
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier XX.XXXX/ACCESS.2019.DOI

Application of Barycentric Coordinates
in Space Vector PWM Computations
PAWEŁ SZCZEPANKOWSKI, (Member, IEEE), JANUSZ NIEZNAŃSKI, (Senior Member, IEEE)
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ABSTRACT This paper proposes the use of barycentric coordinates in the development and implementa-
tion of space–vector pulse–width modulation (SVPWM) methods, especially for inverters with deformed
space–vector diagrams. The proposed approach is capable of explicit calculation of vector duty cycles,
independent of whether they assume ideal positions or are displaced due to the DC–link voltage imbalance.
The use of barycentric coordinates also permits a well–defined and universal approach to the problem of
identifying the region in which the reference vector is located. It completely avoids the use of angles,
trigonometric functions and inverse trigonometric functions and is chiefly based on matrix operations
which are well suited for digital signal processor implementation. The proposed approach is exposed
and validated for the special case of three–level neutral–point clamped (NPC) inverter controlled by a
discontinuous space–vector PWM.

INDEX TERMS space–vector PWM, three–level NPC inverter, barycentric coordinates.

I. INTRODUCTION

THE Voltage source inverter topologies become more
and more complex with the increasing number of

voltage levels and inverter legs. The increase in topological
complexity entails exponential increase in the complexity of
PWM modulation methods suitable for these inverters. This
paper addresses the above problem by proposing the use
of barycentric coordinates as a convenient and transparent
computational idea applicable to PWM computations. To fix
attention, the space–vector type of modulation is assumed
throughout the paper (SVPWM). The SVPWM involves
selecting appropriate subsets of inverter voltage vectors and
computing the application times of those vectors in every
modulation period. The aim is to synthesize a sequence of
inverter vectors whose average value equals the reference
vector. The relative application times of component vec-
tors are usually called duty cycles, and so the SVPWM
chiefly deals with selecting the component vectors and
computing their duty cycles. The component vectors used
in the SVPWM synthesis are usually the inverter voltage
vectors corresponding directly to the on/off states of inverter
switches. Such vectors will here be called the basic vectors.
In some cases it may be advantageous to predefine some
sequences of basic vectors, usually called virtual vectors,
and use the latter as component vectors in the PWM
synthesis.

In the case of two–level inverters, the selection of com-
ponent vectors usually reduces to a simple task of finding
the 60◦ sector in the space-vector diagram in which the
reference vector currently resides. For the three-level NPC
inverter and more complex topologies, however, the number
of regions to select from is much greater, especially when
the DC link voltages are unbalanced. This means that the
selection of region (and thus the corresponding component
vectors) is no longer a trivial task.

The literature overview below starts by presenting the
ideas for SVPWM computations under balanced DC-link
voltages. Then, the methods used for active balancing of the
DC-link voltages are briefly discussed. And finally, the few
concepts for SVPWM computations under DC-link voltage
imbalance are outlined.

Several classes of methods of SVPWM for multilevel
inverters have been proposed and discussed in the literature.
Most of them rely on the nearest three vectors (NTV)
approach, meaning that the component vectors used in the
synthesis form a triangle comprising the endpoint of the
reference vector (modulation triangle) on the space–vector
diagram. One of the methods, here referred to as the small
reference vectors method, was proposed in [1]–[3] for the
three–level inverters. In this method, the large space–vector
hexagon of the three–level inverter is decomposed into six
small hexagons characteristic of two–level inverters. As the
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first step in the method, the small hexagon containing the
reference voltage vector is found, based on the angular
position of that vector. This step effectively means determin-
ing the 60◦ angular sector containing the reference vector
and the center of the appropriate small hexagon. Then, the
original reference vector is replaced by a small reference
vector whose origin is at the center of the small hexagon.
This is done by subtracting the coordinates of the center
from the original reference vector. Once this is done, the
selection of basic vectors (or the target modulation triangle)
can be based on the angular position of the small reference
vector, and the duty cycle calculations can proceed as for
the two-level inverter. A similar approach is proposed in [4].
A generalization of the considered method to inverters with
more levels than three was proposed in [5]. The original
reference vector is again replaced by one whose origin is
at the center of the appropriate small hexagon; this vector
is called the remainder vector. The target small hexagon
is found by gradual reduction of the complete space-vector
hexagon to smaller ones. In each step the smaller hexagon
corresponds to the space-vector diagram of an inverter with
number of levels reduced by one. The consecutive centers of
smaller hexagons, called vertex vectors, are subtracted from
the corresponding consecutive values of modified reference
vectors. The main limitation of all variants of the small
hexagon method is that they rely on perfect geometry
of the space-vector diagrams. That means that the PWM
computations under DC–link voltage imbalance can be far
from accurate.

References [6]–[9] propose and discuss a method that
can be considered a variety of the small reference vectors
method. The method is discussed in detail for the three–
level inverter. It also reduces the problem of multilevel
PWM computations to the two–level case. Just like the
previous method, it starts by determining the 60◦ angular
sector containing the reference vector (again, using the cur-
rent angular position of that vector). Then, the modulation
triangle is found based on two integers k1 and k2 computed
from the Cartesian (αβ) coordinates of the reference vector.
The combination of the integers may directly indicate the
target modulation triangle or a rhombus made of two target
triangles. In the latter case an additional test is necessary to
decide which of the two triangles should be selected (the test
is based on the αβ coordinates of the reference vector and
the above mentioned integers). Once the modulation triangle
is determined, the small reference vector can be evaluated
and the basic vector duty cycles can be computed from
the local αβ coordinates of the small reference vector, just
like for the two–level inverter. This approach also assumes
perfect geometry of the space-vector diagrams and thus can
be affected by DC-link voltage imbalance.

A number of references propose transformations of the
space-vector diagrams from the Cartesian (or αβ) coor-
dinates to other frames. One of them is the gh coordi-
nate system proposed in [10], also referred to as the gh
frame [11], the 60◦ coordinate system [12], [13] or mn

coordinates [14]. The transformation results in all basic
vectors having integer coordinates, which simplifies the
determination of the modulation triangle and computation
of the component vector duty cycles. The 60◦ sector of
the space-vector diagram containg the reference vector is
determined from the angular position of that vector, while
the rest of computations are freed from angles and cumber-
some trigonometry. Similarly to the small reference vectors
method, the main drawback of the method is its reliance
on the assumed regularity of space-vector diagram. The
method in its basic form does not address the problem of
DC-link voltage imbalance. Another transformation of the
space-vector coordinate system is proposed in [15]. The new
coordinate system is denoted as the α′β′ coordinate frame
and the main feature of that system is that all state vectors
have integer coordinates. Unlike the gh frame, which leaves
the geometry of the space–vector diagram unchanged, the
α′β′ coordinate system changes the shape of the diagram
(e.g. transforming circular trajectories of reference vector to
elliptic trajectories). Other than this, the properties of this
coordinate system are similar to the gh frame. The selection
of modulation triangle and duty cycle calculations are again
based on implicit assumption of undistorted space-vector
diagram.

The problem of balancing the DC–link voltages has quite
rich literature. In general, the balancing actions can be
based on appropriately changing the switch state sequences
and/or adjusting the application times of the switch states
representing the redundant (i.e. short) voltage vectors [2],
[3], [9], [16]–[18]. To reduce undesired effect on the DC–
link voltages, some solutions ( [9], [19]) suppress the use
of medium vectors (i.e. vectors that do not have alternative
switch state options) for higher modulation indexes. Consid-
ered in [20]–[22] is the modulation of the three–level NPC
inverter using virtual vectors. In all of the above approaches
the duty cycles are only calculated under the assumption
of balanced DC–link voltages. Obviously, the use of ideal
vector positions under DC–link voltage imbalance means
imprecise voltage synthesis, which translates into distortion
of load currents.

One of the few attempts to compute the duty cycles of the
actual (i.e. non–ideal) component vectors for the three-level
NPC inverter was presented in [23]. The authors proposed an
extension of the gh frame method of [10] to include accurate
duty cycle calculations under DC–link imbalance. The idea,
called the method of projections, is quite complex and
derived after a complex analysis of geometric relationships
between the basic vectors displaced by the DC–link voltage
imbalance. The approach is hardly extendable to other cases,
for instance a different type of component vectors (e.g.
virtual vectors) or different inverter topologies (e.g. four–
leg inverters or inverters with more than three levels). A
more universal method was proposed in [24]. The calcula-
tions of duty cycles are performed in a frame called abc
coordinates. This frame is made of three axes – a, b and c –
corresponding to the respective three phases of the inverter,
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Figure 1. Three–level NPC inverter.

but forming a three–dimensional orthogonal system rather
than the standard planar system with the abc axes rotated by
multiples of 2π/3. It permits quite simple representation of
DC–link voltage imbalance and computation of duty cycles
under imbalance. The method can be used for multilevel
three–leg and four–leg inverters.

This paper also proposes a computational approach sup-
porting explicit space–vector PWM computations for mul-
tilevel inverters with possible DC–link voltage imbalance.
The key idea in the proposed arithmetic is the use of
barycentric coordinates for the duty cycle computations and
selection of the modulation triangle. The first attempt to put
the idea forth was [25], where it was rather unfortunately
related to finite element shape functions (the idea passed
unnoticed). In this paper the presentation of the idea is com-
pletely redesigned and uses a new case study for illustration.
Unlike the method of [24], which uses a special coordinate
frame, the proposed method is applicable directly to the
space–vector diagrams in the natural Cartesian coordinates
(αβ). The method can be applied to all types of multilevel
NPC inverters (and other types of power converters, notably
the matrix converters), but here its potential is presented and
discussed using the three–level NPC inverter (Fig. 1) and
a particular type of modulation (discontinuous modulation
with switch commutations occurring only in two phases in
each modulation period).

It is important to underline that the proposed use of
barycentric coordinates is only a useful and helpful mathe-
matical aid for both the development and implementation
of particular SVPWM solutions. The very fact that vec-
tor selections and duty cycle computations are based on
barycentric coordinates does not entail any effect on the
properties of the modulation (like THD, switching frequency
and so on).

Section II explains the general idea of PWM computations
based on barycentric coordinates. Section III presents the
proposed discontinuous SVPWM modulation. Section IV
provides laboratory test results of the algorithm and Section
V concludes the paper.

a

b

v1

v2

v3
v0

A013

A023

A012

Figure 2. Illustration of the representation of an arbitrary reference vector v0

as a point inside a triangle.

II. PWM COMPUTATIONS BASED ON BARYCENTRIC
COORDINATES
In the case of three-leg inverters the voltage vectors used
in the PWM synthesis can be considered points on a two-
dimensional αβ plane. In most cases considered in the
literature, the reference vector is synthesized using the
three nearest component vectors, and this approach is also
assumed here to fix attention. Consider an arbitrary refer-
ence vector v0 on the αβ plane and arbitrary three nearest
component voltage vectors v1, v2 and v3 (Fig. 2). The
computation of vector duty cycles amounts to expressing
the reference vector position as a linear combination of
the component vectors. It is exactly the same problem as
expressing the Cartesian coordinates of a point inside a
triangle in terms of the barycentric coordinates (or area
coordinates) of that point [26]. Thus, the coordinates of
vector v0 in Fig. 2 can be expressed using the coordinates
of v1, v2 and v3 as follows:[

v0α

v0β

]
=

[
v1α v2α v3α

v1β v2β v3β

] N1

N2

N3

 (1)

where N1, N2 and N3 are the barycentric coordinates of v0

which can be evaluated by[
N1 N2 N3

]
=
[

A023

A123

A013

A123

A012

A123

]
(2)

with the Aijk symbols representing the areas of the triangles
defined by vertices vi, vj and vk. In other words, the
barycentric coordinates are equal to the normalized areas of
their corresponding triangles. The areas can be computed
straight from the αβ coordinates of the appropriate compo-
nent vectors by

Aijk =
1

2
·

∣∣∣∣∣∣
 viα viβ 1
vjα vjβ 1
vkα vkβ 1

∣∣∣∣∣∣ (3)
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From the viewpoint of PWM, the barycentric coordinates
can be interpreted as duty cycles of the component vectors
required to synthesize the reference vector. It is worth
noting that the computation of duty cycles in terms of
barycentric coordinates can be based directly on the actual
positions of the component vectors rather than their ideal
positions without affecting the ease of computations. What
is more, the proposed computing approach readily extends
to more complex problems of PWM synthesis (e.g. inverters
with more levels, four–leg inverters, matrix converters and
others).

The above considerations lead to the following general
conclusion about the use of barycentric coordinates in the
PWM computations:

Conclusion 1. The use of barycentric coordinates in the
PWM computations permits effective and uniform evalu-
ation of the duty cycles of component voltage vectors,
independent of the possible displacements of these vectors
from their ideal positions.

The barycentric coordinates have a very useful additional
property that their sum equals unity if they are computed
for a point inside the triangle (as in Fig. 2), but it is greater
than unity if the point lies outside the triangle (as illustrated
in Fig. 3). Thus, a uniform and effective method to find the
triangle or triangles containing the reference vector can be
to compute some candidate sums of barycentric coordinates
and then select the smallest one (ideally equal to 1). This
idea is illustrated in Fig. 4 for the case of two–level inverter.
The lowest sum of barycentric coordinates computed for
all triangular regions in which the reference vector may
lie (here equivalent to sectors) appropriately indicates the
actual reference vector location. The illustrated case is very
simple, but for more complex space-vector diagrams the
localization of reference vector in the appropriate region
can be a complex task (cf. the considerations in Section
III). Thus, a second general conclusion about the use of
barycentric coordinates in the PWM computations can be
formulated as follows:

Conclusion 2. Barycentric coordinates can be used as
the basis of a universal method for locating the region
comprising the reference vector.

The above general conclusions will be illustrated and
supported by the discussions and results presented in the
sequel.

CALCULATION OF THE αβ COORDINATES OF BASIC
VECTORS
Fig. 5 shows the basic vectors of the three-level NPC
inverter for the case of balanced DC-link voltages. The
three-digit vectors next to the basic vectors of general form

H =
[
ha hb hc

]
(4)

a

b

v1

v2

v3

v0

N3 N2

N1

3

1 2 3

1

1


    i

i

N N N N

Figure 3. Illustration of a vector v0 lying outside the considered triangle.

V100

V010

V001

V011

V101

V110

0

1

2

sector

N1

N2 N3

V010

V001 V101

V110

N1 N2

N3

V100

(0,0)

(0,0)

N1+N2+N3

1 2 3 4 5 6

0

1

2

1 2 3 4 5 6
sector

V011

N1+N2+N3

v0

v0

Figure 4. Illustrative example of how the lowest sum of barycentric
coordinates indicates the triangular region containing the reference vector.

represent the switch states according to the following con-
vention: hx = 0 if the corresponding phase is connected to
the DC–link potential N , hx = 1 if the corresponding phase
is connected to the DC–link potential O, and hx = 2 if the
corresponding phase is connected to the DC–link potential
P , with the subscript x standing for a, b or c.

Any imbalance in the DC link, here expressed in terms
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[0 0 1]

[0 0 2]

[0 1 0]

[0 1 1]

[0 1 2]

[0 2 0]

[0 2 1]

[0 2 2]
[1 0 0]

[1 0 1]

[1 0 2]

[1 1 0]

[1 1 2]

[1 2 0]

[1 2 1]

[1 2 2] [2 0 0]

[2 0 1]

[2 0 2]

[2 1 0]

[2 1 1]

[2 1 2]

[2 2 0]

[2 2 1]

[2 2 2]

[0 0 0]
[1 1 1]

sector 1 

Figure 5. Basic vectors of the three-level NPC inverter for balanced DC-link
voltages.

[1 1 0]

[2 0 0]

[2 1 0]

[2 2 0]

[2 2 1]

[2 2 2]

[0 0 0]
[1 1 1]

[1 0 0][2 1 1]

Figure 6. Basic vectors of the 3–level NPC inverter for unbalanced DC-link
voltages (υ∆ = 0.1); only sector 1 shown.

of the neutral point (NP ) imbalance index

υ∆ =
uC2 − uC1

UDC
(5)

will result in the medium vectors being displaced and the
short vectors being split and displaced (as illustrated in Fig.
6 for sector 1).

Whether the DC link is balanced or unbalanced, the αβ
coordinates of the inverter basic vectors can be computed
by applying the Clarke transformation to their corresponding
vectors of inverter leg voltages

v =

[
vα
vβ

]
=

[
2/3 −1/3 −1/3
0 1/

√
3 −1/

√
3

]
u (6)

where

u =

 ua
ub
uc

 (7)

The leg voltages ua, ub and uc are defined in Fig. 1. It is
easily verified by inspection that they can be evaluated using
the matrix formula below

u = C · uDC (8)

where uDC is the following vector of DC–link potentials

uDC =

 uP
uO
uN

 =

 UDC
uC1

0

 (9)

and C is the following DC–link–to–leg–voltage conversion
matrix

C =

 caP caO caN
cbP cbO cbN
ccP ccO ccN

 (10)

Each row in the above matrix represents the inverter switch
states in the corresponding leg as follows

[
cxP cxO cxN

]
=


[
0 0 1

]
⇔ hx = 0[

0 1 0
]
⇔ hx = 1[

1 0 0
]
⇔ hx = 2

(11)

III. PROPOSED DISCONTINUOUS SVPWM
The discontinuous space–vector PWM has been chosen for
the case study in this paper. This kind of modulation is used
to reduce the switching frequency of the inverter and thus
the switching losses [27], [28]. The reason for developing
such a modulation scheme by the authors was a demanding
coal mine application. This section briefly discusses the
sequences of switch states to be used in the proposed
modulation algorithm and presents the algorithm itself.

SEQUENCES OF SWITCH STATES
The proposed discontinuous PWM uses three different
switch states arranged in symmetric H1–H2–H3 | H3–
H2–H1 state sequences. The sequences are each designed
in such a way as to minimize the number of transistor
state changes per PWM period, and thus to minimize the
switching frequency and switching losses. To each sequence
of switch states there corresponds a triangular region defined
by the switch states ha, hb and hc. The collection of
sequences to be used in the modulation is such that for any
reference vector there are two candidate regions (triangles)
and state sequences. This redundancy allows active balanc-
ing of the DC-link voltages (as explained in the following
section). Table I shows all sequences of switch states to be
used in the case of reference vector residing in sector 1 (only
the left halves of the sequences are explicitly specified). For
illustration, Fig. 7 shows the timing diagram of switch state
sequence S3. The triangular regions corresponding to the
sequences in Table I are shown in Fig. 8.
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0
1
2

0
1
2

0
1
2

ha

hb

hc

H1 H2 H3 H3 H1H2

Figure 7. Timing diagram of an example switch state sequence (S3) of the
considered discontinuous PWM.

1 1 0 2 1 0

2 1 1

1 1 0

0 0 0 1 0 0

2 2 1

2 2 2 2 1 1

1 1 0

1 1 1 1 0 0

2 1 0

2 2 0

2 2 1

1 1 0

1 1 1 2 1 1

2 2 1

1 1 1 2 1 1

2 0 0

2 1 0

1 0 0 2 0 0

2 1 0

2 1 1 1 1 0 2 1 0

2 2 0

1 1 0 2 1 0

1 0 0

2 1 0

2 2 1

2 1 1

s1 s2 s3 s4

s5 s6 s7 s8

s9 s10 s11 s12

Figure 8. Vector triangles corresponding to switch state sequences listed in
Table I.

THE ALGORITHM

The proposed modulation algorithm will be explained as-
suming that the reference voltage vector has coordinates
vα = 0.3 and vβ = 0.4 (in pu), which corresponds to the
vector location shown in Fig. 9. To select the appropriate
triangle of basic vectors, it is convenient first to find the
main angular sector in which the reference vector is located.
This task can be accomplished based on Conclusion 2,
that is, by computing the sums of barycentric coordinates
corresponding to the six triangles defining the sectors (i.e.
triangles whose vertices are zero vectors and the longest
vectors 200, 220, 020, 022, 002 and 202).

The next step is finding the small triangle embracing the
reference vector. Again, this can be based on Conclusion
2. To this end, consider the following 12 × 3 matrix of

Table 1. SEQUENCES OF SWITCH STATES USED IN THE PROPOSED
PWM (SECTOR 1)

Switch
sequence
symbol

Switch sequence contents
(shortened to H1–H2–H3

format)

S1 [0 0 0] – [1 0 0] – [1 1 0]

S2 [1 1 1] – [1 1 0] – [1 0 0]

S3 [2 2 2] – [2 2 1] – [2 1 1]

S4 [1 1 1] – [2 1 1] – [2 2 1]

S5 [2 1 1] – [1 1 1] – [1 1 0]

S6 [1 0 0] – [2 0 0] – [2 1 0]

S7 [2 1 1] – [2 1 0] – [2 0 0]

S8 [1 1 0] – [2 1 0] – [2 2 0]

S9 [2 2 1] – [2 2 0] – [2 1 0]

S10 [1 0 0] – [1 1 0] – [2 1 0]

S11 [2 2 1] – [2 1 1] – [2 1 0]

S12 [2 1 1] – [2 1 0] – [1 1 0]

1 1 0

2 0 0

2 1 0

2 2 0

2 2 1

2 2 2

0 0 0
1 1 1

1 0 02 1 1

v

Figure 9. Example reference vector and candidate modulation triangles.

barycentric coordinates:

NSECTOR1 =



N1

N2

...
N8

N9

...
N12


=



N000 N100 N110

N111 N110 N100

...
N110 N210 N220

N221 N220 N210

...
N211 N210 N110


(12)

where each row corresponds to one triangle in Fig. 8. The
barycentric coordinates in (12) can be computed using (2)
and (3), with the αβ coordinates evaluated from (6). By
summing up the coordinates in each row one obtains the
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

0.5

1.0

1.5

2.0

2.5

3.0

Figure 10. Triangles in sector 1 and the corresponding sums of barycentric
coordinates.

following 12–by–1 matrix:

NΣ =



N000 +N100 +N110

N111 +N110 +N100

...
N110 +N210 +N220

N221 +N220 +N210

...
N211 +N210 +N110


(13)

The sums of barycentric coordinates corresponding to the
considered location of reference vector are shown in Fig.
10. Note that the results corresponding to sequences S1 and
S2 will be identical, and the same applies to sequences S3

and S4. This can either be exploited in the arrangement
of computations or disregarded – for the sake of simplicity
and effectiveness of the code (the latter is the suggested
solution). The results indicate that two small triangles cor-
responding to sequences S8 and S9 contain the considered
reference vector. As observed earlier, the redundancy of
candidate triangles and sequences can be used in active
balancing of DC–link voltages. The ultimate choice can be
based on the predicted influence of the choice on the NP
imbalance index. It should be noted that the computation of
barycentric coordinates and location of their lowest sums is
very well supported by modern DSP technology and thus
proceeds very fast. For inverters with more levels than three
the process can be further sped up (if necessary) by grouping
the candidate modulation triangles into smaller sets; this can
be easily done based on the criterion of magnitude of the
reference vector.

A simple analysis of the four possible combinations of
the signs of the imbalance voltage and the average neutral
point current leads to the conclusion that it is sufficient to
compare the following capacitor energy indexes

ε8 = iNP8 · sign(υ∆)
ε9 = iNP9 · sign(υ∆)

(14)

Table 2. BASIC PARAMETERS OF THE LABORATORY SETUP

symbol value description

UDC1−4 200V DC voltage supply (4x30V)

C1 400µF upper capacitor (Fig.1)

C2 400µF lower capacitor (Fig.1)

Ro 25Ω load resistor

Lo 6mH load inductor

fc 10kHz PWM frequency

fn 50Hz fundamental frequency

S1 ON/OFF neutral point additional switch

Vref 0.8 pu reference voltage ratio

vαo Vref cos(2πfn) reference voltage in α axis

vβo Vref sin(2πfn) reference voltage in β axis

where iNP8 and iNP9 are estimates of the expected average
neutral point currents corresponding to the respective switch
state sequences. If ε8 is greater than ε9, sequence S9 should
be selected; otherwise, the better choice is sequence S8. The
evaluation of iNP8 and iNP9 is explained below.

To fix attention, assume again the location of reference
vector as shown in Fig. 9. For algebraic convenience the
sequences listed in Table I can be represented by the
following matrices (shown for S8 and S9 only):

S8 =

 1 1 0
2 1 0
2 2 0

 S9 =

 2 2 1
2 2 0
2 1 0

 (15)

Based on the ideas for NP current calculation presented in
[16], the estimates corresponding to both sequences can be
obtained by

iNP8 = N8 · (J− abs (S8 − J)) · iT
iNP9 = N9 · (J− abs (S9 − J)) · iT (16)

where N8 and N9 are 1–by–3 vectors of barycentric co-
ordinates as defined in (12), J denotes an all–ones 3–by–3
matrix, i is the vector of inverter output currents defined by

i =
[
ia ib ic

]
(17)

and abs(.) represents componentwise absolute value. The
flowchart of the proposed algorithm is presented in Fig. 11.

IV. EXPERIMENTAL RESULTS
A simplified schematic diagram of the laboratory setup is
presented in Fig. 12, while the parameters of the schematic
are presented in Table II. The converter used in the labo-
ratory tests is shown in Fig. 13. As anticipated in Section
II, the use of actual component vectors rather than ideal
component vectors in the PWM computations permits undis-
torted current generation despite possible DC–link voltage
imbalance.
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reference voltage v
uC1 and uC2 
(measured)

ia , ib , ic
(measured)

j+=1

compute the 

sectorial sums 

of BCs 

j>6
no

sector # := 

index of 

minimum sum

k+=1

compute the 

sums of BCs 

for candidate  

triangles

k>12

no

select the  

least-sum 

switch-state 

sequences

compute the 

respective 

energy indexes

select the 

sequence of 

minimum 

index

PWM

sequence

calculate ab 

coordinates 

of basic vectors

Step 1

Step 2

Step 3

Step 4

Eqns 6-11

Eqns 2, 3, 6, 13

Eqns 2, 3, 6 

Eqns 14-17 

Figure 11. Flowchart of the proposed algorithm (BCs stands for barycentric
coordinates).

UDC1

UDC2

UDC3

UDC4

NPC

Fig.1

uC2
S1

V
uab V

ia

ib

A

A

Lo Ro

Figure 12. Simplified schematic diagram of the laboratory setup.

Fig. 14 shows sample experimental results demonstrating
this capability of the proposed algorithm. Initially the con-
verter works with balanced DC-link voltages, whereupon a
step change in the NP voltage is forced by the contactor S1.
The quality of currents is unaffected by the huge imbalance.
By contrast, Fig. 15 shows how the current quality is
affected by the imbalance in the case of using ideal vector
positions in the PWM computations.

Another important advantage of the proposed modulation
is its ability to actively compensate the DC–link voltage
imbalance. Fig. 16 shows sample results obtained for the
proposed modulation in the case of a large initial imbalance.
The uC1 voltage, initially elevated to 150% of its nominal
value, quickly returns to the correct value thanks to the

Figure 13. Laboratory NPC inverter model: (1) connection to the DC supplies,
(2) one three level leg, (3) DSP control card with TMS320C6713 and FPGA
device, (4) load Lo inductor.

appropriate use of redundant sequences. Again, the currents
remain undistorted all along the balancing process.

As already observed, the use of barycentric coordinates
can greatly help in the development of PWM computations,
but it does not influence the results of computations (that is,
the duty cycles). Therefore, there is no point in comparing
the properties of particular modulation methods (e.g. THD)
using the proposed arithmetic with ones based on other
mathematical recipes. What can be assessed comparatively
is computational effectiveness of the proposed approach and
conventional approaches. To this end, the duty cycle com-
putation time of a routine based on barycentric coordinates
was compared with the time used by a routine based on
trigonometric functions (the latter can be classified as the
method of projections presented in [23]). Both routines,
contained in the code listing presented in the appendix,
compute the duty cycles of vector vref shown in Fig. 17.
The modulation triangle corresponds to sequence S9 (see
Fig. 8). Because of the DC-link voltage imbalance (υ∆ =
0.1) the triangle is not equilateral. This complicates the
trigonometric computations and is completely insignificant
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Figure 14. Output currents of the inverter controlled by the proposed SVPWM
for a negative 50% step change in the NP imbalance.

Figure 15. Output currents of the inverter controlled by SVPWM neglecting
the DC–link imbalance (for a negative 50% step change in the NP
imbalance).

for the arithmetic using barycentric coordinates. The test
conditions are specified in Table 3, while the test results are
given in Table 4. As can be seen, the proposed arithmetic
is many times faster than the conventional approach.

Table 3. Benchmarking conditions.

parameter description

processor type DSP Texas Instruments

model TMS320C6672

clock 1GHz

format of numbers single precision IEEE 754

library of trigonometric func-
tions

dedicated DSP Math Library
for Floating Point Devices

compiler optimization level
(Code Composer Studio 8.0)

O–2

DSP core usage computations performed by
CORE1 only

Figure 16. Active balancing of the DC–link voltage imbalance.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

a

b

v1

v2

v3

vref

area  =D[v1,v2,v3  ]

area1=D[v1,v3,vref]

area2=D[v1,v2,vref]

u  = vref - v1

u1 = v2 - v1

u2 = v3 - v1

[221]

[210]

[220]

theta_3

theta_2

theta_1

Figure 17. Definition of variables used in the benchmarking code.

Table 4. Benchmarking results.

parameter description

duty cycle d1_trig 0.5

duty cycle d2_trig 0.333

duty cycle d1_new 0.5

duty cycle d2_new 0.333

total DSP cycles for the
method of projections

859 (program code lines 57-
71)

total DSP cycles for the pro-
posed method

61 (program code lines 84-89)
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V. CONCLUSION
The use of barycentric coordinates is proposed as a tool
for space–vector PWM computations, especially for com-
plex and unbalanced lattices of inverter vectors. The use
of these coordinates can facilitate both the development
and implementation of particular SVPWM algorithms. The
proposed approach completely avoids calculations based on
angles, trigonometric functions and inverse trigonometric
functions. It is well suited for implementation on digital
signal processors.

The general idea of SVPWM computations based on the
barycentric coordinates was exposed and validated for the
special case of the three–level NPC inverter controlled by a
discontinuous SVPWM, but the idea easily extends to more
complex converters.
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