
Aspect-oriented management of service requests for 
assurance of high performance and dependability 

Paweł Lubomski1, Paweł Pszczoliński2 and Henryk Krawczyk3 

1 IT Services Centre, Gdańsk University of Technology, Gdańsk, Poland 
lubomski@pg.gda.pl 

2 IT Services Centre, Gdańsk University of Technology, Gdańsk, Poland 
pszczola@pg.gda.pl 

3 Faculty of Electronics, Telecommunications and Informatics,  
Gdańsk University of Technology, Gdańsk, Poland 

hkrawk@eti.pg.gda.pl 

Abstract.  A new approach to service requests management in case of insuffi-
cient hardware resources is proposed. It is based on wide aspects of requests 
analysis and it assures reliable and fast access to priority services. Requests are 
analyzed for, among others, time of occurrence, category of user who made the 
request, type of service, current system load and hardware utilization. Deter-
ministic but dynamic rules help to manage system load very effectively, espe-
cially in terms of dependability and reliability. The proposed solution was test-
ed on Gdańsk University of Technology central system, followed by the discus-
sion of the results. 

Keywords: service requests management, aspect, dependability, reliability, 
load balancing. 

1 Introduction 

Ensuring efficient and reliable access to IT services is a serious challenge. It be-
comes even more difficult when requests for different services fluctuate over the time. 
That is the reason why cloud computing is used so commonly. It allows to scale 
hardware resources in a very quick, relatively cheap, and efficient way. But what 
happens, when hardware resources are limited? Depending on organization where the 
system is used, load can vary in a daily, weekly, monthly or even yearly cycles. A 
university is a very good example at this point. Administrative staff and university 
lecturers use their university system during working hours. Students, on the other 
hand, prefer evening sessions. In addition, depending on the moment of academic 
year, also the need for various IT services is different. For example, reading lecture 
plans is heavily used at the beginning of the semester, but after a few days the number 
of requests for this service drops drastically. Moreover, it is possible to determine the 
type of each service – whether reading or writing the data dominates. An example of a 
university shows that the allocation of resources for specific IT services should not be 
constant over time but dynamically adjusted. The problem to solve is to develop such 



a method of service requests management which in case of insufficient hardware re-
sources will provide reliable and fast access to priority services. Of course, you can 
try to resolve this problem using different types of load balancing but it does not give 
you the possibility to prioritize requests, especially when hardware resources are lim-
ited. As a result of a simple load balancing, we can achieve the consumption of all 
available resources and, as a result, the denial of service very quickly. The aim of an 
effective solution is to use multiple nodes and to handle service requests dynamically 
depending on the aspect in which they are made. In this approach the critical services 
will be available regardless of the load at all times. 

2 Motivation and related work  

The problem of proper and effective load balancing has been under intensive re-
search for years. Load balancing algorithms can be divided into two categories. There 
are static algorithms commonly used such as Round Robin and Weighted Round 
Robin. On the other hand, last connection as well as weighted last connection are 
dynamic algorithms commonly used. There are also works on other issues of cloud or 
distributed computing, e.g. cost-optimal scheduling on clouds [1], load balancing for 
distributed multi-agent computing [2], agent-based load balancing in cloud [3], com-
munication-aware load balancing for parallel applications on clusters [4]. Also, there 
are approaches that apply genetic algorithms to dynamic load balancing [5]. Latest 
approaches focus on dynamic type-related task grouping on the same nodes [6] or 
weighted last connection algorithms with forecasting mechanisms [7]. There is also 
some research related to performance overhead while using virtualization in cloud [8]. 
Some other research was done focusing on type of communication used in resource 
allocation inside cluster and on load balancing – blocking or non-blocking connec-
tion, especially in the message-oriented model [9]. It is very important when clusters 
and data are located in different data centres spread all over the world. That impacts 
on availability very much.  

 
Our aim is to focus not only on availability but also on dependability and reliability of 
services, where proper prioritization based on wide aspect of requests analysis takes 
place. It is very important when there are not enough hardware resources to process 
all requests at a time. This work is the continuation of our research on context analy-
sis for better security and dependability of distributed internet systems [10]. 

3 Proposed solution 

In contrast to a simple load balancing, management of requests based on an aspect 
of their calls does not allocate resources evenly. Aspect-oriented management of re-
quests means that during the request realization there is not only services invocation 
but also an additional functionality. This additional functionality includes reading the 
request attributes and then, on the basis of them as well as the configured rules, decid-
ing which service node should be involved. This additional action is entirely separated 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


from the main request realization. All requests should be analyzed this way. This is a 
perfect example of aspect-oriented programming. By using information about who, 
from where, and when invoke request to the service appears we are able to allocate 
resources (often very limited) to meet changing demands and at the same time provide 
the resources needed for critical services dependability. Figure 1. illustrates schemati-
cally the definition of the problem and its solution. 

 

Fig. 1. Management of service requests in terms of performance improvement with limited 
hardware resources. 

System work on a single node during the biggest load is inefficient very often and 
many requests are serviced in sub-optimal time. Detailed statistics from our case are 
presented in section 5. Adding more nodes with appropriate management of requests, 
although they did not allow all services to maintain optimal execution time (node 1), 
allows the selected priority services to work optimally and without any delay (node 
N) during the increased load time period. If you have resources to ensure optimal 
performance of all services during the biggest load, a simple load balancing is good 
enough to ensure efficient performance. Dynamic management of requests on the 
basis of modifiable configuration is a necessary solution when it is not possible to 
ensure sufficient resources for all services and while priority services must be provid-
ed with high performance and reliability during the whole period of increased load. In 
single node configuration during the peak load snow ball effect appears, which means 
that more and more services response in elongate time because they are waiting for 
access to resources. In such situation whole system work with poor performance. 
When we can divide load between many nodes and decide that on some of them only 
priority services will work those services will not wait for resources. Even in peak 
load snowball effect will not appear on nodes where demand for resources is less then 
available. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
Of course, the proper system architecture is important to support aspect-oriented 
management of requests. A perfect solution is to introduce an explicit separation be-
tween the user interface layer and the services layer. It is assumed that the user inter-
face layer (web browser with running applications on the client side and the network 
connection between the browser and the server) does not bring noticeable perfor-
mance drop during the request handling. Comparing with the time of the request han-
dling in the services layer, the time of transmission and request handling in UI layer 
can be omitted. The discussed model of system architecture is presented at Figure 2. 
This architecture is used in the increasingly popular microservices [11]. 
 

 

Fig. 2. Model of system architecture with request analysis between UI layer and services layer.  

Building a system that uses architecture of independent services and applications 
assures flexibility. The problem of providing communication between services and UI 
application requires an additional usage of REST and JSON protocol at a small effort. 
The explicit separation of the UI layer from the business services layer provides a 
number of advantages: 

─ less impact of errors for overall work of the system - by separating the requests, a 
part of the system can be in error state while the remaining part is able to work 
properly, 

─ scalability – you can easily deploy services that require more resources on ma-
chines with greater computing power, 

─ the ability to customize system architecture to the realities of the organization - this 
is important when the organization is large and has a complicated structure. It also 
allows you to deploy selected applications and services for specific groups of users 
to ensure the improvement of access control, 

─ the possibility of a partial modernization of the system – this is especially im-
portant for large systems where frequent exchange of technology is impossible. 
With independent services it is easier to upgrade some parts of the system. It is 
necessary to ensure compatibility at the API level only.  

As business services have only programming API and they do not have a user inter-
face, developers are forced to write unit tests because otherwise they are unable to test 
what they have produced. The key to the implementation of high quality software is 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


writing automated tests. Unfortunately, when quick results are expected, this activity 
is often omitted in the first stage of the system production due to the additional time 
effort. However, when the work methodology forces developers to create tests, then 
they will guarantee high quality solution at the maintenance stage. That and all previ-
ous advantages make the architecture of independent services very functional and 
easily applicable, especially in systems with microservices architectures [12]. 
 
As for an aspect-oriented management of request deployment, the first thing to do is 
determining the system’s characteristics. It means indicating time periods when the 
system is the most intensively used, when delays in access to services happen which 
result from inadequate hardware resources for the system’s load. The next question is 
in which services the delay occurs and if it is caused by the massive use of services by 
users or the services’ insufficiency. Another matter is if any services should be distin-
guished in terms of importance and priority. To answer all these questions you need to 
perform some suitable measurements. The best way to deal with that matter seems to 
be gathering traces of performed operations and their execution times on the service 
layer. Additionally, it is worth saving the aspect of request characterizing the selected 
call: which user invoked the request (what users’ group he belongs to), which applica-
tion the request was invoked from, when it was invoked and which service it was sent 
to. After collecting these data and analyzing them, we can determine which services 
consume the most resources, when, by whom and from what applications they are 
used. You need to compare the above information with the business environment of 
the system: who (which group of users) has to be provided with priority access, to 
what services and in which period of time this access must be provided. In practice, 
the most often it turns out that various services are not used extensively simultaneous-
ly and that miscellaneous groups of users need priority at different time. Such dynam-
ics of the system usage enforces a similar dynamic in allocating resources.  
The allocation of limited resources to services must not be constant but variable with 
the ability to adapt easily, depending on the aspect of the request. For this purpose, 
the requests management component must be introduced between the UI and the ser-
vices. That component should be able to analyze the mentioned above aspects of a 
request. Then, depending on predefined rules, the request should be redirected to one 
of the N nodes. In this way, you can specify the nodes that will serve a selected group 
of users and requests to selected services. This allows you to prioritize periodically 
the selected requests by providing reliable access to critical services and functions of 
the system.  
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 3. Diagram of requests redirection to the nodes on the basis of the aspect of the request 

Figure 3 shows a formal diagram of request redirection to the nodes on the basis of 
the aspect of the request and the defined configuration. The ideal solution is defining 
the rules in the way which will ensure equal responsive access to all services for all 
users. However, with a large number of users and services and with limited resources 
it may be impossible. Then you have to choose which critical services should be 
available in which periods of time. 
 
The rules should be under modification as long as we reach the satisfactory level of 
responsiveness of critical services. At the time of insufficient resources, low priority 
services may not be available but those with a high priority will be able to work 
properly. Figure 4 shows a life cycle of configuration. It will be usually a daily cycle, 
but it can also be adapted to another time quantum, depending on the needs. Continu-
ous monitoring of requests and the collected data analysis allows you to customize the 
configuration of dynamic requests to the nodes allocation. This way you can achieve 
the highest possible efficiency as well as ensure the dependability of key services. 
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 4. Life cycle of requests redirection configuration 

4 Verification method – case study 

The proposed solution was implemented in the system “Moja PG” at Gdańsk Uni-
versity of Technology. A component of request management was introduced between 
the portal (which is a collection of independent user applications) and services layer 
(in which business components are embedded). Another node was added on which all 
services are available in the same way as on the original node. The requests manager 
distributes requests from user applications into these two independent nodes.  
 
Using exactly the same UNIX operating system and the same version of the JVM on 
both nodes provides the same threading, concurrency and parallelism mechanisms. 
Exactly the same system software was used before and after adding the request man-
ager. Thus it is possible to compare the results of those two measurements without the 
need to consider the impact of the operating system or JVM.  
 
Dynamic requests management solution was introduced in the production environ-
ment at the beginning of the academic year 2016/2017. It was a specific period of 
time because you had to ensure reliable access to services for 30,000 users within a 
few days. Students wanted to see their timetables, sign up for elective subjects or 
extend the validity of their electronic ID cards. At the same time employees had to 
issue the necessary certificates, give students their final grades and supervise the 
teaching process. Student actions during the working day got lower priority in the 
access to resources on the basis of the aspect of the request. However, full access to 
resources was granted in the evening when university employees did not use the sys-
tem.  
 
Introducing such a separation, the average execution time was reduced. There was no 
noticeable drop in performance during the first days of the academic year, which oc-
curred in the previous years. Services were available, there was no moment in which 
the system was overloaded. Thanks to the dynamic request management and despite a 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


sudden increase in the number of system users, there was no snow ball effect. This 
effect means lengthening the service response time as a result of taking over more and 
more resources by other services. Reliable access to critical services was guaranteed 
all the time because they were invoked on a separate node. The change from a tradi-
tional balanced load distribution to dynamic request management helped to maintain 
full reliability of critical system functions.  
 
The process of determining the rules for the separation of requests between nodes was 
discrete and was repeated once a day. Analysis was performed automatically on the 
basis of log files in which service requests were saved along with their execution 
times. As a result, we were able to calculate the following statistics: 

─ average time of service execution divided into groups of users, 
─ the total time of the service execution during the day divided into groups of users, 
─ the number of requests to the service divided into groups of users.  

On the basis of those statistics it is easy to determine which services are the most 
often invoked, by whom, and which occupy resources for the longest time. Of course, 
changing the configuration directly affects the performance of the execution of ser-
vices, so you need to monitor regularly the statistics to ensure that the rules are 
properly applied. Besides, changes in the way of using the system make a continuous 
control essential, too. 
 

5 Measurements results 

Measurements of system “Moja PG” in the production environment were made on 
log files generated by the system. A sample log file part is shown below: 

2016-09-26 00:00:05,170 [StudentManagerBean t-146] START: getObjectById 

2016-09-26 00:00:05,205 [StudentManagerBean t-146] STOP getObjectById: 34ms 

2016-09-26 00:00:05,222 [StudentManagerBean t-18] START: getCardBySubject 

2016-09-26 00:00:05,662 [InventionsManagerBean -83] START: searchInventions 

2016-09-26 00:00:05,794 [InventionsManagerBean t-83] STOP searchInventions: 132ms 

2016-09-26 00:00:05,809 [InventionsManagerBean t-157] START: getInventorsByInventionId 

2016-09-26 00:00:05,822 [InventionsManagerBean t-157] STOP getInventorsByInventionId:12ms 

2016-09-26 00:00:05,835 [InventionsManagerBean t-146] START: getAdministrativeUnitsByInvenId 

2016-09-26 00:00:05,838 [InventionsManagerBean t-146] STOP getAdministrativeUnitsByInvenId: 2ms 

2016-09-26 00:00:05,844 [StudentManagerBean t-18] STOP getCardBySubject: 621ms 

Some part of the following lines content logged by the system had to be hidden for 
security reasons. Pairing log lines talking about the beginning of the service request 
processing (START) and its completion (STOP) was performed on the basis of the 
task ID (e.g. “t-146”). Each STOP line contains also execution time in milliseconds. 
Services are executed asynchronously, so log lines appear in a file in a random order, 
too. In each line there is also included the timestamp, the name of the package of 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


services, e.g. StudentManagerBean or InventionsManagerBean, and the name of the 
proper service.  
 
The first log analysis checked only correctly completed invocation of services and 
summed up their execution times. Then, on the basis of the total time in one-day peri-
ods, a ranking list was created showing which services performed the longest. The 
ranking presents services that are invoked very frequently or which are invoked rarely 
but with a long execution time. Therefore, it is also worth analyzing the average time 
of service execution. First, the measurements were performed on a loaded production 
system without the additional node. Then, the services which occupied the first node 
resources for the longest time were redirected to the second node. After 24 hours log 
file analysis was repeated, this time on both nodes. The collected results are shown in 
Tables 1, 2 and 3 and in Figures 5 and 6. 

 

Fig. 5. Chart of the average service execution time on selected days of the year 2016. 

 

 

Fig. 6. Chart of the average service execution time on selected days of the year 2015. D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The charts on Figures 5 and 6 show the average execution times of selected services 
at the beginning of the academic year in 2015 and 2016. In 2015 “Moja PG” system 
worked only on a single node without aspect-oriented management of requests. In 
2016 an additional node was used and service requests were distributed between 
nodes on the basis of their invocation aspects. The noticeable fact is the reduced ser-
vice execution time (the longest service executions in 2016 lasted 765 milliseconds 
and in 2015 – 1907 milliseconds). In addition, on the graph of 2015 you can notice a 
significant increase in services execution time on 2015-10-02 – all students started to 
use the system intensively at the beginning of the academic year. Then a snowball 
effect occurred – an extension of services execution time because the user load caused 
that each invoked service was executing even longer. In the chart of the year 2016 
there was an extension of services execution time on 2016-09-30, when the students 
started to use the system intensively. However, thanks to using two nodes, there were 
enough resources to prevent any snowball effect and the duration of execution time of 
services did not exceed 800ms.  
 
Measurements from 2016 presented in Table 1 clearly show that the priority services 
running on the second node had a single-digit increase in execution time under load 
(from 1.33% to 8.03%), while services operating in the more loaded first node had an 
increase in execution time under load in the range from 10.58% to 26.58%. On the 
basis of those results it can be stated that the critical services running on a node II 
worked stable and reliably, despite the system maximum load of 30 thousand users. If 
the load had been distributed equally between the two nodes, some of the resources 
would have been used by the services with a lower priority, and consequently the 
priority services execution times would have been extended, affecting negatively on 
the dependability of key system functionality. Table 3 shows compiled results of the 
comparison of services execution time between selected time periods in 2015 and 
2016. 

Table 1. The results of service performance measurement in 2016 

Year 2016 

Service name  
Max execution 
time [ms] 

Avg execution 
time without load 
[ms] 

Avg execution 
time with load 
[ms] 

The increase in 
execution time 
between the loaded 
and no-loaded 
system [%] 

getInvoiceSummary II 108.00 90.50 96.13 6.22 

getMyCourseTree I 317.00 200.50 253.80 26.58 

getMyGeneralInfo II 437.00 348.50 368.07 5.61 

getMyPersonData II 15.00 14.03 14.33 2.16 

getMyStudyProcessCard II 700.00 581.50 628.20 8.03 

getObjectById I 765.00 547.50 638.53 16.63 

searchFullCourseEctsByCourseId II 20.00 15.00 15.20 1.33 

searchMyStudentMessage I 692.00 523.00 578.33 10.58 

 D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 2. The results of service performance measurement in 2015 

Year 2015 

Service name  
Max execution 
time [ms] 

Avg execution 
time without 
load [ms] 

Avg execution 
time with load 
[ms] 

The increase in 
execution time 
between the loaded 
and no-loaded system 
[%] 

getInvoiceSummary 172.00 71.17 94.67 33.02 

getMyCourseTree 370.00 241.67 324.67 34.34 

getMyGeneralInfo 1286.00 258.00 455.00 76.36 

getMyPersonData 69.00 17.67 32.44 83.65 

getMyStudyProcessCard 1907.00 1060.67 1670.78 57.52 

getObjectById 1434.00 966.33 1270.56 31.48 

searchFullCourseEctsByCourseId 157.00 43.33 56.11 29.49 

searchMyStudentMessage 1078.00 552.67 820.22 48.41 

 

Table 3. The results of comparative measurements of service performance in 2015 and 2016 

Service name 

Increase in max 
execution time 
between 2016 and 
2015 [%] 

Increase in avg execution 
time without load between 
2016 and 2015 [%] 

Increase in avg execution 
time with load between 
2016 and 2015 [%] 

getInvoiceSummary -37.21 -10.54 -33.55 

getMyCourseTree -14.32 -17.03 -21.83 

getMyGeneralInfo -66.02 -4.52 -19.11 

getMyPersonData -78.26 -20.58 -55.82 

getMyStudyProcessCard -63.29 -45.18 -62.40 

getObjectById -46.65 -43.34 -49.74 

searchFullCourseEctsByCourseId -87.26 -65.38 -72.91 

searchMyStudentMessage -35.81 -5.37 -29.49 

 
Without load the percentage differences in execution time ranged from 4.52% to 
65.38%, which means that the system running without load on one node selected ser-
vices (getMyGeneralInfo, searchMyStudentMessage or getInvoiceSummary) handled 
at the optimal time. This is why differences are so small (from 4.52% to 10.54%), 
while the execution time of remaining services even without load were reduced from 
17.03% to 65.38%. This indicates that one node even without load did not have 
enough resources for optimal work. The comparative analysis of the maximum ser-
vice execution times between unloaded system and system under load shows an in-
crease of execution time from 14.32% up to 87.26%. The services of higher priority 
that were transferred to the second node (II) were being executed shorter from 
37.21% to 87.26%, while those of lower priority which were executed on more loaded 
first node (I) showed a shorter duration of execution time in the range from 14.32% to 
46.65%. Summing up the results of the measurements, it can be stated that with the 
selection of priority services and redirection of their execution on less loaded node a 
shorter execution time and reliable access, even at maximum load, were provided. 
Services with less priority which were running on the more loaded node also recorded 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


a reduction of operating time (by distributing the execution of services on two nodes). 
However, it was not as significant as in the case of priority services. The measure-
ments’ results show that using an aspect-oriented management of service requests  
can assure dependable access to priority services which can be moved to a separated 
node. Of course, when there are unlimited resources, a dynamic load-balancing is 
enough for making all services unfailing. However, when there are insufficient re-
sources, the services should be prioritized and the most important ones should work 
properly regardless of the load. In the production environment we were able to 
achieve our main goals by adding another node and using an aspect-oriented man-
agement of service requests. In this way: 
- the execution time of all services decreased because more resources were availa-

ble, 
- the execution time of priority services decreased significantly because they were 

invoked on a separated node, 
- the most important goal – priority services guaranteed reliable performance re-

gardless of the load. 
Priority service are used by finite and well known group of users. We were able to 
estimate how much of resources were necessary for this group of users to work on 
priority services. During work day of this group of users required resources were 
granted to priority services which gave us confidence that they will work with high 
performance and dependability. When priority services were not used, thanks to dy-
namic configuration free resources were used by other services which needed them. 
Management of service request allows to react to a changing load and assure neces-
sary resources for the chosen services. When high performance and dependability 
cannot be assured for all services because of the lack of resources, then a configura-
ble management of service requests is a good solution. Thanks to that the priority 
services can perform efficiently.  
   

6 Summary 

The proposed solution is based on the aspect-oriented management of services re-
quests. It was introduced in the system “Moja PG” at Gdańsk University of Technol-
ogy that supports 30,000 users. After adding an additional node, the services execu-
tion time was reduced, thanks to a dynamic management of requests. On the basis of 
the request aspects and configurable rules, a snowball effect was avoided in the time 
of the most intensive system use. Execution time of priority services got reduced by 
an average of more than 60%. In the case of services with lower priority, the execu-
tion time was reduced by more than 30%.  

 
Summing up, when computing resources are limited, then appropriate arrangement of 
rules for requests management provides a stable and fast access to critical services, 
without the risk that less important services will lead to the seizure of resources. Of 
course, the rules must be constantly modified, based on the performance results in 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


order to adapt them to the changing conditions of system usage. As a result of the 
need for regular performance analysis and customization of the rules used in the con-
figuration, there arises a question if the system should be allowed to configure itself 
automatically. Some work on the mechanism of dynamic recommendations was start-
ed. At this stage we assumed that the system should suggest which rules will improve 
the efficiency of access to services. However, the administrator will configure these 
rules in the production environment manually. When the recommendation engine is 
refined, an ultimate goal is to implement a module which will automatically reconfig-
ure the system due to changing user activities. 

References 

1. R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-Optimal Scheduling in 
Hybrid IaaS Clouds for Deadline Constrained Workloads,” in 2010 IEEE 3rd International 
Conference on Cloud Computing, 2010, pp. 228–235. 

2. M. A. Metawei, S. A. Ghoneim, S. M. Haggag, and S. M. Nassar, “Load balancing in 
distributed multi-agent computing systems,” Ain Shams Engineering Journal, vol. 3, no. 3, 
pp. 237–249, Sep. 2012. 

3. J. O. Gutierrez-Garcia and A. Ramirez-Nafarrate, “Agent-based load balancing in Cloud 
data centers,” Cluster Computing, vol. 18, no. 3, 2015. 

4. Xiao Qin, Hong Jiang, A. Manzanares, Xiaojun Ruan, and Shu Yin, “Communication-
Aware Load Balancing for Parallel Applications on Clusters,” IEEE Transactions on 
Computers, vol. 59, no. 1, pp. 42–52, Jan. 2010. 

5. A. Y. Zomaya and Yee-Hwei Teh, “Observations on using genetic algorithms for dynamic 
load-balancing,” IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 9, 
pp. 899–911, 2001. 

6. C.-C. Lin, H.-H. Chin, and D.-J. Deng, “Dynamic Multiservice Load Balancing in Cloud-
Based Multimedia System,” IEEE Systems Journal, vol. 8, no. 1, pp. 225–234, Mar. 2014. 

7. X. Ren, R. Lin, and H. Zou, “A dynamic load balancing strategy for cloud computing 
platform based on exponential smoothing forecast,” in 2011 IEEE International 
Conference on Cloud Computing and Intelligence Systems, 2011, pp. 220–224. 

8. P. Lubomski, A. Kalinowski, and H. Krawczyk, “Multi-level Virtualization and Its Impact 
on System Performance in Cloud Computing,” in Communications in Computer and 
Information Science, vol. 608, 2016, pp. 247–259. 

9. C. Zenon, M. Venkatesh, and  a Shahrzad, “Availability and Load Balancing in Cloud 
Computing,” International Conference on Computer and Software Modeling IPCSIT 
vol.14 (2011) IACSIT Press, Singapore, vol. 14, no. September, pp. 134–140, 2011. 

10. P. Lubomski and H. Krawczyk, “Clustering Context Items into User Trust Levels,” 
Advances in Intelligent Systems and Computing, vol. 470, pp. 333–342, 2016. 

11. J. Thones, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, Jan. 2015. 
12. A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables 

DevOps: Migration to a Cloud-Native Architecture,” IEEE Software, vol. 33, no. 3, pp. 
42–52, May 2016. 

 
 D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

