
Journal Pre-proofs

Artificial neural network based fatigue life assessment of friction stir welding
AA2024-T351 aluminum alloy and multi-objective optimization of welding
parameters

Reza Masoudi Nejad, Nima Sina, Danial Ghahremani Moghadam, Ricardo
Branco, Wojciech Macek, Filippo Berto

PII: S0142-1123(22)00115-3
DOI: https://doi.org/10.1016/j.ijfatigue.2022.106840
Reference: JIJF 106840

To appear in: International Journal of Fatigue

Received Date: 1 February 2022
Revised Date: 26 February 2022
Accepted Date: 2 March 2022

Please cite this article as: Masoudi Nejad, R., Sina, N., Ghahremani Moghadam, D., Branco, R., Macek, W.,
Berto, F., Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum
alloy and multi-objective optimization of welding parameters, International Journal of Fatigue (2022), doi:
https://doi.org/10.1016/j.ijfatigue.2022.106840

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

Postprint of: Masoudi Nejad R., Sina N., Ghahremani Moghadam D., Branco R., Macek W., Berto F., Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 
aluminum alloy and multi-objective optimization of welding parameters, INTERNATIONAL JOURNAL OF FATIGUE Vol. 160 (2022), 106840, DOI: 10.1016/j.ijfatigue.2022.106840

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ijfatigue.2022.106840
https://doi.org/10.1016/j.ijfatigue.2022.106840
https://doi.org/10.1016/j.ijfatigue.2022.106840
https://creativecommons.org/licenses/by-nc-nd/4.0/


1

Artificial neural network based fatigue life assessment of friction stir 

welding AA2024-T351 aluminum alloy and multi-objective optimization of 

welding parameters

Reza Masoudi Nejad1,*, Nima Sina2, Danial Ghahremani Moghadam3,*, Ricardo Branco4, Wojciech Macek5, Filippo Berto6

1School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
2Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran

3Faculty of Engineering, Department of Mechanical Engineering, Quchan University of Technology, Quchan, Iran
4University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal

5Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, 11/12 Gabriela Narutowicza, Gda ́nsk 80-233, 

Poland
6Department of Mechanical and Industrial Engineering, NTNU – Norwegian University of Science and Technology, Trondheim, Norway

Abstract
In this paper, the fracture behavior and fatigue crack growth rate of the 2024-T351 aluminum 

alloy has been investigated. At first, the 2024-T351 aluminum alloys have been welded using 

friction stir welding procedure and the fracture toughness and fatigue crack growth rate of the 

CT specimens have been studied experimentally based on ASTM standards. After that, in order 

to predict fatigue crack growth rate and fracture toughness, artificial neural network is used. 

To obtain the best neuron number in the hidden layer of the artificial neural network, different 

neuron numbers are tested and the best network based on the performance is selected. Then the 

fitting method is applied and the fitted surfaces that illustrate the behavior of welding are shown 

and the results of artificial neural network and fitting method are compared. Also, multi-

objective optimization algorithm is used to obtain the best welding parameters and finally 

sensitivity analysis is applied to measure the effect of rotational and traverse speeds on the 

fracture toughness and fatigue crack growth rate.

Keywords: Friction stir welding; Artificial neural network; Fatigue life; Aluminum alloy; 

Fracture toughness.

1. Introduction
The fatigue life of engineering components is determined by the sum of the cycles required to 

initiate the fatigue crack and its growth from the initial length to the critical length. The final 
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stage of failure provides the final conditions in the engineering component [1-4]. High strength-

to-weight ratio make aluminum one of the suitable materials for engineering applications; But 

one of the problems with the use of aluminum is the inadequacy of traditional methods for 

welding this metal. Friction stir welding (FSW) is a solid-state joining process that was 

invented and is currently used as one of the most widely used aluminum alloy welding 

processes. FSW is a high-speed joining process and has the ability to be mechanized, which 

will save cost and time. Due to the increasing use of FSW method in different industries [5] it 

is necessary to investigate the fracture and fatigue properties of friction stir welded joints using 

appropriate experimental and numerical methods. Many studies have investigated the effect of 

welding parameters on the mechanical properties of FSW joints. The researches investigate 

that for each range of traverse speeds, there is a particular range of rotation speed that generates 

welds with the least number of defects and superior mechanical properties [6]. By investigating 

the correlation of welding parameters and joints properties, suitable welding conditions can be 

designated [7]. Rajakumar et.al [8] for different aluminum alloys proposed an empirical 

relationship to predict the optimized FSW process parameters and defect free joints. 

Radisavljevic et.al [9] studied the tensile efficiency of the FSW joints obtained is in the range 

of Rotational (R) and traverse speeds (v). The results revealed that the best welds quality is 

obtained at the specified ratio of R/v. Dong et al. [10] showed that increasing the welding 

traverse speed increases the tensile strength of 6005 aluminum alloy specimens. This 

conclusion can be justified due to the increase of some hardening sediments. Based on the 

results of Kundu et al. [11] high tool rotational speed caused to smooth welding as compared 

to lower rotational speed of the tool. Moshwan et al. [12] concluded that increasing the 

rotational speed of FSW reduces the tensile properties of welds. Higher solubility of β-Mg2-

Al3 hardening sediments at higher rotational speeds (higher heat input) reduces the welds 

strength. 

Fracture mechanics is widely used to predict the FCG [13-18] and several researchers have 

improved models to predict the stress intensity factors (SIFs) and fatigue life [19-22]. 

Considering the advantages of FSW compared to traditional welding methods and also the 

superior mechanical properties, it has been shown that the fracture toughness of friction stir 

welded joints is higher than traditional methods such as TIG and MIG [23]. Kulekci et al. [24] 

investigated the fracture toughness of friction stir welded lap joints of 6063 and 2014 alloys. 

Their results show that the fracture toughness of lap joints decreases exponentially with 

hardness increasing. One of the main factors that influencing the fatigue crack growth rate in 

friction stir welds is welding residual stresses [25] and what affects the values of welding 
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residual stresses is FSW process parameters. Fatigue crack growth develops due to repeated 

loads or a combination of loads and environmental factors. This causes the crack growth rate 

to increase with time [26-29]. D’Urso et al. [30] results showed that non-optimal FSW 

parameters caused to higher fatigue crack growth rate at middle and high values of stress 

intensity factor, due to some defects, such as tunnels and keyholes. Also, some researches 

investigate the effects of FSW process defects that affect the fatigue performance [31, 32]. Kim 

et al. [33] by investigating the effects of FSW parameters, found that fatigue resistance 

decreases with increasing tool traverse and rotational speed. The results of Cirello et al. [34] 

showed that the ratio of traverse speed to rotational speed (R/v) in FSW is the most effective 

parameter in affecting of the mechanical properties and fatigue performance of the FSW joints. 

Hrishikesh et al. [35] investigated the high cycle fatigue behavior in FSW joints of 6061 

aluminum alloy and found that the bond strength in the fatigue loading is approximately 40% 

of the static loading mode; Also, increasing the welding rotational speed reduces the fatigue 

life. Okuyucu et al. [36] developed an Artificial Neural Network (ANN) model for prediction 

of mechanical properties of FSWed joints in terms of welding speeds. Ghasemi et al. [37] 

considering the number of passes, rotational speed, traverse speed, and addition of nano-sized 

Al2O3 powder in FSW of the mild steel as the input parameters could predict the 

microhardness of the stir zone of the welds as the output parameter using an ANN model. 

Dinaharan et al. [38] described the wear rate of the friction stir processed of AA6082 AMCs 

reinforced specimens in terms of process parameters (welding speed, groove width, type of 

ceramic particle) via an ANN model. Hartl et al. [39] investigated the possibilities and limits 

of prediction the surface quality of FSW of the aluminum alloy EN AW-6082 T6 joints using 

an ANN model. Dehabadi et al. [40] studied the effects of FSW tool’s profile on the 

microhardness of the AA6061 welds employing ANN technique. Some researchers 

investigated the correlation between tensile strength of the FSW joints as the outputs and the 

process parameters such as welding speed and tool properties as the inputs, utilizing ANN 

models [41-45]. Also, some researchers studied the capability of the ANN technique to predict 

the microstructure in the FSW joints [46-48].  However, in recent years, less research has been 

done on the precise optimization and prediction of the FSW process parameters in terms of 

fracture and fatigue properties of the joints. One of the most important parameters in the study 

of fracture behavior of the FSW joints is the fracture toughness and also in the study of fatigue 

crack growth behavior of the joints is the FCP rate. Artificial Neural Networks (ANN’s) are 

used in different mechanical applications. These networks can predict the behavior of complex 

systems especially systems with non-linear behavior. Artificial Neural Networks firstly were 
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inspired by the human brain. In the late 1940s D.O.Hebb introduced the Hebbian learning rule 

[49]. In the next decade, the perceptron was created by Rosenblatt [50-53]. Artificial neural 

networks including several layers were introduced by Ivakhnenko and Lapa [54-56]. Werbos's 

backpropagation algorithm was created which leads to the practical training of multi-layer 

networks [57]. Hence, in the current work, using a feed-forward artificial neural network 

(ANN), the fatigue and fracture behavior of the FSW of the AA2024-T351 joints is predicted. 

This ANN is used to predict outputs (FCP rate and fracture toughness) based on the inputs 

(rotational and traverse speeds). In the next step, the ANN results are compared to the fitting 

method to select the better model in predicting the outputs. Then using the Non-Dominated 

Sorting Genetic Algorithm (NSGAII) on the model, the optimum values of rotational and 

traverse speeds are obtained. Finally, the sensitivity analysis is performed to evaluate the effect 

of each input on the outputs.

2. Materials and methods 

2.1. FSW process
In this research, the alloy used for FSW is 2024-T351 aluminum alloy. Table 1 shows the 

chemical composition of the alloy determined using the X-ray fluorescence spectroscopy 

(XRF) method. The mechanical properties of the alloy are also given in Table 2. The plates 

used for FSW have dimensions of 120*35 mm and a thickness of 8 mm and are placed side by 

side along the longitudinal edge for welding.

Table 1. Percentage of 2024-T351 aluminum alloy composition determined by XRF method.

Al Cu Fe Mg Mn Si Zn

Base 4.45 0.29 1.53 0.72 0.11 0.12

Table 2. Mechanical properties of 2024-T351 aluminum alloy.

Tensile strength (MPa) 324
Ultimate tensile strength 

(MPa)

429
Vickers microhardness 137
Poisson’s ratio 0.31
Elasticity modulus (GPa) 77.5

The tools shown in Figure 1 were used to FSW of the plates. The tool is made of SPK2436 

steel with a hardness of 50 Rockwell (HRC), the geometric characteristics of the tool are 

specified on the Figure 1. The tool has a tapered pin and threads with the pitch of 1 mm created 

on it. The tapered pin makes it easy for the tool to penetrate the workpiece and greatly reduces 
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the forge force required for welding, as well as the threads causes a larger volume of softened 

material to move with each rotation of the tool.

    
Figure 1. FSW tool and geometric characteristics of the tool (dimensions in mm).

FSW was performed with 2 tones universal MP4 milling machine. First, two aluminum plates 

are placed along the longitudinal edge and then fastened inside the clamps. A steel sheet is also 

used as the bottom support plate. The tilt angle of the tool was 2 degrees. Figure 2 shows the 

prepared FSW set up with a sample closed in clamps and a welded specimen after the welding.

Figure 2. The prepared FSW set up and FSWed specimen.

FSW of the plates is performed with the different rotational and traverse speeds of the tool, the 

values of the welding speeds are given in Table 3. Rotational and traverse speeds are selected 

so that the final welding joints are free of any defects and cracks. Other FSW parameters are 

considered fix in welds.
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Table 3. Different rotational and traverse speeds of the tool in FSW of the specimens.

Specimen no.  (rpm)  (mm.min-1)v

1 400 8

2 400 16

3 400 20

4 400 25

5 400 31.5

6 400 40

7 500 8

8 500 16

9 500 20

10 500 25

11 500 31.5

12 500 40

13 630 8

14 630 16

15 630 20

16 630 25

17 630 31.5

18 630 40

19 800 8

20 800 16

21 800 20

22 800 25

23 800 31.5

24 800 40

25 1000 8

26 1000 16

27 1000 20

28 1000 25

29 1000 31.5

30 1000 40
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2.2. Fatigue crack growth test
Fatigue crack growth tests have been performed on non-welded and FSWed specimens using 

a universal 10-ton tensile test machine. The experiments were performed on CT specimens. To 

prepare the specimens, the plates were cut in the direction of rolling of the plate (L-T direction 

of the main plate). The plates are FSWed, then final CT specimens obtained by machining and 

the specimen’s thickness was 6 mm. The final prepared CT specimen and the dimensions is 

presented in Figure 3. 

Figure 3. The final prepared CT specimen for fatigue crack growth test (dimensions in mm).

CT specimens were prepared and tested to calculate fracture toughness according to ASTM 

E399 [58] and to study fatigue crack growth rate according to ASTM E647 [59]. To fatigue 

precracking, the CT specimens were subjected to fatigue loads with a maximum of 3 kN and a 

minimum of 0.3 kN (R-ratio = 0.1) and a frequency of 10 Hz. The final precrack length for the 

fracture toughness CT specimens was 25 mm (a/w= 0.5) and for the fatigue crack growth rate 

CT specimens was 19 mm (a/w= 0.38). For the fracture toughness experiment, the specimens 

were subjected to tensile loading at a rate of 0.1 kN/sec. Figure 4 shows the load versus crack 

opening displacement (COD) for a number of FSW and base metal specimens. This curve is 

used to calculate the fracture toughness according to ASTME399. 
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Figure 4. load versus crack opening displacement (COD).

FCP experiments have been performed at constant load amplitude. The maximum load is 2.2 

kN and the minimum load is 0.22 kN (R-ratio = 0.1) and the loading frequency is 10 Hz. Crack 

length was measured using the compliance method. 31 different specimens were tested for 

experiments, including 30 FSW specimens with different conditions and one base metal 

specimen. To reduce the error, the experiments was repeated 3 times for each specimen. Totally 

63 specimens were tested for fatigue crack growth rate investigation in FSW joints. The crack 

length versus loading cycles curve is extracted based on the incremental polynomial method. 

Using this curve and ASTME647, it is possible to plot fatigue crack growth rate (da/dN) versus 

stress intensity factor changes ( ) for the tested specimens. In this curve, using the Paris K

equation ( ), the constants c and m can be calculated. The exponent m in Paris  mda c K
dN

 

equation actually indicates the slope of the FCP line (in Log(da/dN) versus Log( ) curve) K

and by determining this parameter in different FSW specimens, the effect of FSW parameters 

on the FCP rate could be investigated.

3. Artificial neural network and multi optimization of welding parameters

3.1. Artificial neural network Architecture
Neurons are the fundamental units of the nervous system which receive inputs and by a 

mathematical operation, the output is produced. Usually, the input is weighted and a bias is 

added to its value and then it passes through a non-linear function which is called the activation 

function. In most cases, the activation function is a sigmoid function. A mathematical model 

of a neuron is shown in Figure 5.
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Figure 5. Mathematical model of artificial Neuron.

The mathematical formulation of a neuron is presented in Eq. (1).

 (1)
1

m

i i
i

y b x w


 
  

 


where  is the output,  is the activation function.  and  are the i-th input and weight y  ix iw

respectively. Also,  is the bias. An Artificial Neuron with neurons is shown in Figure 6.b

Figure 6. Artificial neural network with neurons.

It can be seen in Figure 6that the ANN consists of three layers including input, hidden and 

output layer. As the ANN should predict two parameters, the number of neurons in the output 

layer is 2. Datapoints are divided into two main categories including train and test. Train data 

are used to adjust the weight and biases of the ANN during the learning process. Test datapoints 

at the end of the learning process are introduced to the ANN for the first time. In the current 

work, 70 percent of data points are considered for train and the rest of data point is for the test. 

An accurate ANN not only should be able to predict train data points, but also it should not 

have any overfitting. Overfitting means that the ANN outputs of the train are close to the target 

values but the network fails in the test. The output of ANN depends on different parameters 

such as the number of neurons in the hidden layer, activation function and the learning 
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algorithm. In this paper, the activation function is considered as a tangent sigmoid function 

which is introduced in Eq. (2).

 (2)2

2tansig( ) 1
1 nn

e 


The learning algorithm is Levenberg-Marquardt (LMA) which is also known as the damped 

least-squares (DLS) method. This algorithm firstly was introduced by Kenneth Levenberg in 

1944 and then rediscovered by Donald Marquardt. This algorithm is one of the most common 

learning algorithms in ANN’s.

3.2. Optimization and NSGA-II Algorithm
Optimization is a way of finding optimum solutions of a problem.  Multi-objective optimization 

is used when there is more than one objective function in the presence of a trade-off between 

two or more conflicting objects. Multi-objective optimization is formulated as:

 (3)      1 2min , ,...,

. .
kf x f x f x

s t x X

  



Where k is the number of objectives and X is the decision vector. In a multi-objective problem 

typically, there is not a feasible solution that minimizes all objective functions. In these 

problems, Pareto Optimal is used which consists of solutions that cannot be improved in any 

of the objectives without degrading at least one of the other objectives. Although there are 

many classical optimization algorithms, Classical algorithms sometimes are stuck in local 

optimum points. In addition, the convergence of classical algorithms depends on the chosen 

initial point. In recent decades, powerful evolutionary optimization algorithms are introduced 

and improved by many researchers such as Multi-Objective Particle Swarm Optimization 

(MOPSO), Niched Pareto Genetic Algorithm (NPGA), Pareto Archived Evolution Strategy 

(PAES) and Non-Dominated Sorting Genetic Algorithm II (NSGAII) [60-63]. NSGAII as an 

evolutionary algorithm is a powerful algorithm and widely is used for multi-objective 

optimizations in engineering problems. This algorithm is inspired by the Genetic Algorithm 

and developed to be used for multi-objective optimization problems. NSGA-II simultaneously 

optimizes each objective which is not dominated by other solutions. Some researchers claimed 

that in this algorithm, finding the crowded distance and crowded comparison operator and non-

dominated sorting are fast and simple and it can outperform many multi-objective 

optimizations in diversity [64]. NSGA-II is considered an evolutionary algorithm. To have a 

better understanding of the NSGAII algorithm some terms of this algorithm are described. 
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Mutation: Chromosomes are the proposed solutions in the problem space. Each dimension of 

solution in this space is called a gene. The mutation is altering one or more gene values in a 

chromosome from its initial state. This process increases the diversity and can help the 

algorithm to find new solutions. 

If and only if there is no objective of P worse than that objective of Q and there is at least one 

objective of P better than that objective of Q. Domination in mathematic formulation is 

presented in Eq. (4).

(4)

   
 
   
 

1 2

1 2

,

1, 2,..., ,

,

1, 2,..., .

i i

j j

f x f x for all indices

i k and

f x f x for at least one index

j k







 

 

The crowding distance of a solution is defined as the distance of each solution to its two 

neighboring solutions. The crowding distances in two directions are shown in Figure 7.

Figure 7. Crowding distance of a solution.

In multi-objective optimization problems Pareto front is a set of non-dominated solutions in 

the search space. Pareto is shown in the space of objective functions. The best-founded answers 

are in the first front are called the Pareto front. The NSGAII algorithm has some advantages such 

as; 1-The elites of a population have more chances to be carried to the next generation, 2- It uses 

crowding distance to guarantee diversity, 3- The non-dominated solutions are emphasized, and 4. 

Variety and efficiency are maintained.

The algorithm of NSGA_II is; 1- Initialization of Population: This is based on the constraints and the 

range of variables, 2- Non-dominated sorting: Sorting the population based on the domination 

individuals, 3- Crowding distance: After Non-dominated sorting, the crowding distances values for 

individuals are calculated. The individuals are selected based on the rank and crowding distance, 4- 
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Selection: The selection is based on a binary tournament or roulette wheel selection considering 

crowded-comparison operator, 5- Genetic Operators: Real Genetic Algorithm (GA) is used for binary 

crossover and mutation, and 6- Recombination and selection: Offspring population and the current 

generation are collected and the individuals of the next generation are defined by selection until the 

number of the population reaches the current population size, the new generation is filled by each front 

subsequently. The algorithm of NSGA_II is illustrated in Figure 8.

Figure 8. The algorithm of NSGA_II.
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In this work, the cost functions are slope of FCP rate curve (m) and fracture toughness which 

can be predicted by both ANN or fitting methods. As the ANN is more accurate in prediction 

the behavior of this system, the ANN is used as the cost function to calculate its value based 

on the  and v. The aim of this multi optimization problem is minimizing slope (m) and 

maximizing fracture toughness at the same time. The parameters of the problem space are 

rotational speed and traverse speed. The range of these parameters and NSGA_II settings are 

presented in Table 4.

Table 8. The range of parameters and algorithm settings.

Descriptio

n

Maximum

number of

generation

s

Initial

populatio

n

size

Crossover

percentag

e

Mutation

Percentag

e

Mutatio

n rate

Range of 

rotationa

l speed 

(rpm)

Range of 

traverse 

speed 

(mm/min

)

Value 40 100 0.7 0.4 0.02
400-

1000
8-40

4. Results and discussion

4.1. Artificial neural network Results
 In the current work, rotational speed and traverse speed are inputs of the ANN and the targets 

are fatigue crack growth rate and fracture toughness. the experimental test results are presented 

in Table 5. In this table,  is rotational speed in rpm,  is traverse speed in mm/min, is the  v m

slope of FCP rate curve and  is fracture toughness in MPa.m1/2.IK

Table 5. The experimental test results.

Number  (rpm)  (mm/min)v m IK

1 400 8 3.45 40.6

2 400 16 4.03 46.8

3 400 20 4.95 44.3

4 400 25 6.37 40.5

5 400 31.5 6.81 33.8

6 400 40 8.11 23.4

7 500 8 4.12 38.1

8 500 16 3.92 45

9 500 20 3.87 47.2
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10 500 25 4.15 44.1

11 500 31.5 5.34 36.4

12 500 40 6.74 31.6

13 630 8 5.27 35.3

14 630 16 3.64 43.2

15 630 20 3.78 44.9

16 630 25 3.92 46.9

17 630 31.5 4.01 44.7

18 630 40 5.24 39.2

19 800 8 5.34 29.4

20 800 16 5.11 40.5

21 800 20 4.89 42.7

22 800 25 4.27 44.5

23 800 31.5 4.19 47.1

24 800 40 4.3 44.8

25 1000 8 7.05 22.1

26 1000 16 6.84 28.6

27 1000 20 6.32 32.7

28 1000 25 6.17 35.4

29 1000 31.5 5.82 39.7

30 1000 40 5.43 43.4

To find the best architecture of the ANN, different neuron numbers in the hidden layer are used 

and the output results of that neuron number are stored. As the ANN output for a specific 

neuron number is not always constant and in order to increase the reliability of results, for each 

neuron number, the ANN is run 10 times. Therefore, the performance of each neuron number 

is the average value of 10 times running the ANN. By running the ANN several times and 

calculating the performance of each run, the average performance is calculated for each neuron 

number and finally, the results of each neuron number based on their performances are sorted. 

In this ANN the performance is defined as the Mean Square Error (MSE). The error is the 

difference between the ANN outputs and the targets. Targets are the experimental data points. 

The MSE is shown in Eq. (5). 

 (5)                                                                                                 2

1

1 N

i i
i

MSE y t
N 
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where is the number of datapoints.  and  are the ANN outputs and the targets. These N iy it

sorted performances are presented in Table 6. The neuron numbers are sorted based on the 

performances. It can be seen that the ANN with 12 neurons in the hidden layer has the best 

performance.

Table 6. The performances of ANN for different neuron numbers.

Neuron Number ANN Performance

12 0.344502614

9 1.030933701

17 1.717364787

22 2.403795874

10 3.090226961

18 3.776658047

15 4.463089134

23 5.14952022

8 5.835951307

21 6.522382394

20 7.20881348

16 7.895244567

24 8.581675654

14 9.26810674

11 9.954537827

13 10.64096891

19 11.3274

4.2. Correlation Coefficient
Another criterion to judge the accuracy of predicted values is the correlation coefficient. The 

correlation coefficient is a measure of linear correlation between two sets of data and its value 

is between -1 to 1. The correlation coefficient formula is presented in Eq. (6).

(6)
  

   

1

2 2

1 1

n

i i
i

n n

i i
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where  is the correlation coefficient, is the values of the target of a sample, is mean values r ix x

of the target,  is values of the output in a sample and  is the mean values of the outputs. A iy y

positive correlation coefficient indicates a positive relationship and a negative value signifies 

a negative relationship between two datasets. A value of zero for the correlation coefficient 

means that there is no relationship between the two variables. Therefore, in the best case, the 

correlation coefficient is 1. In Table 7 the correlation coefficient for m and  for train and IK

test data points are shown. Considering Table 7, it can be seen that the correlation coefficient 

for m and  for both train and test ANN results are very close to 1 which means that the ANN IK

results are compatible to the targets.

Table 7. The correlation coefficients.

Neuron Number m Train m Test  TrainIK  TestIK

12 0.987903308 0.987503551 0.993172041 0.989401676

9 0.986344485 0.912348643 0.950936805 0.944292183

17 0.941962115 0.891673619 0.945819032 0.9220673

22 0.937404979 0.890357635 0.937959223 0.90012256

10 0.929061331 0.876078936 0.927803903 0.895258849

18 0.917563033 0.874206954 0.919020434 0.878213563

15 0.913156517 0.868324107 0.908856293 0.876816529

23 0.910171176 0.867667596 0.89096764 0.874346001

8 0.909521799 0.865366371 0.890888674 0.863221964

21 0.906832813 0.853800809 0.879059215 0.837343991

20 0.902869012 0.849040226 0.87223049 0.829936697

16 0.884858026 0.830172466 0.865154674 0.821125318

24 0.883851169 0.811679025 0.859319945 0.821027222

14 0.877348914 0.809065102 0.853724182 0.814147615

11 0.856005004 0.790645643 0.849493221 0.797559982

13 0.840624978 0.779984 0.839342434 0.789561355

19 0.835035675 0.777444903 0.827328072 0.769318818

4.3. Surface Fitting Method
Another method to predict data points is the curve fitting method. But as in this case, there are 

two inputs including rotational speed and traverse speed, a surface should be fitted on data 

points. It should be noted that as there are two outputs including slope of FCP rate curve and 
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fracture toughness, two separate surfaces are proposed for predicting the outputs. A surface for 

 and a surface for . The equations of the fitted surfaces for m and  are presented in Eq. 𝑚 IK IK

(7), respectively. 

 (7)

2 2 3 2
00 10 01 20 11 02 30 21

2 3 4 3 2 2 3 4
12 03 40 31 22 13 04

4 3 2 2 3 4 5
41 32 23 14 05

_ ( , )Fitted surface x y p p x p y p x p xy p y p x p x y

p xy p y p x p x y p x y p xy p y

p x y p x y p x y p xy p y

       

      

    

where x represents rotational speed and y represents traverse speed. By performing surface 

fitting, the coefficients of Eq. (7) for m and  are obtained and presented in Table 8. The IK

fitted surfaces for m and are depicted in Figure 9.IK

Table 8. The coefficients of the fitted surfaces for m and  based on the Eq. (7).IK

Coefficients Fitted surface of m Fitted surface of IK

p00 -4.927 -35.83

p10 0.001843 0.442

p01 1.992 7.219

p20 0.0001649 -0.001

p11 -0.0125 -0.03706

p02 0.04094 -0.00116

p30 -3.30E-07 9.18E-07

p21 1.68E-05 7.12E-05

p12 0.0001226 0.000662

p03 -0.002017 -0.01249

p40 1.70E-10 -3.03E-10

p31 7.23E-10 -5.82E-08

p22 -5.96E-07 -7.36E-07

p13 8.45E-06 -1.77E-06

p04 -3.21E-05 0.00032

p41 -5.57E-12 1.64E-11

p32 2.97E-10 2.45E-10

p23 -1.05E-09 4.72E-09

p14 -6.80E-08 -8.41E-08

p05 7.08E-07 2.18E-06
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(a)

(b)

Figure 9. The fitted surface for; a) m, and b) .IK

4.4. Comparing Artificial neural network and Fitting Results 

It can be seen in Figure 10 that the absolute values of errors for m and  in ANN are smaller IK

than the fitting method. In addition, maximum values of error of ANN and fitting method for 

m are 0.2726 and 0.3225 respectively. Also, the maximum value of the error of ANN and fitting 

method for  are 1.4913 and 1.8263 respectively. Comparing the ANN and fitting methods, IK

it can be understood that the ANN can better predict slope (m) and fracture toughness and the 

correlation coefficient for the fitting method are not calculated. As ANN is more accurate, it is 

used as the cost function calculator in the optimization algorithm.
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(a)
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Figure 10. Absolute value of error for; a) m, and b) .IK

4.5. Multi optimization of welding parameters results
Generally, in multi-objective optimization, a set of results are obtained and as all these results 

are obtained from the first front (Pareto front) there is not any priority in selecting them. The 

final Pareto front of optimization is presented in Figure 11. The obtained m and versus  IK 

and  are shown in Figure 12. Also, the obtained results from Pareto front are presented in v

Table 9.
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Figure 11. The obtained results from the final Pareto front of optimization.

(a)

(b)

Figure 12. The obtained results from the final Pareto front; a) m versus  and , and b)   v IK

versus  and . v
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Table 9. The obtained results from Pareto front.

 v m IK  v m IK

766.3934 31.25161 4.06569 46.77531 400.064 10.36197 3.370227 43.15156

400 9.564814 3.355004 42.33726 400.1503 10.02763 3.361012 42.81784

400 10.49425 3.375108 43.28006 673.4258 25.31172 3.839765 46.48978

734.9261 29.48058 3.980039 46.72442 687.1606 25.99759 3.870633 46.55448

401.2284 12.0494 3.484039 44.58019 500.7778 16.58666 3.633879 45.60656

400.0106 11.02487 3.402432 43.76796 681.4423 26.38966 3.856282 46.51341

661.0202 24.48254 3.813745 46.4277 400 10.06927 3.361432 42.86224

461.2495 14.70439 3.597851 45.32081 400 11.09251 3.406697 43.82753

400 10.62782 3.380928 43.4065 400.0154 10.70509 3.38465 43.47834

479.469 15.7417 3.62608 45.52916 400 10.19875 3.36481 42.99198

400.0585 9.728251 3.356143 42.50979 488.2793 15.80817 3.616328 45.46706

420.6937 12.87288 3.531969 44.87329 642.6331 22.80455 3.776279 46.29986

400 12.13455 3.494211 44.65867 565.2621 19.43719 3.672939 45.90093

414.7038 12.67376 3.523613 44.82799 421.0629 13.42132 3.580369 45.19292

725.2179 28.929 3.955578 46.6943 400 11.77579 3.459605 44.39078

466.4249 14.62949 3.587321 45.22428 400.0087 10.78392 3.388649 43.55112

695.244 26.576 3.888888 46.5896 529.2037 17.96095 3.652848 45.75976

624.6872 22.46699 3.747088 46.23115 629.0875 23.05608 3.757461 46.26298

669.0215 25.31172 3.830574 46.46545 602.6645 21.44957 3.716513 46.11634

646.984 23.89747 3.787142 46.35595 551.8326 18.69336 3.659292 45.81244

410.8893 13.03175 3.566248 45.10273 400 12.20906 3.501965 44.71183

400 11.38485 3.427195 44.07685 713.9019 27.51538 3.935954 46.66313

586.8185 20.56047 3.695944 46.0243 421.3355 13.32897 3.570858 45.13794

400 10.88145 3.39394 43.64 400 12.67376 3.554584 45.02381

In all the presented results, the values of m are minimized and the values of  are maximized. IK

It can be seen that there is a variety of optimal cases. Therefore, by selecting one of the 

adjustments for or v the slope (m) of FCP rate is decreased and the fracture toughness is 

increased. 

4.6. Sensitivity analysis
To have a better understanding of the behavior of output sensitivity analysis is used. It 

determines how a dependent variable is affected by different values of an independent variable. 

In the current work, the slope (m) of FCP rate and fracture toughness are outputs of the model 
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and rotational speed and traverse speed are independent variables. By sensitivity analysis, the 

relationship and effect of each input parameter on the outputs are evaluated. For instance, for 

a function based on the independent variables such as Eq. (8).

(8) 1 2 3, , ,..., noutput f x x x x

By fixing variables on their average values and changing the remained variable in its 1n 

range, the output value is calculated. Therefore, the behavior of output based on one parameter 

can be obtained. In this work, the sensitivity analysis for both slope (m) and fracture toughness 

are calculated. In Figure 13-a to Figure 13-d, sensitivity analysis is presented.

(a)

(b)
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(c)

(d)

Figure 13. The sensitivity analysis for; a) c to , b) c to v, c) to , and d) to v.  IK  IK

The sensitivity of slope (m) based on the rotational speed is presented in Figure 13-a. It can be 

seen that in 600 rpm, the value of m is less affected by the rotational speed and in the corners 

of the interval, its effect on this output is increased. The sensitivity of slope (m) based on the 

traverse speed is presented in Figure 13-b. It can be seen that in 25 mm/min, the value of m is 

less affected by the traverse speed and in the corners of this interval, its effect on this output is 

increased. The sensitivity of fracture toughness based on the rotational speed is presented in 

Figure 13-c. It can be seen that in 700 rpm, the value of  is highly affected by the rotational IK

speed and in 1000 rpm, its effect on this output is minimum. The sensitivity of fracture 

toughness based on the traverse speed is presented in Figure 13-d. It can be seen that in 

25mm/min the value of  is highly affected by the rotational speed and in 8 mm/min, its IK

effect on this output is minimum. It can be understood that when  and v have their mean 

value, they have the smallest effect on m but have the highest effect on . IK
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5. Conclusions
In this paper, an artificial neural network is used to predict the slope of FCP rate (m) and 

fracture toughness . Also using a fitting method, two surfaces are obtained which illustrate  IK

the behavior of m,  and a mathematical formula for predicting these values based on the  IK 𝜔

and  are extracted. These methods can reduce the lab costs by predicting the behavior of stir 𝑣

welding and can eliminating extra lab tests. Both ANN and fitting methods are useful for 

prediction of welding but by comparing the results, the ANN had better accuracy in predicting 

 and the slope of m compared to the surface fitting method. Also, for the first time, multi-IK

objective optimization is performed to minimize  and maximize . Finally, the sensitivity 𝑚 IK

analysis is applied to obtain the effect of rotational and traverse speeds on the stir welding 

2024-T351 aluminum alloy.
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Highlights

 The FCP rate of the CT specimens of the friction stir welded 2024-T351

aluminum alloys have been studied.

 The effects of rotational and traverse speeds of FSW on the FCP rate and

the fracture toughness have been investigated.

 An artificial neural network to predict slope of FCP rate and fracture

toughness has been designed.

 Multi-objective optimization algorithm has been used to obtain the best

rotational and traverse speeds.

 Sensitivity analysis has been applied to obtain the relationship and effect

of rotational and traverse speeds.
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