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Bell’s theorem is supposed to exclude all local hidden-variable models of quantum correlations. However,
an explicit counterexample shows that a new class of local realistic models, based on generalized arith-
metic and calculus, can exactly reconstruct rotationally symmetric quantum probabilities typical of
two-electron singlet states. Observable probabilities are consistent with the usual arithmetic employed
by macroscopic observers but counterfactual aspects of Bell’s theorem are sensitive to the choice of
hidden-variable arithmetic and calculus. The model is classical in the sense of Einstein, Podolsky,
Rosen and Bell: elements of reality exist and probabilities are modeled by integrals of hidden-variable
probability densities. Probability densities have a Clauser–Horne product form typical of local realistic
theories. However, neither the product nor the integral nor the representation of rotations are the usual
ones. The integral has all the standard properties but only with respect to the arithmetic that defines
the product. Certain formal transformations of integral expressions found in the usual proofs à la Bell
do not work, so standard Bell-type inequalities cannot be proved. The system we deal with is de-
terministic, local-realistic, rotationally invariant, observers have free will, detectors are perfect, hence
the system is free of all the canonical loopholes discussed in the literature.
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1. Introduction

The problem posed by Einstein, Podolsky, and
Rosen [1, 2], and reformulated by Bell [3], is as fol-
lows: can there exist any elements of reality whose
knowledge would allow to predict in advance the re-
sults of quantum measurements?

The advent of quantum cryptography [4–7] has
turned a purely academic debate into a practical
one: any loophole in Bell’s reasoning creates a po-
tential threat to security of data transmission.
Bell’s inequality [3] does not apply to systems that
do not satisfy at least one assumption needed for its
proof. This includes nonlocal hidden variables [8, 9],
theories based on detector inefficiency [10], locally
incompatible random variables [11–15], observers
with limited freedom of choice [16] and contextual
cognitive models [17, 18]. In each of these cases,
it is easy to understand why the inequality cannot
be derived. Detector inefficiency was used to hack
a Bell-type cryptosystem a long time ago [19, 20].
Threats based on nonlocal hidden variables, as
well as remedies against them, are less known [21].
At the other extreme, one finds various abstract
constructions, involving probability manifolds [22],
non-measurable sets [23], or non-computable

fractals [24]. However, the more abstract the model,
the more controversial and obscure its physical and
probabilistic interpretation.

What will be discussed in the present paper is
much more down-to-earth. Quite recently, we have
identified a new “arithmetic” loophole in the proof of
the theorem [25]. As usual, it remains to construct
an explicit counterexample, simultaneously free of
all the other loopholes discussed in the literature.
The article shows how to do it. The observers have
free will, detectors are ideal, hidden variables are
local, and yet the derived probabilities are exactly
those implied by quantum mechanics. The trick
is in the unexplored mathematical freedom: the
form of hidden-variable arithmetic and calculus.
Arithmetic is a natural language of mathematics.
It defines the ways we add, subtract, multiply and
divide numbers. Modified arithmetic implies a mod-
ified calculus. However, as there are different lan-
guages, there exist different arithmetics and calculi.
The same set of physical variables may be equipped
with several coexisting arithmetics. In the con-
text of Bell’s theorem, this leads to formulae of
the following form:

Nkl/N =

∫
χ1
αk(λ)� χ2

βl(λ)� ρ(λ)Dλ. (1)
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The left-hand side is the number obtained in ex-
periment. The right-hand side is the theoretical
prediction. Symbols such as / (division employed
by experimentalists to process actual data) or �
(multiplication employed by theorists to perform
counterfactual calculations) correspond to different
but mutually consistent arithmetics. The fact that
formulae such as (1) are mathematically possible
is a manifestation of the consistency. Bell’s in-
equality becomes a macroscopic test for microscopic
arithmetic.

Locality — the key assumption of Bell — effec-
tively means that probabilities (1) have a product
form, a notion that depends on arithmetic. How
many arithmetics are available if we assume that
probabilities are represented by non-negative real
numbers summing to 1? The answer may be sur-
prising: infinitely many! Then, it remains to find
a correct hidden-variable arithmetic (and calculus
it implies) and prove that it predicts local-realistic
probabilities that are identical with the quantum
ones. The resulting hidden-variable model of prob-
ability is perhaps not exactly classical, however it is
based on Einstein’s elements of reality and thus it is
sufficiently classical to create a problem for quan-
tum cryptography, even in its most ideal device-
independent version [26].

Since the subject is unknown to a wider audi-
ence, we will gradually develop the construction be-
ginning with arithmetic of parallel-connected resis-
tors. Although the system is well understood from
a physical point of view, its arithmetic aspects may
appear paradoxical. There is a nontrivial relation
between addition and multiplication that has con-
sequences for natural numbers.

The next example is related to the problem of
dark energy. We will see that the accelerating ex-
pansion of the universe can be regarded as a mis-
match between two arithmetics: the one we nor-
mally use and the one applying to cosmological-
scale observers [27]. This example is particularly
relevant for our discussion. It shows that “large”
and “small” systems, in principle, may be based
on different types of arithmetic. In the context of
Bell’s theorem it is us, the macroscopic-scale ob-
servers who are “large”, while the hidden-variables
are “small”.

Finally, we will construct the hidden-variable
model of singlet-state correlations. It is based
on two technical elements: the product which
defines locality in Clauser–Horne-type probabili-
ties [28, 29], and the integral which relates hidden
variables with observable averages. Further, we will
analyze our model from a geometric perspective and
see that it is rotationally symmetric (a property one
expects from singlet state correlations) but also this
rotational symmetry is as hidden as the hidden vari-
ables themselves.

The construction is simple. One just has to
get used to a more general perspective which
only starts to be appreciated by the scientific

community [30, 31]. We are quite confident that
the proposed formulation circumvents all the ba-
sic limitations imposed by Bell’s theorem. Most
importantly, the model is probabilistically quan-
tum enough to fake quantum correlations and clas-
sical enough to allow for eavesdropping in quantum
cryptography.

2. The world according to resistor

Let us begin with an example that is truly down-
to-earth and easy to understand. A parallel configu-
ration of resistors is considered as one single resistor
whose resistance is computed by means of the har-
monic addition

R1 ⊕R2 =
1

1/R1 + 1/R2
= f−1

(
f(R1) + f(R2)

)
,

(2)
where f(x) = f−1(x) = 1/x. An analogously de-
fined multiplication remains unchanged,

R1 �R2 = f−1
(
f(R1)f(R2)

)
=

1

(1/R1) (1/R2)
= R1R2. (3)

If we add n-times the same resistance R, we obtain
R⊕ · · · ⊕R︸ ︷︷ ︸

n

= R/n. (4)

Although the physical meaning of (4) is obvious,
it suggests that ⊕ is not an addition in the ordi-
nary sense of this word. Indeed,

R⊕ · · · ⊕R︸ ︷︷ ︸
n

6= n�R. (5)

The new arithmetic operations, ⊕ and �, seem
mutually inconsistent. On the other hand, it is clear
that

f(R1 ⊕R2) = f (R1) + f (R2) , (6)

f(R1 �R2) = f (R1) f (R2) (7)
and so f makes the “parallel arithmetic” isomorphic
to the standard arithmetic of R (we only have to be
cautious at 0). Further, ⊕ and � are commutative
and associative and � is distributive with respect
to ⊕.

Then, how is that two mathematically isomor-
phic structures cannot play the same mathematical
roles? In fact, they can play the same roles. The
problem is with the meaning of n. The natural num-
ber n at the right-hand side of (5) is not a natural
number in the sense of the new arithmetic. In order
to understand this aspect, firstly we have to clarify
what should be meant by “zero” and “one”. Once
a “one” is defined, we can add it several times to
itself. The result should be a well-defined natural
number.

“Zero” is an element 0′ such that x ⊕ 0′ = x for
any x. An insulated wire is a parallel configuration
of resistors with insulation in the role of an infinitely
resistant resistor. Insulation does not influence the
wire, R⊕∞ = R, hence ∞ = 0′.

71

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Czachor

“One” is an element 1′ such that x� 1′ = x but
since multiplication is unchanged, we get 1′ = 1.
Greater natural numbers are constructed itera-
tively,
2′ = 1′ ⊕ 1′ = f−1

(
f(1′) + f(1′)

)
= f−1(2) = 1/2,

3′ = 2′ ⊕ 1′ = 1′ ⊕ 1′ ⊕ 1′ = f−1(3) = 1/3, (8)
...

n′ = (n− 1)′ ⊕ 1′ = 1′ ⊕ · · · ⊕ 1′ = f−1(n) = 1/n.

Accordingly, n′ = f−1(n) = 1/n is the harmonic
representation of n, or more precisely, n′ is a natu-
ral number from the point of view of the harmonic
arithmetic. Following Benioff [32–35], we could say
alternatively that f−1 is a value function which
maps a natural number n into its value. Benioff’s
natural numbers are just abstract elements of a well-
ordered set and in themselves do not possess con-
crete values. The latter are produced by value func-
tions. The natural number n′ satisfies the consis-
tency condition

n′ ⊕m′ = (n+m)′, (9)
which can be directly verified by inserting n′ = 1/n
and m′ = 1/m into (2). The same rules apply
to 1′ = f−1(1) and 0′ = f−1(0) = limx→0+ f

−1(x).
As we can see, the harmonic multiplication is a re-
peated addition

R⊕ · · · ⊕R︸ ︷︷ ︸
n

= n′ �R = n′R. (10)

Subtraction and division are defined analogously:

R1 	R2 = f−1
(
f(R1)− f(R2)

)
=

1

1/R1 − 1/R2
,

	R = 0′ 	R =
1

0− 1/R
= −R, (11)

with the convention that R	R =∞ = 0′. Thus,
R1 �R2 = f−1 (f(R1)/f(R2)) =

1

(1/R1)/(1/R2)
= R1/R2. (12)

The new arithmetic involves an ordering relation:
x≤′y if and only if f(x) ≤ f(y). In particular,
r′≤′ s′ if and only if r ≤ s. The 6-tuple {R,⊕,	,
�,�,≤′} defines an arithmetic which, in the ter-
minology of Burgin [35–37], is a non-Diophantine
projective arithmetic with projection f and copro-
jection f−1.

A frequentist definition of probability parallels
the standard one (the number n′ of successes di-
vided by the number N ′ of trials) in a way that

p′ = n′ �N ′ = n′/N ′ = f−1(n)/f−1(N) =

N/n = f−1 (n/N) . (13)
The probabilities sum to one because

n′ �N ′ ⊕ (N ′ 	 n′)�N ′ = 1′ = 1 (14)
but contrary to appearances, p′ = N/n is not
greater than one — not in the new arithmetic.
The case when p′>′1′ = 1 might occur if and
only if n/N = f(p′) > f(1′) = 1, which in fact is
impossible.

Anyone for whom this paper is the first encounter
with non-Diophantine arithmetic should pause here
and contemplate the result. The notions of “greater”
or “smaller” are local concepts, just like “above”
and “below” in the antipodic cities of Auckland and
Seville. There are many analogies between non-
Diophantine arithmetics and non-Euclidean geome-
tries. Something which is larger in one arithmetic
may appear smaller in the other one (e.g. 0′ =∞).
A number which is negative in one arithmetic can
be positive in another one (the arithmetic in R+

defined by f(x) = ln(x) implies 	x = 1/x ∈ R+).
In order not to confuse the reader, it should be
stressed that the two arithmetics in the hidden
variable model involve the same ordering relation:
≤′ will be equivalent to ≤. The loophole will
technically follow from Diophantine non-linearity
(i.e., non-Diophantine linearity) of hidden-variable
integrals.

The two arithmetics are exactly symmetric with
respect to each other

x′ = f−1(x) = 1/x⇔ x = f−1(x′) = 1/x′ (15)
and

x⊕ y = f−1
(
f(x) + f(y)

)
m

x+ y = f−1
(
f(x)⊕ f(y)

)
. (16)

Now, which of the natural numbers, n′ = 1/n or
n = 1/n′, are those we learned as kids? Every-
thing in one arithmetic is exactly upside-down in
the other one. Maybe it is us who live in the Ma-
trix of wires and resistors? There is absolutely
no criterion telling which of the two arithmetics is
Diophantine. Such a relativity of arithmetics will
become essential for the reformulation of the prob-
lem of dark energy given in the next section.

Non-Diophantine arithmetics imply non-
Newtonian calculi [37–48]. In this concrete example
we consider a harmonic calculus. A derivative of
a function A: R → R is defined in the usual way
but by means of the harmonic arithmetic, i.e.,

DA(x)

Dx
= lim
δ→0′

(
A(x⊕ δ)	A(x)

)
� δ (17)

DA(x)

Dx
= lim
δ→∞

A(x⊕ δ)	A(x)
δ

. (18)

The derivative is a linear map that satisfies
the Leibniz rule (both properties defined with
respect to ⊕ and �) and was introduced and
studied in [38], and later rediscovered at least
twice [41, 44]. Non-Newtonian calculus leads to
unique non-Diophantine generalizations of all func-
tions that are defined by means of derivatives or
integrals. For example, one can directly check that
A(x) = exp (−1/x) is the harmonic exponential
function which satisfies

DA(x)

Dx
= A(x), A(0′) = 1′ (19)

and A(x⊕ y) = A(x)�A(y). Rewriting e−1/x as
A(x) = f−1

(
ef(x)

)
, (20)
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we can understand why A(x) plays a role analogous
to Newtonian ex. Working in a similar vain, we will
arrive at a full calculus, linear algebra or probability
theory. In fact, all of physical theories will have
their harmonic analogues.

Before we formulate a non-Diophantine/non-
Newtonian version of sub-quantum hidden vari-
ables, we will have a look at another, in a sense dual,
problem of cosmological-scale arithmetic [27]. The
example clearly shows that “small” and “large” sys-
tems may work with different arithmetics which are
nevertheless defined in the same set of real numbers.

3. Small-observer perspective:
dark energy as a problem of arithmetic

The Friedmann equation for a dimensionless scale
factor evolving in a dimensionless time [49]:

da(t)

dt
=

√
ΩΛa(t)2 +

ΩM
a(t)

, a(t) > 0, (21)

is exactly solvable. Namely, for t > t1 one has

a(t) =

[√
ΩM
ΩΛ

sinh

(
3

2

√
ΩΛ(t− t1)

)]2/3
. (22)

It correctly models the observed cosmological ex-
pansion if ΩM = 0.3, ΩΛ = 0.7 [50, 51]. The dimen-
sionless time is expressed here in units of the Hubble
time tH ≈ 13.58 × 109 yr. Following [27], we will
now show that (22) can be obtained with ΩΛ = 0, if
we change the arithmetic of time. The logic of the
example is similar to the argument that potential
forces can be replaced by free geodesic motions in
curved geometries.

The standard Diophantine/Newtonian Fried-
mann equation without ΩΛ,

da(t)

dt
=

√
ΩM
a(t)

, a(t) > 0, (23)

is rewritten firstly in a general non-
Diophantine/non-Newtonian form, not specifying
the arithmetics of X 3 t and Y 3 a(t). When
a(t) >Y 0Y, one has

Da(t)

Dt
= Ω

(1/2)Y
M �Y a(t)

(1/2)Y , (24)

where a(1/2)Y ⊗Y a
(1/2)Y = a, i.e.:

a(1/2)Y = f−1Y

(√
fY(a)

)
. (25)

All the arithmetic operations in X and Y are
induced from the usual (Diophantine) arithmetic
of R by means of one-to-one maps fX : X→ R,
fY : Y→ R. All of this is in exact analogy to
the harmonic arithmetic discussed in the previous
section. The solution of (24) is provided by [27]:

a(t) = f−1Y

((
3fY
(
Ω

(1/2)Y
M

)
fX(t)/2

)2/3) (26)

Formula (22) can also be written as

a(t) =

[
3

2

√
ΩM

2

3
√
ΩΛ

sinh

(
3
√
ΩΛ

2
(t− t1)

)]2/3
.

(27)

The result of the comparison with (22) suggests
there is a linear relation fY(y) = λy. Now, when
inserting fY

(
Ω (1/2)Y

)
=
√
fY(Ω) =

√
λΩ into (26),

we arrive at

a(t) =
[
3λ−1

√
ΩMfX(t)/2

]2/3
, (28)

fX(t) =
2

3
√
ΩΛ

sinh

(
3

2

√
ΩΛ(t− t1)

)
≈

0.8 sinh

(
t− t1
0.8

)
, (29)

f−1X (r) = t1 +
2

3
√
ΩΛ

sinh−1
(
3

2

√
ΩΛr

)
, (30)

0X = f−1X (0) = t1, (31)

λ =
√

ΩM/0.3. (32)
Assuming ΩM = 1, we find λ = 1.82574. Condition
λ 6= 1 can be incorporated into a change of units
because a(t) here is dimensionless.

Cosmological-scale observers who employ their
own arithmetic, related by (29) to the arithmetic
we are taught at school, believe that the universe
at their scale expands according to Einstein’s gen-
eral relativity with a zero cosmological constant.
But they are aware of the dark energy problem:
small objects, such as galaxies or planetary systems,
expand with unexplained deceleration. . .

4. Large-observer perspective:
Bell’s theorem as a problem of arithmetic

Note that in the dark energy example, the macro-
scopic observers are small compared with the ob-
served system (the universe). In the hidden-variable
problem, the macroscopic observers are large. This
instructive “duality” helps us to switch between the
two perspectives. In principle, we can imagine that
hypothetical sub-quantum observers are aware of
a Bell-type theorem stating that macroscopic ob-
servers (that is — us) cannot exist as elements of
reality.

Let us now formulate a local hidden-variable
theory of Einstein–Podolsky–Rosen–Bohm two-
electron singlet-state correlations. The resulting
model is free of all the known loopholes of the Bell
theorem but is based on the arithmetic loophole
which we will now describe in detail. The arith-
metic perspective will lead to a product which is
in between the classical multiplication from Bell-
type proofs and the tensor product from quantum
mechanics. It will be quantum enough to fake quan-
tum probabilities and still classical enough to al-
low for eavesdropping over quantum communica-
tion channels. The model is meant as a proof-of-
principle counterexample to Bell’s theorem and not
as a full hidden-variables alternative to quantum
mechanics. Neither shall we try to discuss general-
izations of Bell’s inequalities [52] nor more compli-
cated experimental configurations [53].
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Suppose that macroscopic-scale observers em-
ploy our well-known Diophantine arithmetic of R.
The hidden-variable-scale theory employs some
other arithmetic and calculus. However, both levels
of description must agree on a probabilistic level.
Accordingly, probabilities should be represented by
non-negative real numbers that sum to 1. By the
term “sum” we mean here two types of addition si-
multaneously: the ordinary Diophantine + at the
level of macroscopic observers and some yet unspec-
ified ⊕ governing the sub-quantum world. The ex-
istence of probabilities that sum to 1 in two dif-
ferent ways is not an entirely trivial mathematical
fact. An analogous formal structure is known from
quantum mechanics, where the sum of probabilities∑
j pj = 1 is compatible with the spectral sum of

projectors
∑
j p̂j = 1̂ but only the former is directly

related to experiment. For our purposes, it will be
enough to assume that X = R. Hidden-variable re-
als X are equipped with their own non-Diophantine
sub-quantum arithmetic and non-Newtonian sub-
quantum calculus is determined by a single one-to-
one unknown function f : X → R. The hidden-
variable arithmetic is defined by:

x⊕ y = f−1
(
f(x) + f(y)

)
, (33)

x	 y = f−1
(
f(x)− f(y)

)
, (34)

x� y = f−1
(
f(x) · f(y)

)
, (35)

x� y = f−1
(
f(x)/f(y)

)
, (36)

where ⊕ and � are associative and commuta-
tive, and � is distributive with respect to ⊕.
Here, X is ordered such that x≤′ y if and only if
f(x) ≤ f(y). The neutral elements of addition
and multiplication read, respectively, 0′ = f−1(0)
and 1′ = f−1(1). For arbitrary real numbers r ∈ R
we denote r′ = f−1(r). We will assume 0′ = 0 and
1′ = 1. The latter should be contrasted with quan-
tum mechanics where 1̂ 6= 1.

In order to mimic the Bell construction, the no-
tion of an integral is required and its form must be
consistent with the arithmetic. We begin with the
derivative which is conceptually simpler. Once we
know how to differentiate, it becomes clear how to
integrate. The derivative of a function A : X → X
is defined by (17). Due to 0′ = 0, it can be written
here as

DA(x)

Dx
= lim
δ→0

(
A(x⊕ δ)	A(x)

)
� δ. (37)

A non-Newtonian (Riemann or Lebesgue) inte-
gral is defined in a way that guarantees the fun-
damental theorem of the non-Newtonian calculus,
linking derivatives and integrals. In particular, un-
der certain technical assumptions paralleling those
from the fundamental theorem of the Newtonian
calculus, if A is a function mapping a given set into
itself, A : X→ X [37–48], then

x2∫
x1

Dx
DA(x)

Dx
= A(x2)	A(x1) (38)

and

D

Dx

x∫
x1

DyA(y) = A(x). (39)

Properties (38) and (39) differ from other calculi
encountered in physical applications [54], typically
having great difficulties with fulfilling the funda-
mental theorem. The power and efficiency of the
non-Newtonian approach lies in its low-level start-
ing point — the arithmetic.

It is easy to show that
x2∫
x1

A(y)Dy = f−1

 f(x2)∫
f(x1)

f ◦A ◦ f−1(r)dr

 ,

(40)
where the integral over r is Newtonian. We just
have to construct f . Let us consider two sets of
probabilities

p′±∓(θ) =
1

2
cos2 (θ/2) , p′±±(θ) =

1

2
sin2 (θ/2) ,

p±∓(θ) =
π − θ
2π

, p±±(θ) =
θ

2π
, (41)

for 0 ≤ θ ≤ π. Obviously,
1 = p′+− + p′++ + p′−− + p′−+ =

p+− + p++ + p−− + p−+. (42)
A classical model leading to joint probabilities p±±,
p±∓ is illustrated in Fig. 1. Probabilities are deter-
mined by ratios of arc lengths on a circle. The hid-
den variable is given here by a point on the circle
or, equivalently, by its polar angle λ. Once one
knows λ, the results of future measurements are
known in advance. The model does not violate Bell-
type inequalities.

Our hidden-variable model will be essentially the
same, however, the arithmetic and calculus will be
changed. The arc length has to be computed by
means of a non-Newtonian integral and division
must be consistent with the arithmetic that defines
the calculus.

Now consider the one-to-one function, such that
f−1 : [0, 1/2] → [0, 1/2], defined for 0 ≤ θ ≤ π ac-
cordingly

p′±± =
1

2
sin2 (θ/2) = f−1

(
θ

2π

)
= f−1 (p±±) .

(43)
Equivalently,

p′±∓ =
1

2
cos2 (θ/2) = f−1

(
π − θ
2π

)
= f−1 (p±∓) .

(44)
Both formulae above might seem trivial because
they express the obvious fact that sin(x) is a func-
tion of x. What is nontrivial, however, is that this
trivial function may be nontrivially employed to
construct a new arithmetic and calculus. This is
the key observation of the paper. The arithmetic
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Fig. 1. Top: a classical model with joint prob-
abilities p++ = p−− = θ/(2π), p+− = p−+ =
(π − θ)/(2π). Bottom: its non-Diophantine ana-
logue. Despite appearances, both models are rota-
tionally invariant. In both cases, the hidden vari-
able is a point on a circle. Equivalently, hidden
variables correspond to angles in, respectively, Dio-
phantine and non-Diophantine polar coordinates.

will allow us to build a rotationally invariant
hidden-variables model, although the notion of ro-
tational symmetry will have to be formulated within
the language of the new arithmetic.

Since (43) and (44) are equivalent on [0, π],
thus (43) can define the restriction to [0, 1/2]
of a one-to-one f−1 : R→ R, f−1(0) = 0,
f−1(1/2) = 1

2 sin
2 (π/2) = 1/2. For example,

as seen in Fig. 2:

f−1(x) =
n

2
+

1

2
sin2 (πx− πn/2) , (45)

f(x) =
n

2
+

1

π
arcsin

√
2x− n, (46)

for n/2 ≤ x ≤ (n + 1)/2, n ∈ Z. The function
defined in such a way satisfies

f−1 (n/4) = n/4 = f (n/4) (47)
for n ∈ Z and, in particular, 0′ = 0, (±1)′ = ±1
and (1/2)′ = 1/2. All integers are unchanged, so
number theory will be unaffected. Sums, differences
and products of integers are the usual ones, as
opposed to their ratios.

As opposed to the harmonic arithmetic
(see Sect. 2), the non-Diophantine ordering
relation ≤′ is identical here to the Diophantine ≤

Fig. 2. One-to-one f : R→ R (full) and its inverse
f−1 (dotted) defined by (45) and (46).

because f is strictly increasing. As a consequence,
x ≤′ y if and only if f(x) ≤ f(y) which holds if and
only if x ≤ y. Modulus is thus defined in the usual
way:

|x| =

{
x if 0 ≤ x
	x, if x ≤ 0

, (48)

where 	x = −x, and f−1(−x) = −f−1(x).
The trigonometric identities,
p′+− + p′++ = p′−+ + p′−− = p′+− + p′−− =

p′−+ + p′++ =
1

2
cos2(θ/2) +

1

2
sin2(θ/2) =

1

2
,

(49)
express the fact that + and − are equally probable.
The same is found in the hidden-variables world,
although the reasons for that are more subtle, for
example,

p′+− ⊕ p′++ = f−1
(
f(p′+−) + f(p′++)

)
=

f−1
(π − θ

2π
+

θ

2π

)
= f−1 (1/2) =

1

2
. (50)

One can even rewrite (43) and (44) as
1

2
cos2

(
α− β
2

)
=

f−1
(
f(π′)− |f(α′)− f(β′)|

f(2′)f(π′)

)
=

f−1

(
f(π′)− |f(α′ 	 β′)|

f
(
(2π)′

) )
=

(
π′ 	 |α′ 	 β′|

)
� (2π)′, (51)

1

2
sin2

(
α− β
2

)
= f−1

(
|f(α′)− f(β′)|
f(2′)f(π′)

)
=

f−1

 |f(α′ 	 β′)|
f
(
(2π)′

)
 = |α′ 	 β′| � (2π)′, (52)

where
0 ≤ |f(α′ 	 β′)| = |f(α′)− f(β′)| = |α− β| ≤ π

(53)
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and

π′ = f−1(π) = 3 +
1

2
sin2

(
π2
)
= 3.09258, (54)

(2π)′ = f−1(2π) = 6 +
1

2
sin2

(
2π2
)
= 6.30175.

(55)
Probabilities (51) and (52) are non-Diophantine ra-
tios of arc lengths, computed by means of non-
Newtonian integrals.

The non-Newtonian integral
x2∫
x1

Dx =

x2∫
x1

Dx

(
Dx

Dx

)
= x2 	 x1 (56)

can be used to cross-check our construction.
The length of the unit circle is

(2π)′∫
0′

Dλ = (2π)′ = f−1
(
2π
)
. (57)

The length of the arc α′ ≤ λ ≤ β′ reads
β′∫
α′

Dλ = β′ 	 α′ = f−1
(
β − α

)
. (58)

Employing the explicit form of our hidden-variables
arithmetic, we obtain that for 0 ≤ β − α ≤ π

β′∫
α′

Dλ =
1

2
sin2 (π(β − α)) . (59)

The probability of randomly selecting a point be-
longing to the arc is, in the hidden-variables world,
the ratio of the two lengths, β′∫
α′

Dλ

�(2π)′ = (1

2
sin2

(
π(β − α)

))
�(2π)′ =

f−1
(
f

(
1

2
sin2

(
π(β − α)

))/
f
(
(2π)′

))
=

f−1
(
β − α
2π

)
=

1

2
sin2

(
β − α
2

)
. (60)

Notice that the ratio of lengths defines a normalized
probability density

ρ(λ) = 1′ � (2π)′ = (1/(2π))
′
, (61)

with rotationally invariant normalization
(2π)′∫
0′

Dλρ(λ) =

φ⊕(2π)′∫
φ

Dλ ρ(λ) = 1, (62)

for any φ. Quantum probabilities can be thus writ-
ten in terms of non-Newtonian integrals of the local-
realistic form assumed in the proof of the Clauser–
Horne (CH) inequality [28] (see Sect. 7):

p′++ =
1

2
sin2

(
β − α
2

)
=

β′∫
α′

Dλρ(λ) =

(2π)′∫
0

Dλχ1
α+(λ)� χ2

β+(λ)� ρ(λ), (63)

p′+− =
1

2
cos2

(
β − α
2

)
=

α′⊕π′∫
β′

Dλ ρ(λ) =

(2π)′∫
0

Dλχ1
α+(λ)� χ2

β−(λ)� ρ(λ), (64)

p′−− =
1

2
sin2

(
β − α
2

)
=

β′⊕π′∫
α′⊕π′

Dλρ(λ) =

(2π)′∫
0

Dλχ1
α−(λ)� χ2

β−(λ)� ρ(λ), (65)

p′−+ =
1

2
cos2

β − α
2

=

α′⊕(2π)′∫
β′⊕π′

Dλρ(λ) =

(2π)′∫
0

Dλχ1
α−(λ)� χ2

β+(λ)� ρ(λ). (66)

The characteristic functions χ are discussed below.
Note that two normalizations, as required, hold si-
multaneously

p′++ + · · ·+ p′−− = 1 = p′++ ⊕ · · · ⊕ p′−−. (67)
The right-hand form follows from the general non-
Newtonian formula for integrals

b∫
a

DxF (x)⊕Y

c∫
b

DxF (x) =

c∫
a

DxF (x), (68)

where ⊕Y is the addition in Y and function
F : X→ Y. The left-hand form guarantees that
macroscopic-scale observers can test the probabil-
ities by comparing them with experimentally mea-
sured frequencies which necessarily sum to 1 in the
arithmetic used by the observers.

As regards formulae (63)–(66), they pinpoint sim-
ilarities and differences between our hidden-variable
model and those discussed in the literature so far.
The difference reduces to� instead of “·”. The prop-
erties of the integral are also important but it is
hard to say if this is really different from what Bell
had in mind. Anyway, what he assumed was that
some sort of integration applies to some unspecified
hidden variables.

5. Roots of the construction: a lemma

The origin of our construction can be traced back
to the following lemma:

Consider a one-to-one function g : [0, 1]→ [0, 1].
Then, g(p) + g(1− p) = 1 if and only if

g(p) =
1

2
+ h (p− 1/2) , (69)

where one-to-one h : [−1/2, 1/2]→ [−1/2, 1/2] is
antisymmetric.

76

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Arithmetic Loophole in Bell’s Theorem. . .

Proof: Let h(−x) = −h(x). Then

g(1− p) + g(p) =
1

2
+ h (1− p− 1/2) +

1

2

+h (p− 1/2) = 1+h (1/2− p)+h (p− 1/2) =

1− h (p− 1/2) + h (p− 1/2) = 1.

Now, let g(1− p) + g(p) = 1. Then,
1 = g(1− p) + g(p) =

1

2
+ h (1− p− 1/2) +

1

2
+ h (p− 1/2) =

1 + h (1/2− p) + h (p− 1/2) ,

and thus
0 = h (1/2− p) + h (p− 1/2)

implying h(−x) = −h(x). Since g is one-to-one,
h must be one-to-one as well.

The lemma shows that classical and quantum for-
malisms are just two particular cases of an infinite
family of non-Diophantine theories where a non-
Diophantine probability is simultaneously a prob-
ability in the ordinary Diophantine sense of (1).

The lemma is a property of binary probabilities.
It does not have a nontrivial generalization to ar-
bitrary n-tuples of probabilities [31]. The fact that
we could work with four probabilities comes from
the following construction. Let us consider proba-
bilities normalized by p1 + p2 = p. In order to find
G such that

G(p1) +G(p2) = p (70)
we define qk = pk/p. Then, q1 + q2 = 1 and there
exists a function g such that

g(q1) + g(q2) = 1, pg(q1) + pg(q2) = p. (71)
Accordingly, G(pk) = pg (pk/p) satisfies

G(p1) +G(p2) = p, p1 + p2 = p. (72)
Two-electron singlet-state probabilities correspond
to p = 1/2, g(q) = sin2

(
π
2 q
)
and h(x) = 1

2 sin(πx).

6. Projection postulate

The measurement of a yes-no random variable
projects onto a subset of states corresponding to the
result “yes”. In classical probability, the projector
is represented by a characteristic function χ+(x),
equal to 1, if x represents “yes” and 0 otherwise.
The orthogonal projector reads χ−(x) = 1−χ+(x).
In quantum probability, the projection is on a vector
subspace spanned by appropriate eigenvectors. Our
model is classical, so the projector is represented by
a characteristic function χ±(λ) = 1	 χ∓(λ):

χ±(λ)� χ±(λ) = χ±(λ), (73)

χ±(λ)� χ∓(λ) = 0. (74)
More explicitly, we can represent characteristic
functions by the diagram

X χ±−−→ X
f
y yf
R χ̃±−−→ R,

(75)

where

χ̃+(r) =


1 if r′ = f−1(r)

corresponds to “yes”
0 otherwise

, (76)

χ̃−(r) = 1− χ̃+(r). (77)
The measurements reduce probability by projection
and renormalization,

ρ(λ) 7→ ρ±(λ) =

χ±(λ)� ρ(λ)�
∫

Dxχ±(x)� ρ(x). (78)

Joint probabilities (63)–(66) provide examples of
the construction.

7. Bell-type inequalities

Bell-type inequalities are simultaneously violated
and not violated, depending on the viewpoint. Let
us see how it works.

7.1. Macdonald inequality

One of the shortest derivations of a Bell-type in-
equality was given by Macdonald [55] in his com-
ment on the Pitowsky sphere model [56]. Let us
discuss in detail the Macdonald argument from the
point of view of our non-Newtonian construction.

LetN pairs of electrons, each with total spin zero,
emerge in the opposite directions from an interac-
tion. Let N(A+ : C+) be the number of pairs in
which the left member has spin up in the A direction
and the right member has spin up in the C direction.
Let N(A+C− :) be the number of pairs in which the
left member has spin up in the A direction and spin
down in the C direction. Zero total spin implies the
counterfactual relation N(A+C− :) = N(A+ : C+).

Quantum mechanically, N(A+C− :) is an ill-
defined notion but we assume that it makes sense
in a hidden-variable model. So

N(A+ : C+) = N(A+C− :) =

N(A+B−C− :) +N(A+B+C− :) ≤

N(A+B− :) +N(B+C− :) =

N(A+ : B+) +N(B+ : C+). (79)
Since for large N , we can write

N(A+ : C+) ≈ Np(A+ ∩ C+), (80)
we obtain a Bell-type inequality

p(A+ ∩ C+) ≤ p(A+ ∩B+) + p(B+ ∩ C+) (81)
for joint probabilities. The inequality can be vio-
lated if the probabilities are quantum

p(A+ ∩B+) = p′++(α− β) =
1

2
sin2

(
α− β
2

)
.

(82)
In our model, we assume that experimental data
are those obtained by the macroscopic observers
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(since we reconstruct the measurable probabilities
implied by quantum mechanics) so (80) must be
valid as well,

N(A+ : B+)

N
≈
∫

Dλχ1
α+(λ)� χ2

β+(λ)� ρ(λ).
(83)

The left-hand side of (83) is an experimental result,
while its right-hand side is a hidden-variable theo-
retical prediction. One should not employ experi-
mental data in non-Diophantine ratios of the form
N(A+ : B+)�N . This is the reason why we impose
the usual normalization p′+++p

′
+−+p

′
−++p

′
−− = 1.

Now, let us first note that for non-Newtonian in-
tegrals∫ (

F (x)⊕G(x)
)
Dx =

∫
F (x)Dx⊕

∫
G(x)Dx.

(84)
It may be not completely irrelevant to mention
that the same type of generalized linearity occurs
in fuzzy integration [57–60]. With this observation
in mind, let us repeat the Macdonald derivation.
Zero-spin correlation is encoded in

N(A+ : C+)

N
≈
∫

Dλχ1
α+ � χ2

γ+ � ρ, (85)

N(A+C− :)

N
≈
∫

Dλ χ1
α+ � χ1

γ− � ρ, (86)

since χ1
γ− = χ2

γ+. Now insert 1 = χ1
β− ⊕ χ1

β+ and
employ (84),∫

Dλχ1
α+ � χ1

γ− � ρ =∫
Dλχ1

α+ � χ1
β− � χ1

γ− � ρ

⊕
∫

Dλχ1
α+ � χ1

β+ � χ1
γ− � ρ. (87)

With our choice of f and f−1, the ordering relation
is unchanged, so∫

Dλχ1
α+ � χ1

β− � χ1
γ− � ρ ≤ (88)∫

Dλχ1
α+ � χ1

β− � ρ =

∫
Dλχ1

α+ � χ2
β+ � ρ,∫

Dλχ1
α+ � χ1

β+ � χ1
γ− � ρ ≤ (89)∫

Dλχ1
β+ � χ1

γ− � ρ =

∫
Dλχ1

β+ � χ2
γ+ � ρ.

Finally,∫
Dλχ1

α+ � χ2
γ+ � ρ ≤ (90)∫

χ1
α+ � χ2

β+ � ρDλ⊕
∫

Dλ χ1
β+ � χ2

γ+ � ρ

which translates into experimental frequencies as
N(A+ : C+)

N
≤ N(A+ : B+)

N
⊕ N(B+ : C+)

N
.

(91)

Note that these ratios are the usual Diophantine
ones and for this reason (91) agrees with experi-
ment. This result is in contrast to the Macdonald
inequality,

N(A+ : C+)

N
≤ N(A+ : B+)

N
+
N(B+ : C+)

N
(92)

which, of course, is not satisfied in experiment.
A simple cross-check shows that with our choice
of ⊕

p′++(α− γ) = p′++(α− β)⊕ p′++(β − γ), (93)
so there is no contradiction with (90) and (91).

The Bell inequalities have been turned into a test
of hidden-variable arithmetic. It is intriguing
that the non-Newtonian aspect of our derivation,
namely (84), occurs only at the counterfactual stage
(87) of the proof. One could say that actual data
are processed in a Diophantine way but the non-
Diophantine aspects play a role at the counterfac-
tual level.

7.2. CH inequality

The Clauser–Horne inequality [28, 29]:
0 ≤ 3p′+−(θ)− p′+−(3θ) ≤ 1, (94)

if true, in our case would be equivalent to

0 ≤ 3f−1
(
π − θ
2π

)
− f−1

(
π − 3θ

2π

)
≤ 1. (95)

Notice here that for f−1(x) = x we would obtain
the identity

3
π − θ
2π

− π − 3θ

2π
= 3p+−(θ)− p+−(3θ) = 1,

(96)
valid for any θ and consistent with (95). As ex-
pected, probabilities in (41) satisfy (94).

Inequality (95) is not valid for a large class of f
but in our concrete case, setting θ = π/4, we find
the maximal violation

3f−1
(
π − π/4

2π

)
− f−1

(
π − 3π/4

2π

)
=

3f−1 (3/8)− f−1 (1/8) = 1.20711. (97)
Of course, (94) is violated because it cannot be
proved in our hidden-variable model. What can be
proved, however, is

0 ≤ 3� p′+−(θ)	 p′+−(3θ) ≤ 1, (98)
a fact following from (63)–(66), if one follows the
steps of the Clauser–Horne derivation [28]. One can
cross-check

3� p′+−(θ)	 p′+−(3θ) =

f−1
(
f(3)f

(
p′+−(θ)

)
− f

(
p′+−(3θ)

))
=

f−1
(
3
π − θ
2π

− π − 3θ

2π

)
= f−1(1) = 1. (99)

The model is local, deterministic, detectors are
ideal, observers have free will. All the standard
loopholes are absent, so Bell-type inequalities are
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Fig. 3. Comparison of the three averages:
f−1(−1 + 2|θ|/π) (full), − cos(θ) (dotted), and
−1+2|θ|/π (dashed). Although the averages differ,
the probabilities corresponding to f−1(−1+2|θ|/π)
and − cos(θ) are identical. Experiments test
probabilities.

not violated. . . in the non-Diophantine world of the
hidden variables. The only modification is that we
employ � instead of “ ·” and the integral is non-
Newtonian.

7.3. CHSH inequality

The EPR–Bohm–Bell hidden-variables average
〈AB〉′ is computed in the hidden-variables world as
follow:
〈AB〉′ = p′++ ⊕ p′−− 	 p′+− 	 p′−+ =

f−1
( 2
π
|α− β| − 1

)
. (100)

The average satisfies the hidden-variables CHSH in-
equality [61],
|〈A1B1〉′ ⊕ 〈A1B2〉′ ⊕ 〈A2B1〉′ 	 〈A2B2〉′| ≤ 2.

(101)
The observer-arithmetic average
〈AB〉 = p′++ + p′−− − p′+− − p′−+ = − cos(α− β)

(102)
nevertheless does violate the observer-arithmetic
CHSH inequality.

Figure 3 shows that (100) is neither the classi-
cal average 2

π |α − β| − 1 corresponding to the up-
per part in Fig. 1, nor the quantum one. However,
quantum experiments do not measure averages —
they measure probabilities which coincide here by
construction.

8. Hidden rotational symmetries

The Bennett–Brassard–Mermin quantum cryp-
tographic protocol [6] does not use the argument
based on Bell’s theorem. It directly employs one-
to-one correlations in two different bases, a conse-
quence of the rotational symmetry of singlet-state
probabilities.

So, is our model rotationally invariant? Yes, it
is, in a subtle way. But in order to understand the
subtlety, we first have to define the action of the

Fig. 4. Unit circles Sin2′(x)⊕Cos2
′
(x) = 1 in X×

X, where X is (i) the middle-third Cantor set and
(ii) the Koch curve. Both circles are rotationally
invariant in appropriate arithmetics.

rotation group in X × X, the Cartesian product of
X with itself. We will illustrate the construction
with two suggestive fractal examples.

Trigonometric functions mapping X into X,

Sin(x) = f−1
(
sin
(
f(x)

))
,

Cos(x) = f−1
(
cos
(
f(x)

))
, (103)

are periodic with the period (2π)′ = f−1(2π) (for
example Sin(x⊕ (2π)′) = Sin(x)).

They satisfy all the standard trigonometric for-
mulae (with respect to the arithmetic in X), in par-
ticular

Sin(x⊕y) = Sin(x)� Cos(y)⊕ Cos(x)� Sin(y),

Cos(x⊕y) = Cos(x)� Cos(y)	 Sin(x)� Sin(y),

1 = Sin2
′
(x)⊕ Cos2

′
(x). (104)

Here Sin2
′
(x) = Sin(x) � Sin(x), etc. Rotations in

the plane X× X are defined in the usual way:
x1(α) = x1 � Cos(α)	 x2 � Sin(α),

x2(α) = x1 � Sin(α)⊕ x2 � Cos(α). (105)
Formulae (104) and (105) show that rotations form
a Lie group (with group parameters subject to the
non-Diophantine arithmetic). Figure 4 depicts two
examples of unit circles generated by (105): the one
constructed in the Cartesian product of two Can-
tor sets and the one in the Cartesian product of
two Koch curves. Both circles are homogeneous
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spaces generated by rotations. The construction
works because Cantor sets and Koch curves have
the same cardinality as the continuum R. This
is why appropriate one-to-one maps f : X→ R ex-
ist and non-Diophantine arithmetics can be con-
structed [37, 44–48]. The rotational symmetries
from Fig. 4 are “hidden” in the sense that in or-
der to see them one must plot the curves in coor-
dinate systems based on appropriate arithmetics.
The property is shared by our hidden variables.

9. Hidden rotational symmetry
of the hidden-variable model

Let us return to the hidden-variables arithmetic
defined by (45) and (46). A straight line through
the origin is defined by (Fig. 5):

t 7→ (t� Cos(θ), t� Sin(θ). (106)
A unit circle is the curve

φ 7→ (Cos(φ),Sin(φ)), 0 ≤ φ ≤ (2π)′, (107)
(i.e., 0 ≤ f(φ) ≤ 2π). In order to visualize the rota-
tions, let us draw the unit circle together with the
straight lines t 7→

(
X(t), Y (t)

)
=
(
t�Cos(α⊕β), t�

Sin(α ⊕ β)
)
, for 0 ≤ f(α) ≤ 7π/8, and f(β) = 0,

π/10 and π/3 (Fig. 6). Non-Diophantine angular
distances π′ � 8 between the neighboring lines are
identical at all the plots. The two “deformed” plots
in Fig. 6 are just the rotated versions of the top one.
The octagon-shaped curve is the unit circle (107).

The circle is rotationally invariant in spite of
its apparent octagon form. Needless to say, all
these deformations are invisible for hidden-variable-
level observers who consistently employ their own
arithmetic.

10. Further implications for cryptography

Security of the Ekert protocol [5] is certified by
the violation of the Bell inequality. Now, which in-
equality: Diophantine or non-Diophantine? Why
should a model based on Clauser–Horne type ex-
pressions (63)–(66) be secure? Knowing λ, we know
in advance the results of future measurements per-
formed by communicating parties. The model of
probability we employ is internally consistent, al-
though not fully “classical”. Similarly to quantum
mechanics, probabilities are constructed by means
of a non-standard mathematical construction but
the end result is just a real number, an ordinary
probability that can be tested in ordinary experi-
ments. Probabilities sum to “one” in two ways:
Diophantine 1 and non-Diophantine 1′ which hap-
pens to be identical to 1 but only non-Diophantine
Bell-type inequalities have to be satisfied. Quantum
mechanics is based on a similar structure. Prob-
abilities sum to “one” in two ways, the ordinary
1 and the spectral 1̂ for projectors but Bell’s in-
equality for projectors cannot be proved — only the
Tsirelson bound has to be satisfied [62]. The key

Fig. 5. Straight lines t 7→
(
X(t), Y (t)

)
=

(
t �

Cos(α ⊕ β), t � Sin(α ⊕ β)
)
, for 0 ≤ f(α) ≤ 7π/8,

f(β) = π/3. Cuts through this surface for various
values of α are shown in Fig. 6.

Fig. 6. Cuts through the surface from Fig. 5 (or
its rotated versions) for f(α) = nπ/8, n = 0, . . . , 7
and (from top to bottom) f(β) = 0, f(β) = π/10,
f(β) = π/3 (the latter corresponds to Fig. 5).
Non-Diophantine angular distances π′ � 8 between
the neighboring lines are identical at all the plots.
The octagon-shaped curve is the unit circle α 7→
(Cos(α), Sin(α)), 0 ≤ f(α) ≤ 2π.
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difference between what we do and a Tsirelson-type
reasoning is that we deal with commuting random
variables only, so local incompatibility of comple-
mentary measurements is irrelevant. It might be
interesting to discuss in the present context the is-
sue of information causality [63] but this is beyond
the scope of the paper.

There are technical reasons why standard Bell-
type inequalities cannot be proved. For example,
(68) holds whatever ⊕Y one employs but in general

b∫
a

DxF (x) +

c∫
b

DxF (x) 6=
c∫
a

DxF (x) (108)

and
b∫
a

DxF (x)+

b∫
a

DxG(x) 6=
b∫
a

Dx (F (x) +G(x)) ,

(109)
so all the proofs à la Bell found in the literature will
not work, as we have explicitly seen in the Macdon-
ald inequality example. Non-Newtonian integrals
are linear maps but with respect to appropriate
non-Diophantine arithmetic. With respect to the
Diophantine arithmetic, they are nonlinear. This
type of duality is well known in physics (nonlinear
waves interfere, n-soliton solutions are formed by
Darboux–Bäcklund transformations from 1-soliton
solutions, Lax-pair represents a nonlinear system by
a linear one, etc.). If one consistently works accord-
ing to the non-Diophantine/non-Newtonian rules,
Bell-type inequalities can be proved but their cor-
rect form is exemplified by (98) and (101), and not
by (94) or the like.

11. Summary

All the papers on Bell’s theorem begin (either ex-
plicitly or implicitly) with probabilities of the form∫

dλ p1α(λ)p
2
β(λ)ρ(λ). (110)

Here, λ’s are some unspecified hidden variables,
ρ(λ)dλ is an arbitrary probability measure,

∫
is the

integral associated with the measure. Probabilities
can be added so that the overall probability is nor-
malized to 1. The product p1α(λ)p2β(λ) reflects the
fact that measurements depend locally on some pa-
rameters α and β controlled in separate measuring
procedures.

Apparently, the construction is completely gen-
eral. However, we point out that: (i) p1α(λ)p2β(λ)
involves some concept of a product and (ii)

∫
is

based on some notion of a sum. Linearity of the
integral is implicitly linked with the forms of multi-
plication and addition employed in its construction.
The sum implicitly present in the integral should be
nevertheless consistent in some way with the sum
employed in experiment. If our ambition is to elim-
inate all local-realistic theories, the arithmetic as-
pects should not be overlooked.

Our construction satisfies all these desiderata, we
just make products and sums explicit. In particular,
we construct singlet-state probabilities (63)–(66) as
follows:

p′jk(β − α) =
(2π)′∫
0

Dλχ1
αj(λ)�χ2

βk(λ)� ρ(λ), (111)

where the abstract dλ is replaced by a concrete
non-Newtonian Dλ and the parameters are related
by α′ = f−1(α), β′ = f−1(β), α, β ∈ [−π, π],
α′, β′ ∈ [−π′, π′].

Products and integrals at both sides of (63)–(66)
are defined by means of arithmetic operations
from two different arithmetics, both acting in
R: the observer-level Diophantine arithmetic
{R,+,−, ·, /,≤} and the hidden-variable-level non-
Diophantine arithmetic {R,⊕,	,�,�,≤}.

Setting f(x) = x, one reconstructs Bell-type in-
equalities discussed in the literature but for the
price of a model that does not agree with ex-
periment. Standard local hidden-variable theories
have been turned into unphysical Newtonian spe-
cial cases of a more general, local and deterministic
non-Newtonian theory.

Formulae such as (63)–(66) make sense because
both arithmetics act in the same set R. Since unit
elements in both arithmetics are the same, 1′ = 1,
the probabilities are normalized in two coinciding
ways. The observer-level normalization

p′++ + p′+− + p′−+ + p′−− = 1 (112)
and the hidden-variables normalization

p′++ ⊕ p′+− ⊕ p′−+ ⊕ p′−− = 1′ = 1. (113)
This should be contrasted with quantum mechanics
where two resolutions of unity coexist as well but
with different unit elements: the real number 1 and
the unit operator 1̂.

Probabilities (63)–(66) have a geometric rep-
resentation: they represent non-Diophantine
ratios of arc lengths on the unit circle
Sin2

′
(x)⊕ Cos2

′
(x) = 1. The set of hidden variables

is just the unit circle (which can be identified, if
one wishes, in the usual way with its covering space
R equipped with non-Diophantine arithmetic).
Both the circle itself and the probabilities are
rotationally invariant. The latter explicitly follows
from

α′ 	 β′ = (α′ ⊕ φ)	 (β′ ⊕ φ) (114)
for any φ ∈ R.

12. Concluding remarks

The arithmetic perspective presented in this
manuscript creates some “wiggle room” between the
classical modeling and quantum mechanics. Ex-
actly how much room is available for those who try
to hack the quantum-encrypted systems remains to
be studied but several remarks are in place.
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First of all, let us stress again that the goal was
not to propose a complete hidden-variable alterna-
tive to quantum mechanics. Our objectives are min-
imalistic. We just show that the argument of Bell
can be circumvented by making explicit a point
that was overlooked in the original construction.
The loophole is of fundamental origin so it cannot
be fixed by technological developments.

Secondly, one should study along similar lines all
the known cryptographic protocols. The Bennett–
Brassard protocol [4] is known to be insecure if hid-
den variables exist [21]. If Bohmian hidden vari-
ables are realized in nature, then the Ekert [5] and
the Bennett–Brassard–Mermin protocols [6] require
modifications [21].

Concerning the latter, what about the arith-
metic loophole in entangled-state protocols that are
not directly based on Bell’s theorem? Can we
fake quantum correlations by an appropriate choice
of arithmetic or calculus? These are open ques-
tions but one should not be overoptimistic. Non-
Diophantine and non-Newtonian methods are very
flexible. They can easily mimic typically “quantum”
features such as incompatible random variables or
maximal sets of simultaneously measurable physical
quantities [25].

Hackers, as opposed to nature, are clever and ma-
licious. Should we worry? Perhaps yes. As A. Ekert
has once expressed, “among those who make a liv-
ing from the science of secrecy, worry and paranoia
are just signs of professionalism” [64, 65].
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