, for this type 
of partition, we can affirm that the result of the model does not depend 
either on θ or ρ, but only on the parameter p0, as shown in Fig. 5. 

Property 4.1. Moore’s Dynamics is contained within the solution 
space of our model. 

Proof. Let us have a square grid of size N. It is enough to consider a 
partition P such that u1 = 1, and p0 = 1. By means of the partition, it is 
clear that the neighbourhood will always be that of our model shown in 
Fig. 5. In addition, given p0 = 1, for each generation, the cells around 
the infected cells will have a probability of infection equal to or greater 

Table 2 
Marginal infectiousness according to partitions and loss factor.  

E P 1 P 2 P 3 P 4 

C = 1 5.8376 5.0039 3.5165 4.1252 
C =

1.5 
4.0450 3.6188 2.8415 3.1359 

C = 2 3.3059 3.0362 2.5355 2.7198 
C =

2.5 
2.9127 2.7219 2.3619 2.4953 

C = 3 2.6716 2.5271 2.2504 2.3561  

Table 3 
Marginal infectiousness according to partitions and p0.  

E P 1 P 2 P 3 P 4 

p0 =

0.1 
3.2939 2.9762 2.4155 2.4198 

p0 =

0.4 
3.3179 3.0962 2.6555 3.0198 

p0 =

0.7 
3.3419 3.2162 2.8955 3.6198 

p0 = 1 3.3659 3.3362 3.1355 4.2198  

Fig. 2. The surface of marginal infectiousness E when P := {0,0.1,0.5,0.9,1}.  
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than 1. □ 

Remark 4.1. Note that it is not necessary to take stochasticity into 
account, since following the update criterion of Eq. 3, when the prob-
abilities are greater than or equal to 1, Bernoulli tests are not performed. 

Therefore, if we consider Γ in a square grid such that 

Γ = (P ,C, p0) = ({0, 1, 1, 1, 1}, c, 1), c⩾1, ΔID = 1 (4)  

then we reach the Moore model, as shown in Fig. 6. 
In the case of Von Neumann dynamics, the derivation is not so 

straightforward. Here, stochasticity must be taken into account that is 
we need to identify the specific random seed that results in such dy-
namics. Considering Fig. 5, we must find the random seed that infects 
the central elements buts avoids infecting the corner elements, for every 
single generation. Thus, by Property 4.2 we will prove the existence of 
this particular random seed and by Property 4.3 we will compute the 

Fig. 3. Influence of C and p0 in our model for P 3 and ΔID = 1.  

Fig. 4. Pearson correlation values between marginal E infection values and the average of the spread rate dM .  

Fig. 5. Neighbourhoods in the Moore (left), Von Neumann (centre) and our model (right).  
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probability of getting it randomly. 

Property 4.2. Let N,K ∈ N and model parameters 

P = {0, 1, 1, 1, 1}, c⩾1, ΔID = 1 and p0 = 0.5  

then some random seed value exists for which our spread model is equal 
to the Von Neumann model. 

Proof. It is clear that if we have one infected cell, then all its sur-
rounding eight cells have 50% chance of being infected in the next step, 
due to p0. At the same time, since our grid is finite, we will have a finite 
number Ñ of possible outcomes. Moreover, Von Neumann’s outcome is 
among these possible outcomes because of our model construction when 
ρ⩽u1, where we know that u1 = 1 due to P . Thus, if we use different 
random seeds, our outcomes will be independent then we can compute 
the probability of getting Von Neumann according to the number n of 
samples. In this sense, let us consider the event 

Sn := {Von Neumann’s outcome is not in the first n samples}

Obviously, 

P

(

S1

)

=
Ñ − 1

Ñ 

But as the n draws are independent thanks to the random seeds then, 

P

(

Sn

)

=

(
Ñ − 1

Ñ

)n

=

(

1 −
1
Ñ

)n

↦
n↦∞

0 

Thus, we can conclude that for a sufficiently large n, the probability 
of obtaining the Von Neumann model is sure. Therefore, some random 
seed exists for which our model and the Von Neumann model are 
equivalent. □ 

Property 4.3. Let N be an odd integer such that N = 2n + 1, and let 
the tuple of model parameters be 

Γ = (P ,C, p0) = ({0, 1, 1, 1, 1}, c, p0), c⩾1, ΔID = 1 and p0 ∈ [0, 1].

Then, the probability pvn of obtaining the Von Neumann dynamics 
depends on n and p0, and its expression is given by 

pvn

(
n, p0

)
= 16n2

p4 n (n+1)
0 (1 − p0)

4 n2   

Proof. Let’s consider a square grid of size N. Notice that in the Von 
Neumann dynamics, we also start with a primitive matrix, meaning that 
in generation k = 0, we have a single infected element at position (n,n). 
However, in the next generation (k = 1), 4 elements get infected, two of 
which belong to row n and two to column n. The same dynamics occur 
for this row and column until generation k = n (inclusive), where all the 
elements in the mentioned row and column have been infected. Thus, 
the mentioned elements get infected in the next generation after being 
exposed. Therefore, given that there are 4n elements with an infection 
probability of p0, we have that 

pvn = K p4 n
0 , K ∈ R 

On the other hand, it is important to highlight that starting from 
generation k⩾2, we obtain infected elements that do not belong to row 
or column n. Furthermore, the N × N grid can be divided into 4 blocks of 
size n× n, along with row and column n. In this sense, we can reason by 
symmetry and focus on a single n × n block. Because of the model’s 
construction and the Von Neumann dynamics, it is verified that every 
cell in the n × n block does not get infected the first time it is exposed 
with an infection probability of p0. However, in the next generation, 
they do get infected when the infection probability is 2p0, as there are 
two infected cells around them that expose them to the infection. Since 
the above holds for every entry in the 4 n × n blocks, we have 4n2 entries 
that do not get infected with an infection probability of p0 and get 
infected in the next generation with a probability of 2p0. Therefore, it 
follows that 

pvn(n, p0) = p4 n
0 (1 − p0)

4 n2
(2p0)

4 n2

= 16n2 p4 n (n+1)
0 (1 − p0)

4 n2  

□ 

Fig. 7 represents in Log scale the probability of getting the Von 
Neumann dynamics according to n, with p0 = 0.5. We observe that the 
probability decreases when n increases, so even though such a seed 
exists, it is computationally expensive to find it. Moreover, thanks to 
Property 4.3 we can deduce that the optimal value for getting this dy-
namic also depends on the grid size and is 

Fig. 6. Comparison between our model and Moore for parameter values in Γ.  
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p0 =
n + 1

2n + 1
⟶
n→∞

1
2  

Remark 4.2. Let’s see what the probability is, i.e. how many (ex-
pected) trials should be performed to find a seed for which we obtain the 
Von Neumann dynamics, on a small grid. Let us suppose N = 5 (i.e. n =

2) and we want to get Von Neumann’s dynamic, then we know that the 
optimal value for p0 is 

p0 =
3
5  

Moreover, the probability of getting this dynamic is 

pvn

(
2, 0.6

)
= 164 (0.6)24

(1 − 0.6)16
≈ 1.3337 × 10− 7  

Therefore, we should carry out 107 tests approximately to find at least 
one random seed which provides us with the same dynamic. 

Example 1. As the proof of Property 4.3 may be quite complicated, we 
will carry out an example using the same reasoning, which boils down to 
forcing the elements to be infected for each generation. Let’s assume that 
N = 5 (or n = 2), then the initial state is 

M0 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Now, we compute the sequence 

M0, R0, M1,R1,…, M4  

where Rk is the neighbourhood relation determined by the parameter 
tuple Γ of Property 4.3 and Mk is the Von Neumman dynamics for 
generation k. Thus, one has  

Then, the Property 4.3 is satisfied since 

pvn

(

2, p0

)

=
∏4

i=1
qi = 164 p24

0 (1 − p0)
16 

Note that this numerical example proves that the reasoning carried 
out in the proof of Property 4.3 holds for N = 5. Moreover, it helps in the 
understanding of the calculation of probabilities for cells belonging to 
blocks of size n× n. 

Corollary 4.1. The space of possible outcomes for our spread model 
contains Von Neumann and Moore outcomes. 

Proof. It is clear by Property 4.1 and 4.3 □ 

5. The current model as a Monte Carlo Method 

One of the key strengths of this model is its stochastic nature. When 
updating the grid state, we often need to run Bernoulli trials, which 
involve random sampling and therefore rely on pseudo-random numbers 
(i.e., random seed values). Even if we were to set the climatic conditions, 
the model would still exhibit stochastic behaviour due to the way the 
grid is updated. Consequently, we can see in Fig. 8 our model may be 
applied as Monte Carlo method since setting the climate conditions and 
parameters, we can generate different outcomes by changing the 
random seed values. 

Remark 5.1. For ease of notation, let us consider 

Xi =
{

Si
k

}K
k=0 ∀1⩽i⩽n   

Rel.Freq.of{X ∈ A} ≈ P(X ∈ A)

By applying the law of large numbers to our model, we can assert that 

R0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 p0 p0 p0 0
0 p0 0 p0 0
0 p0 p0 p0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 1 0 0
0 1 2 1 0
0 0 1 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, q1 = p4
0 (1 − p0)

4

R1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 p0 p0 p0 0
p0 2p0 0 2p0 p0

p0 0 0 0 p0

p0 2p0 0 2p0 p0

0 p0 p0 p0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 1 2 1 0
1 2 2 2 1
0 1 2 1 0
0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, q2 = p4
0 (2p0)

4
(1 − p0)

8

R2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0 2p0 0 2p0 p0

2p0 0 0 0 2p0

0 0 0 0 0
2p0 0 0 0 2p0

p0 2p0 0 2p0 p0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2 1 0
1 2 2 2 1
2 2 2 2 2
1 2 2 2 1
0 1 2 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, q3 = (2p0)
8
(1 − p0)

4

R3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2p0 0 0 0 2p0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2p0 0 0 0 2p0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 2 2 1
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
1 2 2 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, q4 = (2p0)
4

(5)   
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the probability of cell (i, j) being susceptible (resp. infected, dead) in 
generation k converges almost surely to the relative frequency of being 
susceptible (resp. infected, dead). Thus, for a sufficiently large n, by 
computing the relative frequencies of sequence X1,X2,…,Xn for each 
cell and generation, we can calculate the probability of being healthy (or 
infected, dead). We define X ∈ [0,1]N×N×K as the variable that stores the 
estimated probabilities of the cells being healthy (or infected, dead). 
This outcome will be very important since it will help to understand the 
phenomenon scope and which areas are more likely to be affected ac-
cording to our approach, climate conditions and parameters. 

Remark 5.2. Moving forward, we will focus on studying the proba-
bility of the cells being healthy. However, reasoning can be 

symmetrically extended to study the probability of cells being infected 
or dead. In this regard, the sequence X1,X2,…,Xn i.i.d. refers to whether 
the cell is healthy or not, that is, Xi ∈ {0,1}N×N×K. 

Therefore, it follows that 

X =
1
n
∑n

i=1
Xi, with E

[

X

]

= μ, Var

[

X

]

=
σ2

n
(6) 

We can define the following metrics for the estimator X of μ: 

F

(

X

)

:=
∑

k

∑

i,j
Xk

i,j; and F

(

X, k

)

:=
∑

i,j
Xk

i,j 

And for estimator ŝ of σ2, it would be enough with: 

ŝ := max

{
1

n − 1
∑n

i=1

(

Xi − X

)}

Example 2. We will now consider a square grid of size N = 21and a 
number of generations K = 15. We will apply our spread model to study 
the probability of being healthy for each cell, under simulated weather 
conditions D and parameters Γ. Specifically, we set 

Γ = (P ,C, p0) = ({0, 0.1, 0.5, 0.9, 1}, 2, 0.25), ΔID = 1 

We will use the resulting probability estimator X for each cell. The 
numerical results are presented in Table 4 and Fig. 9. Our estimations 
achieve a high level of accuracy, as F(X, k) converges for all k ∈ {5,10,
15}. Assuming that the error is uniformly distributed across every cell of 
the grid, we obtain an error of approximately 1.5 × 10− 3 for each cell. 
Additionally, we observe that the estimates of the grid-wide mean 
quickly converge to fairly good confidence levels. Lastly, regarding the 

Fig. 8. Overview of the operational principles of the proposed model as Monte Carlo Method.  

Table 4 
Estimations of the population mean and variance using Monte Carlo simulations with ΔID = 1.  

n F(X,5) F(X,10) F(X,15) F(X) F
( ⃒
⃒Xi+1 − Xi

⃒
⃒
)

ŝ 

10 417.3000 377.4000 364.3000 6368.5000 – – 
102 404.5400 350.0500 336.8400 6079.7300 288.7700 0.4955 
103 401.7320 343.4400 330.7950 6012.9610 66.7690 0.2720 
104 401.0213 342.5184 330.4957 6002.9682 9.9928 0.2513 
105 401.4771 343.1444 331.0231 6009.9809 7.0127 0.2501  

Fig. 7. Probabilities of getting the Von Neumann’s dynamics according to n 
and being p0 = 0.5. 
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estimations ŝ of the population variance, we may assume that 
(

σ2 )k
i,j ⪅0.250115 ∀0⩽ i, j⩽N − 1, ∀0⩽k⩽K   

Remark 5.3. It is considered Xi+1 as the estimation of X using n = 10i. 

Example 3. In order to study the effect of the delay ΔID, we will repeat 
Example 2, but with ΔID = 2. The results are shown in Table 5 and Fig. 9. 

On the other hand, it is well-known that confidence interval CI for μ 
with a level of confidence α can be calculated by Eq. (7), where zα

2 
refers 

to the critical value from the standard normal distribution that corre-
sponds to the level of significance α

2 in a two-tailed test 

CIα

⎛

⎝μ

⎞

⎠ :=

⎡

⎣μ̂ − zα
2

σ̂̅
̅̅
n

√ , μ̂ + zα
2

σ̂̅
̅̅
n

√

⎤

⎦ (7) 

In our case, we assume that μ̂ := X, and σ̂ :=
̅̅
s

√
. Then, if we consider 

as standard error SEα as: 

SEα := zα
2

σ̂̅
̅̅̅
N

√

Let us suppose that we can achieve an accuracy around 10− 2, then it 
is enough with 

SEα⩽10− 2 ⇒N⩾ z2
α
2
104 σ̂2 

Thus, by applying the aforementioned equation for the specific case 
where α = 0.95, it can be concluded that n = 9604 guarantees an ac-
curacy of 10− 2 for each cell. Fig. 9 presents a heatmap of μ̂, which dis-
plays the outcomes of Examples 2 and 3 and allows identification of the 
affected cells. 

5.1. Limitations of the model as a classification model 

Our classification model is built upon the Monte Carlo method. While 
Monte Carlo codes have achieved significant sophistication, simulations 

suffer from the drawback of demanding extensive computational re-
sources to attain an adequate level of result confidence. Hence, it is 
crucial to acknowledge the associated limitations. 

Specifically, a substantial number of tests may be required. Insuffi-
cient testing could lead to a heightened sampling error, resulting in 
overly broad confidence intervals. Ensuring an ample number of trials is 
crucial to obtain more precise and reliable estimates. 

Moreover, the computational cost grows exponentially with the in-
crease in the number of variables in the model and the grid size for 
analysis. Despite the potential for parallelization to improve efficiency, 
obtaining accurate results under such circumstances can be challenging 
due to computational demands. 

A critical consideration involves the estimator used in the Monte 
Carlo method, which relies on the average of test results Eq. 6. However, 
it is noteworthy that this estimator may not always minimize variance. 
This observation presents an opportunity for future research to explore 
techniques for variance reduction, see Section 6. 

Therefore, while our classification model harnesses the power of the 
Monte Carlo method, its practical application requires careful consid-
eration of the computational challenges and the need for a sufficient 
number of trials to ensure reliable results. Exploring innovative variance 
reduction techniques (Kleijnen et al., 2010; Botev and Ridder, 2017) 
would help to improve the model’s accuracy and broaden its applica-
bility in future research and real-world applications. 

5.2. Application to a real wildfire 

Since our model can be used as a Monte Carlo method, we apply it to 
a real case. We consider the wildfire in Vall de Gallinera (Valencian 
Community, Spain) in August 2020, see Fig. 10. This is part of a database 
of wildfires in our community, which we are setting up, see Supple-
mentary Data. 

Then, the estimate that our model would make is given by Fig. 12, 
assuming Fig. 11 as our climate conditions for θ and ρ. 

Thus, the outcomes obtained in this study provide a credible and 
realistic starting point and lay a solid foundation that can be improved 
and refined in future work, see Section 6. 

Fig. 9. Comparison of heatmaps when ΔID = 1 (left) and ΔID = 2 (right).  

Table 5 
Estimations of the population mean and variance using Monte Carlo simulations with ΔID = 2.  

n F(X,5) F(X,10) F(X,15) F(X) F
( ⃒
⃒Xi+1 − Xi

⃒
⃒
)

ŝ 

10 399.90000 306.60000 265.10000 5623.20000 – – 
102 389.63000 280.41000 227.06000 5322.48000 337.48000 0.397753 
103 386.15500 269.55400 211.82900 5203.31500 135.01500 0.262959 
104 385.50440 267.95510 210.18240 5186.82160 25.00460 0.251203 
105 385.87992 268.70916 211.10374 5195.11573 9.54519 0.250145  
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6. Conclusions and future work 

In this paper, we have explored the potential of our 2D-CA model 
driven by wind direction θ and intensity ρ. Our approach has demon-
strated the ability to modulate the expansion of the phenomenon by 
various parameters. Furthermore, it has been observed that by carefully 
selecting these parameters, it is possible to consider the Moore and Von 
Neumann dynamics as particular cases, taking advantage of the sto-

chasticity of the model. 
Another important result is the identification of the measure of ex-

pected infections E as an early indicator of the rate of expansion since we 
have observed a strong linear relationship between them. This fact could 
help us to establish a hierarchy between tuples of parameters, and 
therefore to optimise the parameters by means of the spread rate. 
Furthermore, stochasticity has allowed us to use the model as a Monte 
Carlo method, which means that we can estimate the probability of 

Fig. 10. Wildfire representation in Vall de Gallinera.  

Fig. 11. Climate conditions θ, ρ in the wildfire.  
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belonging to each state for each generation, given a confidence level. 
Finally, our model has been applied to a real case and we have seen 

that the results provide a credible and adequate basis for future studies. 
Regarding future work, we identify the following lines of research: 

a.Increasing the number of climate variables: To establish a more 
accurate neighbourhood relationship, we propose to incorporate a 
larger number of climate variables. For example, we could consider 
as climate functions the parameters C and p0, i.e. 

C(t, h) and p0(t, h),

where t and h represent temperature and humidity resp. 
b.Modification of the update criterion and application of ma-
chine learning: We will seek to improve our model by modifying the 
update criterion, maintaining stochasticity but making it differen-
tiable. This will allow us to take advantage of machine-learning tools 
and turn our model into an intelligent cellular automaton. 
c.Optimising the scope: We will make changes in the partitions 
used to increase the number of cells exposed in each iteration. This 
will become another adjustable parameter to improve the accuracy 
and efficiency of the model. 
d.Strategies of variance-reduction: As previously mentioned, the 
estimator given by Eq. 6 may not have the minimum variance. 
Therefore, it opens the possibility to investigate and develop new and 
more sophisticated estimators by using variance reduction strategies 
such as the importance sampling, stratified sampling, Quasi-Monte 
Carlo methods (Kleijnen et al., 2010; Botev and Ridder, 2017) or 
even Markov chain Monte Carlo methods (Brooks, 1998) 
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