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Abstract

In this work different theories of beam flexural behaviour have been discussed and
compared. This analysis includes various one-, two- and three-dimensional beam
behaviour theories comprising the classical one-dimensional Bernoulli, Bernoulli-
Rayleigh, Timoshenko and Reddy theories, as well as various higher order and/or
higher-mode theories of beam flexural behaviour developed by the authors. The
dispersion curves obtained by the use of the Hamilton’s principle and associated
with each theory discussed in the paper have been also presented and analysed.
The wide investigation programme carried out by the authors aimed to show ma-
jor differences and similarities between the beam theories and to discuss various
numerical aspects of their application. Great attention has been paid on proper-
ties, limitations as well as difficulties associated with the use of particular theories
of beam flexural behaviour. Based on a wide program on numerical calculations
the authors draw certain general conclusions that are valid not only in the field of
wave propagation related problems, but also in the field of dynamics of engineering
beam-like structures.
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20 July 2012

Postprint of: Żak A., Krawczuk M., Assessment of flexural beam behaviour theories used for dynamics and wave propagation 
problems, Journal of Sound and Vibration, Volume 331, Issue 26 (2012), pp. 5715-5731, DOI: 10.1016/j.jsv.2012.07.034

© 2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jsv.2012.07.034
https://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

As structural members beams have been used since centuries and during that
long period of time beams have become one of the most fundamental ele-
ments of engineering structures. However, understanding of their structural
characteristics starts only from the golden age of physics and mathematics,
when the first mathematical models of their mechanical behaviour appeared.
The classical beam theory, also known as the Bernoulli, Euler or Bernoulli-
Euler [1] beam theory, crystallised around 1750 by complementary efforts of
Bernoulli and Euler. But it remained unknown for almost one century to
re-emerge during the times of the second industrial revolution and such spec-
tacular engineering structures like the Eifel tower or Ferris wheel. Because of
the extensive and universal use of beams for more advanced and sophisticated
structures more accurate models of their flexural behaviour were required. As
the effect of this demand new beam theories were proposed and developed such
as, for example, the Rayleigh or Bernoulli-Rayleigh beam theory [2] developed
at the end of the XIX-th century as an enhancement over the classical beam
theory, and which incorporates the rotary inertia of the beam cross-section or
the Timoshenko beam theory [3, 4] from the beginning of the XX-th century
that additionally takes into account the effect of transverse shear stress. Other
examples can be the higher order beam theories developed by Levinson [5] or
Heyliger and Reddy [6] that assumed parabolic distribution of the shear stress
over the beam cross-section.

It should be noted here that an increasing degree of accuracy of these theories
in terms of their static or dynamic predictions were in fact limited because
all of them were based on the simplifications of the theory of elasticity to
one dimension only. These approximations may lead to incorrect solutions in
more complicated or specific cases, where two- or three-dimensional nature
of the beam behaviour must be taken into account. Specialised theories of
thin-walled beams, such as one developed by Vlasov [7] or other theories [8, 9]
based on solutions of the Saint-Venant problem [10, 11] of coupled bending-
shear beam behaviour, overcome the issues mentioned before, however, at the
cost of additional mathematical complications.

A special class of engineering problems related to the use of beams as struc-
tural members are the problems involving high frequency excitations and re-
sponses that on the other hand imply high velocities of propagating signals.
This is typical not only in the case of various problems related with propa-
gation of elastic waves in beam-like structures, but also in the case of their
high frequency steady-state or transient dynamics. In all these cases accurate
numerical modelling of beam dynamic behaviour is a key issue and its precise
representation in space and time requires very dense spatial and time discreti-
sation making the discretisation process a main and most crucial factor of the
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analysis. Because of that fact many different numerical modelling techniques
have been used for that purpose as well as reported in the literature.

Over last decades a big variety of numerical techniques have been developed
and applied for solutions of problems related to propagation of elastic waves
as well as wave interaction with damage related discontinuities. These tech-
niques can be divided into two separate classes due to significantly different
approach they employ. The first class are so-called frequency-domain meth-
ods (FD) that are based on the frequency representation of excitation signals
and structural responses, which techniques inherently employ the direct and
inverses fast Fourier transforms (FFT and IFFT). A good introduction to this
approach was given by Doyle [12], who studied and analysed dynamic charac-
teristics and propagation of elastic waves in typical one- and two-dimensional
structural elements. Based on this approach various aspects of dynamics, wave
propagation and wave-damage interaction in beam-like structures were studied
and reported in [13–21]. The second class are so-called time domain methods
(TD) and they include the classical finite difference (FDM) [22–25] and ele-
ment (FEM) methods [26–30]. Based on the foundations laid by the frequency
and time domain methods mentioned two other numerical techniques have
emerged and developed that now are repeatedly used for wave propagation
related problems. They are very well represented by the time-domain spectral
element method or the spectral finite element method proposed by Patera
[31]. The use of the spectral finite element method for investigation of prop-
agation of elastic waves and wave-damage interaction in beam-like structures
was presented and reported in [32–35] and the other branch of the time-domain
methods are the methods that apply the wavelet transform in a similar man-
ner as it takes place in the frequency-domain approach. In the case of dynamic
problems related with beam-like structures they can be represented by [36–38].

It is interesting to note that the applicability of particular theories of beam
flexural behaviour used by the authors of the papers mentioned above is always
limited to certain frequency or loading regimes. However, this fact is not al-
ways appropriately addressed and/or very often neglected, which may lead to
wrong interpretation of simulation results or even to false conclusions. Taking
this into account it becomes obvious that different theories of beam flexural
behaviour reported in the literature should be analysed and evaluated in a
much more systematic and careful manner. For this reason in this work dif-
ferent theories of beam flexural behaviour have been discussed and compared.
These includes various one-, two- or three-dimensional beam behaviour the-
ories comprising the classical one-dimensional Bernoulli, Bernoulli-Rayleigh,
Timoshenko and Reddy theories, as well as various higher-order and multi-
mode theories of beam flexural behaviour developed by the authors. The dis-
persion curves obtained by the use of the Hamilton’s principle and associated
with each theory discussed in the paper have been also presented and anal-
ysed. The wide investigation programme carried out by the authors aimed to
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show major differences and similarities between the beam theories and to dis-
cuss various numerical aspects of their application. Great attention has been
paid on properties, limitations as well as difficulties associated with the use of
particular beam behaviour theories. Based on a wide program on numerical
calculations the authors draw certain general conclusions that are valid not
only in the field of wave propagation related problems, but also in the field of
dynamics of engineering beam-like structures.

2 Elastic waves in beams

2.1 Theoretical background

Propagation of elastic waves in beam structural elements can be well described
by the linear theory of elasticity. In the case of isotropic materials the equation
of motion governing propagation of elastic waves can be expressed in a vector
form as [12, 39, 40]:

µ∇2u+ (λ+ 2µ) grad div u = ρ ü (1)

where u is a displacement vector, λ and µ are Lamé material elastic constants,
ρ denotes material density and �̈ is the second time derivative.
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Fig. 1. Geometry of a beam structural element.

It is most convenient to analyse this problem using the cylindrical (x, r, θ)
rather than the Cartesian (x, y, z) coordinates – see Fig. 1. In the cylindrical
coordinate system the components ux, ur and uθ of the displacement vector
u are certain scalar functions of the space coordinates x, r and θ as well as
time t.
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According to Helmholtz’s theorem the field of the displacement vector u can
be thought of as a sum of two special vector fields uφ and uH such that
the vector field uφ is irrotational (rot uφ = 0), while the vector field uH is
solenoidal (div uH = 0). This is achieved by assuming that the field of the
displacement vector u is generated by a pair of potentials, i.e. scalar potential
φ and vector potential H = (Hx, Hr, Hθ):

u = uφ + uH = grad φ+ rotH , divH = 0 (2)

with the following notation employed:

grad φ = î
∂φ

∂x
+ r̂

∂φ

∂r
+ θ̂

1

r

∂φ

∂θ
, divH =

∂Hx

∂x
+

1

r

∂(rHr)

∂r
+

1

r

∂Hθ

∂θ

rotH = î
1

r

[

∂(rHθ)

∂r
−
∂Hr

∂θ

]

+ r̂

[

1

r

∂Hx

∂θ
−
∂Hθ

∂x

]

+ θ̂

[

∂Hr

∂x
−
∂Hz

∂r

]

∇2 =
∂2

∂x2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

where î, ĵ and θ̂ are the unit vectors indicating the orientations of the x, r
and θ axes.

Application of Helmholtz’s theorem and substitution of Eq.(2) into Eq.(1)
leads after some simplification and rearranging of the terms related to both
potentials φ and H to Eq.(3):

grad

[

(λ+ 2µ)∇2φ− ρ
∂2φ

∂t2

]

+ rot

[

µ∇2H − ρ
∂2H

∂t2

]

= 0 (3)

which presents in fact a set of two independent equations of motion for both
potentials φ and H :

∇2φ =
1

c2l

∂2φ

∂t2
, ∇2H =

1

c2t

∂2H

∂t2
(4)

where cl and ct defined as follows:

c2l =
λ+ 2µ

ρ
, c2t =

µ

ρ
(5)

denote the velocities of longitudinal (irrotational, voluminal, dilatational or
primary) and torsional (rotational, equi-voluminal, shear or secondary) waves
propagating in three-dimensional unbounded isotropic media, respectively.
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2.2 Characteristic frequency equation

Using the cylindrical (x, r, θ) coordinates the components ux, ur and uθ of
the displacement vector u can be related to the scalar potential φ and the
components Hx, Hr and Hθ of the vector potential H through the relations:

ux =
∂φ

∂x
+

1

r

∂(rHθ)

∂r
−

1

r

∂Hr

∂θ

ur =
∂φ

∂r
+

1

r

∂Hx

∂θ
−
∂Hθ

∂x
, uθ =

1

r

∂φ

∂θ
+
∂Hr

∂x
−
∂Hx

∂r

(6)

which after substitution to Eq.(1) and some simplifications results in another
set of four independent equations of motion expressed in terms of the scalar
and vector potentials φ and H :

∇2φ =
1

c2l

∂2φ

∂t2
, ∇2Hx =

1

c2t

∂2Hx

∂t2

∇2Hr −
Hr

r2
−

2

r2
∂Hθ

∂θ
=

1

c2t

∂2Hr

∂t2

∇2Hθ −
Hθ

r2
+

2

r2
∂Hr

∂θ
=

1

c2t

∂2Hθ

∂t2

(7)

The strain field within the beam can be easily evaluated based on Eqs.(6) and
has the following components:

ǫxx =
∂ux
∂x

, ǫrr =
∂ur
∂r

, ǫθθ =
ur
r

+
1

r

∂uθ
∂θ

γrθ =
∂uθ
∂r

−
uθ
r

+
1

r

∂ur
∂θ

, γθx =
1

r

∂ux
∂θ

+
∂uθ
∂x

, γxr =
∂ur
∂x

+
∂ux
∂r

(8)

while the stress field can be calculated from Hooke’s law based on the following
very well-known formulas:

σxx = 2µǫxx + λ(ǫxx + ǫrr + ǫθθ)

σrr = 2µǫrr + λ(ǫxx + ǫrr + ǫθθ)

σθθ = 2µǫθθ + λ(ǫxx + ǫrr + ǫθθ)

τrθ = µγrθ, τθx = µγθx, τxr = µγxr

(9)

Flexural harmonic waves that can propagate within the beam along its lon-
gitudinal x axis can be assumed as solutions of Eqs.(7) in a general complex

6

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


form [39]:

φ = φ̂(r) cosnθ ei(kx−ωt)

H = [Ĥx(r) sinnθ, Ĥr(r) sinnθ, Ĥθ(r) cosnθ]e
i(kx−ωt)

(10)

where φ̂(r) as well as Ĥx(r), Ĥr(r) and Ĥθ(r) are unknown functions and
k denotes the wave number, while ω is the angular frequency, while n is an
integer number. It should be noted here that an infinite set of solutions can be
built based on the postulated solutions, however, the most important family
of these solutions is associated with n = 1.

Substitution of solutions (10) to the equations of motion (8) followed by certain
simplifications leads to a set of Bessel’s differential equations for the functions
φ̂(r) as well as Ĥx(r), Ĥr(r) and Ĥθ(r):

d2φ̂

dr2
+

1

r

dφ̂

dr
−
φ̂

r2
+ α2φ̂ = 0

d2Ĥx

dr2
+

1

r

dĤx

dr
−
Ĥx

r2
+ β2Ĥx = 0

d2Ĥr

dr2
+

1

r

dĤr

dr
−

2Ĥr

r2
+ β2Ĥr +

2Ĥθ

r2
= 0

d2Ĥθ

dr2
+

1

r

dĤθ

dr
−

2Ĥθ

r2
+ β2Ĥθ +

2Ĥr

r2
= 0

(11)

where:

α2 =
ω2

c2l
− k2, β2 =

ω2

c2t
− k2

that has solutions in the form of Bessel’s functions of the first kind Ji(αr)
and Ji(βr) as well as Bessel’s functions of the second kind Yi(αr) and Yi(βr),
where i = 0, 1, 2. Because the second kind Bessel’s functions exhibit singular
behaviour at their origin at r = 0 this branch of the solution is discarded
leading to the following form of the solution of the problem under investigation:

φ̂(r) = AJ1(αr), Ĥx(r) = BJ1(βr)

Ĥr(r) = CJ0(βr) +DJ2(βr), Ĥθ(r) = CJ0(βr)−DJ2(βr)
(12)

where A, B, C and D are certain constants.

Taking into account the general form of the solutions from Eqs.(10) it can be
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finally written that:

φ = AJ1(αr) cosnθ e
i(kx−ωt)

Hx = BJ1(βr) sinnθ e
i(kx−ωt)

Hr = [CJ0(βr) +DJ2(βr)] sinnθ e
i(kx−ωt)

Hθ = [CJ0(βr)−DJ2(βr)] cosnθ e
i(kx−ωt)

(13)

Propagation of elastic flexural waves within the beam requires the fulfilment of
zero-traction boundary conditions on the beam outer surface that accompany
the set of the equations of motion given by Eqs.(7). They can be written in
the following way:

σrr(x, a, θ) = τrθ(x, a, θ) = τxr(x, a, θ) = 0 (14)

where l is the length and d = 2a is the diameter of the beam.

The zero-traction boundary conditions for the stress components σrr, τrθ and
τxr, after substitution of Eqs.(13) to Eqs.(8) and by the subsequent use of the
formulas from Eqs.(9) and some simplification, form a set of two homogeneous
equations expressed in terms of the two solutions from Eqs.(13).

The given set of equations has a non-trivial solution only then when its deter-
minant vanishes. In the case under consideration this condition leads directly
to a certain non-linear equation dependant on the angular frequency ω and
the wave number k and independent of the angle θ. This is the characteris-
tic frequency equation for flexural (bending) modes propagating in isotropic
beams and has the following form:

c1J1(αa)J
2
0 (βa)− J0(βa)J1(βa)[c2J0(αa) + c3J1(αa)]+

J2
1 (βa)[c4J0(αa) + c5J0(αa)] = 0

(15)

where the coefficients ci(i = 1, . . . , 5), are expressed based on the relations:

c1 = 2βa2(β2 − k2)2

c2 = 2αβ2a2(5k2 + β2)

c3 = a[k2β2(2 + k2a2)− 2β4(5 + k2a2) + β6a2 − 4k4]

c4 = 2αβa[β2 + k2(9− 2a2β2)]

c5 = β(k2 + β2)[a2(k2 + β2)− 8]

(16)
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2.3 Solution of the characteristic frequency equation

The characteristic frequency equation related with propagation of flexural
elastic waves was solved by the use of an original and dedicated program
written by the authors in Matlab environment [41]. The values of the velocities
of longitudinal cl and torsional ct waves propagating within the beam were
calculated assuming the beam made out of aluminium with Young’s modulus
E = 72.7 GPa, Poisson ratio ν = 0.33 and material density ρ = 2700 kg/m3

and of the diameter d = 0.01 m. The values of the characteristic velocities
were cl = 6.3 km/s and ct = 3.2 km/s, respectively.
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Fig. 2. Phase velocity cp dispersion curves for an aluminium beam (cl = 6.3 km/s,
ct = 3.2 km/s).
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Fig. 3. Group velocity cg dispersion curves for an aluminium beam (cl = 6.3 km/s,
ct = 3.2 km/s).

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


As a calculation domain the frequency range f from 0.1 Hz up to 2.0 MHz and
the phase velocity range cp from 2 km/s up to 50 km/s was chosen. The roots
of the characteristic frequency equation were sought at nodes of a regular grid
of 400× 2000 nodes at the assumed accuracy level δ ≤ 0.001%.

The solution was based on the use of a conjugate bisection method developed
by the authors [42]. In the first step the roots were found as a function of the
phase velocity cp = ω/k for given values of the frequency f = ω/π/2 treated as
a parameter in Eq.(15). In the second step the phase velocity cp was assumed
to be a parameter and the roots were found as a function of the frequency f .
In this way the second step of calculations improved the solutions obtained
from the first step for those regions of analysis where changes in the phase
velocity cp as a function of the frequency f were of a very high magnitude.
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Fig. 4. Group-to-phase velocity ratio cg/cp dispersion curves for an aluminium beam
(cl = 6.3 km/s, ct = 3.2 km/s).

The results obtained for changes in the phase velocity cp as a function of a
frequency parameter f · d are shown in Fig. 2, while Fig. 3 presents changes
in the group velocity cg as a function of the same frequency parameter f · d.
The values of the group velocity cg = dω/dk were also obtained numerically
by differentiation of the wave number curves k = k(ω) with respect to the
angular frequency ω.

However, it is very convenient to present the dispersion curves shown in Fig. 2
and Fig. 3 in such a unified or normalised manner. A typical example of such
standardisation is normalisation of dispersion curves for the group velocity cg
by the phase velocity cp, so they express changes in the group-to-phase velocity
ratio cg/cp. The dispersion curves obtained based on such normalisation for
the range of the frequency parameter f · d up to 10 MHz·mm are presented in
Fig. 4.
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3 Beam theories

3.1 General considerations

The beam theories used for various dynamic problems, also including prop-
agation of flexural elastic waves in beam-like structures and reported in the
literature, can generally be classified as one-, two- or three-dimensional the-
ories. The nature of the stress and strain state within the structures can be
considered as a key element of such classification. Although this classification
is not precise, it greatly helps to differentiate and allocate particular beam
theories to a right group in order to assess their properties or characteristics.
Other classification can be based on a number of wave modes associated with
the theories, which allows one to distinguish one-mode, two-mode, three-mode
as well as higher mode theories. Additionally to that certain higher order the-
ories can be also marked out as the theories that make use of the zero-traction
boundary conditions, as specified by Eqs.(14).

y

z

x y

z

x y

z

x

a) c)b)

ux uθur

Fig. 5. Distributions of displacement components ux, ur and uθ within the cir-
cular cross-section of a beam element due to flexural behaviour: a) longitudinal
displacement component ux, b) radial displacement component ur, c) and tangent
displacement component uθ.

A great number of theories based on different forms of displacement fields can
be obtained through investigation of a general three-dimensional displacement
field of a beam structural element, as presented in Fig. 1 and based on Eqs.(6)
and Eqs.(10). An appropriate Maclaurin series expansion enables one not only
to reduce the number of unknown variables to a desired and necessary number,
but it also helps to simplify the complexity of the displacement field. Cutting
off the number of wave propagation modes than are allowed by particular
theories limits their application range and helps one to shape the theories to
specified needs or requirements.

Using the same cylindrical coordinates (x, r, θ) the displacement filed corre-
sponding to the displacement vector u = [ux, ur, uθ] associated with flexural
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behaviour of a beam structural element can be formally presented in the fol-
lowing general form [39, 40]:

ux(x, r, θ) = Ux(x, r) sin θ

ur(x, r, θ) = Ur(x, r) sin θ

uθ(x, r, θ) = Uθ(x, r) cos θ

(17)

where Ux(x, r), Ur(x, r) and Uθ(x, r) are certain unknown displacement func-
tions dependant only on the spatial coordinates x and r. Typical distributions
of the displacement components ux, ur and uθ within the circular cross-section
of a beam element corresponding to Eq.(17) illustrates Fig. 5.

The unknown displacement functions Ux(x, r), Ur(x, r) and Uθ(x, r) of the
beam displacement field can be formally expanded into a Maclaurin series of
the about r = 0 leads to the relations:

Ux(x, r) = Ux(x, 0) +
∞
∑

k=1

∂kUx(x, 0)

∂rk
rk

k!

Ur(x, r) = Ur(x, 0) +
∞
∑

k=1

∂kUr(x, 0)

∂rk
rk

k!

Uθ(x, r) = Uθ(x, 0) +
∞
∑

k=1

∂kUθ(x, 0)

∂rk
rk

k!

(18)

It is interesting to note at this place that the terms that are proportional
to the odd and even values of k have different meanings. In the case of the
displacement function Ux only the odd values of n are associated with anti-
symmetric behaviour and propagation of flexural waves, while in the case of
the displacement functions Ur(x, r) and Uθ(x, r) these are the even values of
n [12, 39, 40].

The number of terms kept in the series given by Eqs.(18) must always depend
on the investigated phenomena. It is directly related with the total number of
degrees of freedom as well as the total number of wave propagation modes of
a finite element approximation based on the expansion. The expansion of the
displacement component Uθ(x, r) leads to the series of the following form:

Uθ(x, r) = Uθ(x, 0) +
n
∑

k=1

∂kUθ(x, 0)

∂rk
rk

k!
+O(rn+1) (19)

where O(rn+1) represents the truncation error of the expansion proportional
to rn+1. A step towards a finite element approximation can be made when Eq.
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(19) is rewritten as:

Uθ(x, r) =
n
∑

k=0

ϑk(x)r
k +O(rn+1) (20)

where ϑk(x)(k = 0, 1, . . . , n) denotes now degrees of freedom of a beam element
associated with a Maclaurin series expansion of the displacement component
Uθ(x, r).

It should be emphasised once more that the truncation of the series (18)
results in an approximation error proportional to O(rn+1). Due to this fact
the formula obtained for each displacement function Ux(x, r), Ur(x, r) and
Uθ(x, r), as presented by Eq.(20), is not exact in its representation of a fully
three-dimensional displacement field. However, it should be also said that
effective solutions of most of engineering problems related to various static
or low-frequency dynamic problems require displacement fields that are based
only on the first one or two terms of the appropriate Maclaurin series. In the
case considered above it can be noted immediately that:

ϑ0(x) = Uθ(x, 0), ϑk(x) =
1

k!

∂kUθ(x, 0)

∂rk
, k = 1, 2, . . . , n (21)

Contrary to that a great majority of problems related to high-frequency dy-
namics or propagation of flexural elastic waves in beam-like structures requires
much more accurate representation of the three-dimensional displacement field
of a solid element. Here it should be reminded that in a general case propaga-
tion of elastic waves within structural elements or wave guides is related with
coupled interaction of the shear and extensional waves with structural lateral
boundaries. As a consequence of this interaction propagation of various modes
of flexural elastic waves can be observed. For this reason an appropriate rep-
resentation of these modes in a broad range of frequencies requires a greater
number of terms of Maclaurin series, given by Eqs.(18), in order to capture
the complexity of the interaction phenomena [32–35].

3.2 Displacement fields

Based on the previous considerations a general form of the displacement field
of a beam element corresponding to the displacement vector u = [ux, ur, uθ]
and associated with its flexural behaviour can be represented as:

ux(x, r, θ) = Ũx(x, r) sin θ

ur(x, r, θ) = Ũr(x, r) sin θ

uθ(x, r, θ) = Ũθ(x, r) cos θ

(22)
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where now the expansions of the displacement functions Ũx(x, r), Ũr(x, r) and
Ũθ(x, r) take the following forms:

Ũx(x, r) =
n
∑

k=0
φ2k+1(x)r

2k+1

Ũr(x, r) =
n
∑

k=0
ψ2k(x)r

2k

Ũθ(x, r) =
n
∑

k=0
ϑ2k(x)r

2k

(23)

with an additional condition resulting from the symmetry with respect to the
bending plane xz, as can be seen in Fig. 5, stating that:

ψ0(x) = ϑ0(x) (24)

and when 3n+3 terms of the series expansion are kept. Each particular term
of the series expansions of the displacement functions φ2k+1(x), ψ2k(x) and
ϑ2k(x), with k = 0, 1, . . . , n, may be interpreted as an independent nodal
degree of freedom. For example in the case of n = 2 including only three of
such terms for each displacement component leads to the displacement field
of a beam element having as many as eight degrees of freedom per node. This
high number of the independent nodal degrees of freedom may be, however,
successfully reduced down from eight to five by the use of the zero-traction
boundary conditions (14). Throughout this paper all such beam theories that
take advantage of these conditions, fully or partially, are consequently referred
by the authors as higher order theories of beam flexural behaviour.

It should be noted that any practical application of the zero-traction boundary
conditions, expressed by Eq.(14), together with the displacement field given
by Eqs.(22) and Eqs.(23), results in a set of partial differential equations that
are, in general, very difficult to solve. This problem can be avoided by simple
substitution and rearrangement of terms [43] that leads to new forms of the
displacement fields for one-, two- and three-dimensional theories of beam flex-
ural behaviour – for clarity and simplicity of the presentation the arguments
x and r will be omitted hereinafter:

• Three-dimensional theories :

ux =
[

φ1aζ +
n
∑

k=1
φ2k+1

(

1− ζ2k
)

aζ
]

sin θ

ur =
[

ψ0 −
m
∑

k=1
ψ2k +

m
∑

k=1
ψ2k

(

1− ζ2k
)

]

sin θ

uθ =
[

ψ0 −
m
∑

k=1
ϑ2k +

m
∑

k=1
ϑ2k

(

1− ζ2k
)

]

cos θ

(25)
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• Two-dimensional theories :

ux =
[

φ1aζ +
n
∑

k=1
φ2k+1

(

1− ζ2k
)

aζ
]

sin θ

ur =
[

ψ0 +
m
∑

k=1
ψ2k

(

1− ζ2k
)

]

sin θ

uθ =
[

ψ0 +
m
∑

k=1
ψ2k

(

1− ζ2k
)

]

cos θ

(26)

• One-dimensional theories :

ux =
[

φ1aζ +
n
∑

k=1
φ2k+1

(

1− ζ2k
)

aζ
]

sin θ

ur = ψ0 sin θ

uθ = ψ0 cos θ

(27)

where the non-dimensional radius of the beam ζ is defined as ζ = r/a, and
where it was additionally assumed that the series representation of the lon-
gitudinal component ux may include n terms, while in the case of two other
directions ur and uθ the number of the terms may be m.

Equations of motion associated with various theories of flexural behaviour
of beam structural elements, based on the general forms of the displacement
fields expressed by Eqs.(25)-(27), can be easily achieved, formulated and inves-
tigated by making use of the Hamilton’s principle, as shown in details in [43]
in the case of rod theories. It can be easily found out that appropriate selection
of the terms φ2k+1, ψ2k and ϑ2k leads to specific beam theories such as: single-
mode Bernoulli-Rayleigh, two-mode Timoshenko or higher order two-mode
Reddy theories. The theories presented below and analysed by the authors
were classified as one-, two- and three-dimensional beam theories of flexural
behaviour based on the nature of their stress and strain fields. Certain results
of this classification are presented below together with dispersion curves for
the group-to-phase velocity ratio cg/cp in the case of selected beam theories,
which illustrate Figs. 6-8.

It should be strongly emphasised once again that the number of wave propaga-
tion modes used by a particular theory of beam flexural behaviour presented
below is always equivalent to the total number of degrees of freedom per node
of a finite element formulated based on this theory.
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One-dimensional beam theories (ǫxx 6= 0, ǫrr = ǫφφ = 0)

1. Classical single-mode theory (Bernoulli, Euler or Bernoulli-Euler):

n = 0, ψ0 6= 0

τxr = 0 → φ1 = −
dψ0

dx

(28)

noting that the contribution to the beam kinetic energy T related to the
longitudinal velocity u̇x is neglected leading to:

T =
πa2ρ

2

(

ψ̇0

)2

where �̇ denote the first time derivative.

2. Single-mode Bernoulli-Rayleigh theory :

n = 0, ψ0 6= 0

τxr = 0 → φ1 = −
dψ0

dx

(29)

where now the beam kinetic energy T is expressed as:

T =
πa4ρ

8

(

dψ̇0

dx

)2

+
πa2ρ

2

(

ψ̇0

)2

3. Two-mode Timoshenko theory :

n = 0, φ1 6= ψ0 6= 0 (30)

4. Higher order two-mode Reddy theory – see Fig. 6:

n = 1, φ1 6= ψ0 6= 0

τxr|ζ=1 = 0 → φ3 =
1

2

(

φ1 +
dψ0

dx

) (31)

5. Three-mode theory :

n = 1, φ1 6= φ3 6= ψ0 6= 0 (32)
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6. Higher order three-mode theory – see Fig. 7:

n = 2, φ1 6= φ3 6= ψ0 6= 0

τxr|ζ=1 = 0 → φ5 =
1

4

(

φ1 − 2φ3 +
dψ0

dx

) (33)
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Fig. 6. Dispersion curves for the group-to-phase velocity ratio cg/cp for the one-di-
mensional higher order two-mode Reddy theory of beams (cl = 6.3 km/s, ct = 3.2
km/s).
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Fig. 7. Dispersion curves for the group-to-phase velocity ratio cg/cp for the one-di-
mensional higher order three-mode theory of beams (cl = 6.3 km/s, ct = 3.2 km/s).
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Two-dimensional beam theories (ǫxx 6= ǫrr 6= 0, ǫφφ = 0)

1. Higher order two-mode theory :

n = m = 1, φ1 6= ψ0 6= 0

τxr|ζ=1 = 0 → φ3 =
1

2

(

φ1 +
dψ0

dx

)

σrr|ζ=1 = 0 → ψ2 =
λ

λ+ 2µ

a2

2

dφ1

dx

(34)

2. Three-mode theory – see Fig. 8:

n = 0, m = 1, φ1 6= ψ0 6= ψ2 6= 0 (35)

3. Higher order three-mode theory A:

n = 1, m = 2, φ1 6= ψ0 6= ψ2 6= 0

τxr|ζ=1 = 0 → φ3 =
1

2

(

φ1 +
dψ0

dx

)

σrr|ζ=1 = 0 → ψ4 =
1

2

(

λ

λ+ 2µ

a2

2

dφ1

dx
− ψ2

)

(36)

4. Higher order three-mode theory B :

n = 2, m = 1, φ1 6= φ3 6= ψ0 6= 0

τxr|ζ=1 = 0 → φ5 =
1

4

(

φ1 − 2φ3 +
dψ0

dx

)

σrr|ζ=1 = 0 → ψ2 =
λ

λ+ 2µ

a2

2

dφ1

dx

(37)

5. Four-mode theory :

n = m = 1, φ1 6= φ3 6= ψ0 6= ψ2 6= 0 (38)
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6. Higher order four-mode theory :

n = m = 2, φ1 6= φ3 6= ψ0 6= ψ2 6= 0

τxr|ζ=1 = 0 → φ5 =
1

4

(

φ1 − 2φ3 +
dψ0

dx

)

σrr|ζ=1 = 0 → ψ4 =
1

2

(

λ

λ+ 2µ

a2

2

dφ1

dx
− ψ2

)

(39)

7. Five-mode theory A:

n = 1, m = 2, φ1 6= φ3 6= ψ0 6= ψ2 6= ψ4 6= 0 (40)

8. Five-mode theory B :

n = 2, m = 1, φ1 6= φ3 6= φ5 6= ψ0 6= ψ2 6= 0 (41)

9. Six-mode theory – see Fig. 9:

n = m = 2, φ1 6= φ3 6= ψ5 6= ψ0 6= ψ2 6= φ4 6= 0 (42)
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Fig. 8. Dispersion curves for the group-to-phase velocity ratio cg/cp for the two-di-
mensional three-mode theory of beams (cl = 6.3 km/s, ct = 3.2 km/s).
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Fig. 9. Dispersion curves for the group-to-phase velocity ratio cg/cp for the two-di-
mensional six-mode theory of beams (cl = 6.3 km/s, ct = 3.2 km/s).

Three-dimensional beam theories (ǫxx 6= ǫrr 6= ǫφφ 6= 0)

1. Higher order two-mode theory :

n = m = 1, φ1 6= ψ0 6= 0

τrθ|ζ=1 = 0 → ϑ2 = −ψ2

τxr|ζ=1 = 0 → φ3 =
1

2

(

φ1 +
dψ0

dx
−
dψ2

dx

)

σrr|ζ=1 = 0 → ψ2 =
λ

3λ+ 4µ

(

ϑ2 + a2
dφ1

dx

)

(43)

2. Higher order three-mode theory :

n = 2, m = 1, φ1 6= φ3 6= ψ0 6= 0

τrθ|ζ=1 = 0 → ϑ2 = −ψ2

τxr|ζ=1 = 0 → φ5 =
1

4

(

φ1 − 2φ3 +
dψ0

dx
−
dψ2

dx

)

σrr|ζ=1 = 0 → ψ2 =
λ

3λ+ 4µ

(

ϑ2 + a2
dφ1

dx

)

(44)
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3. Higher order four-mode theory :

n = 1, m = 2, φ1 6= ψ0 6= ψ2 6= ϑ2 6= 0

τrθ|ζ=1 = 0 → ϑ4 = −
1

3
(ψ2 + ψ4 + ϑ2)

τxr|ζ=1 = 0 → φ3 =
1

2

(

φ1 +
dψ0

dx
−
dψ2

dx
−
dψ4

dx

)

σrr|ζ=1 = 0 → ψ4 = −
3λ+ 4µ

5λ+ 8µ
ψ2 +

λ

5λ+ 8µ

(

ϑ2 + ϑ4 + a2
dφ1

dx

)

(45)

4. Five-mode theory :

n = m = 1, φ1 6= φ3 6= ψ0 6= ψ2 6= ϑ2 6= 0 (46)

5. Higher order five-mode theory – see Fig. 10:

n = m = 2, φ1 6= φ3 6= ψ0 6= ψ2 6= ϑ2 6= 0

τrθ|ζ=1 = 0 → ϑ4 = −
1

3
(ψ2 + ψ4 + ϑ2)

τxr|ζ=1 = 0 → φ3 =
1

4

(

φ1 − 2φ2 +
dψ0

dx
−
dψ2

dx
−
dψ4

dx

)

σrr|ζ=1 = 0 → ψ4 = −
3λ+ 4µ

5λ+ 8µ
ψ2 +

λ

5λ+ 8µ

(

ϑ2 + ϑ4 + a2
dφ1

dx

)

(47)

6. Six-mode theory :

n = 2, m = 1, φ1 6= φ3 6= φ5 6= ψ0 6= ψ2 6= ϑ2 6= 0 (48)

7. Seven-mode theory :

n = 1, m = 2, φ1 6= φ3 6= ψ0 6= ψ2 6= ψ4 6= ϑ2 6= ϑ4 6= 0 (49)

8. Eight-mode theory – see Fig. 11:

n = m = 2, φ1 6= φ3 6= φ5 6= ψ0 6= ψ2 6= ψ4 6= ϑ2 6= ϑ4 6= 0 (50)
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Fig. 10. Dispersion curves for the group-to-phase velocity ratio cg/cp for the three-
-dimensional higher order five-mode theory of beams (cl = 6.3 km/s, ct = 3.2 km/s).
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Fig. 11. Dispersion curves for the group-to-phase velocity ratio cg/cp for the three-
-dimensional eight-mode theory of beams (cl = 6.3 km/s, ct = 3.2 km/s).

3.3 Comparison of beam theories

Particular one-, two- or three-dimensional theories of beam flexural behaviour
employed to study and investigate various dynamic problems, or problems re-
lated to propagation of elastic flexural (bending) waves, can be characterised
by many factors, in which their accuracy and their costs of numerical imple-
mentation seem to be the most crucial ones. The accuracy of various beam
theories may assessed in many different ways. The authors of this work propose
to use for that purpose a method based on dispersion curves associated with
the theories investigated within a certain frequency range of interest. This fre-
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quency range may be different and in special cases may cover propagation of
one, two or even more modes of flexural waves. This is very well illustrated by
Figs. 6-11 showing dispersion curves obtained for the group-to-phase velocity
ratio cg/cp for selected one-, two- and three-dimensional theories of beam flex-
ural behaviour, presented and discussed in the previous section of this paper.
For majority of practical applications, however, the range of the frequency
parameter f · d usually covers propagation of the first flexural mode up to
the first cut-off frequency fa or alternatively may include propagation of the
second flexural mode up to the second cut-off frequency fb. In the case of
the beam made out of aluminium and already considered the corresponding
values of the frequency parameter f · d are equal to fa · d = 1.88 MHz· mm or
fb · d = 2.91 MHz· mm, respectively.
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Fig. 12. Relative errors for various one-dimensional theories of beam flexural be-
haviour measured against the analytical solution for the fundamental propagation
mode (cl = 6.3 km/s, ct = 3.2 km/s).

In order to investigate the theories of beam flexural behaviour presented and
discussed in this paper the range of the frequency parameter f ·d was limited to
3.0 MHz· mm, while the assessment was restricted to the fundamental flexural
mode. In the case of particular one-, two- and three-dimensional beam theories
a relative error δ was evaluated based on the dispersion curve for the group-to-
phase velocity ratio cg/cp for the fundamental flexural mode calculated based
on the assessed theory and the corresponding dispersion curve calculated based
on the analytical solution given by Eq. (15):

δ =
rβ − rα
rα

× 100%, ri =
cg
cp

∣

∣

∣

∣

∣

i

, i = α, β (51)

where now ri is the group-to-phase velocity ratio cg/cp, with i = α, β, and
where rα denotes the ratio calculated based on the analytical solution and rβ
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is the same ratio calculated based on particular beam theories.

The results obtained were grouped and presented in Figs. 12-14 for one-, two-
or three-dimensional theories of beam flexural behaviour, where points a and
b in the figures correspond to the first cut-off frequency fa · d and the second
cut-off frequency fb · d, respectively.

It can seen from Fig. 12 that in the case of the one-dimensional theories of
beam flexural behaviour, within the given range of the frequency parameter
f ·d, the higher order two-mode Reddy theory is characterised by the smallest
magnitude of the relative error δ reaching -3.2% at 0.92 MHz· mm. On the
other hand the classical single-mode theory is characterised by the highest
magnitude of the error δ increasing gradually to 75.8% at 3.0 MHz· mm.

It is very interesting to note that the remaining higher order and/or higher-
mode theories offer no increased accuracy in comparison to the higher order
two-mode Reddy theory. This unexpected behaviour may be attributed to
the fact that the higher order terms of the series expansion, included in the
displacement field given by Eqs. 27 and restricted only to the longitudinal
displacement component ux, are insufficient to support any increase in the
accuracy, since predominant effects have the errors resulting from neglecting
the real three-dimensional nature of the strain field.
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Fig. 13. Relative errors for various two-dimensional theories of beam flexural be-
haviour measured against the analytical solution for the fundamental propagation
mode (cl = 6.3 km/s, ct = 3.2 km/s).

A very similar kind of behaviour can be observed from Fig. 13 in the case of
two-dimensional theories of beam flexural behaviour. In general these theories
are characterised by much smaller magnitudes of the relative error δ than the
one-dimensional theories. Out of the theories investigated the three-mode the-
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ory is characterised by the smallest magnitude of the relative error δ reaching
0.5% at 0.14 MHz· mm. On the other hand the higher order two-mode theory
is characterised by the highest magnitude of the error δ exceeding 4.3% at 3.0
MHz·mm. As before this unusual behaviour has the same origins as in the case
of the one-dimensional theories, however, it is very interesting to note that for
the two-dimensional theories assessed now the higher order terms of the series
expansion, included in the displacement field given by Eqs. 26 for the radial
displacement component ur, have greater effects than the corresponding terms
associated with the longitudinal displacement component ux. This is clearly
seen for the higher order three-mode theories A and B as well as the five-mode
theories A and B.
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Fig. 14. Relative errors for various three-dimensional theories of beam flexural be-
haviour measured against the analytical solution for the fundamental propagation
mode (cl = 6.3 km/s, ct = 3.2 km/s).

In the case of the three-dimensional theories of beam flexural behaviour shown
in Fig. 14 the observed trend is different. It can be noticed that the higher
order and/or higher-mode theories presented are always characterised by im-
proved accuracy in comparison to all lower-mode theories analysed. This is
a direct consequence of the fact that the three-dimensional theories make no
oversimplifying assumptions related to the three-dimensional nature of the
strain field. For this reason additional higher order terms of the series expan-
sion, included in the displacement field given by Eqs. 25, always contribute
to an increase in the accuracy, which is clearly observed in Fig. 14. Out of
the theories investigated here the eight-mode theory is characterised by the
smallest magnitude of the relative error δ reaching 0.06% at 3.0 MHz· mm,
while at the same time the highest magnitude of the relative error δ reaching
4.4% at 3.0 MHz· mm is associated with the higher-order two-mode theory.

In order to estimate the numerical costs of the one-, two- or three-dimensional
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Table 1
Comparison of various theories of beam flexural behaviour discussed in the text.

One-dimensional beam theories (ǫxx 6= 0, ǫrr = ǫφφ = 0)

beam theory Ia1 [%] Ia2 [%] Ib1[%] Ib2[%] Ia3 [%] Ib3[%]

classical single-mode 36.1 17.1 47.4 20.8 11.6 14.5

single-mode Bernoulli-Rayleigh 18.9 7.17 21.3 6.58 5.20 5.03

two-mode Timoshenko 3.85 1.30 3.97 1.07 3.88 3.38

two-mode Reddy 2.40 0.76 1.95 0.97 2.31 2.60

three-mode 2.59 0.76 2.04 1.04 5.28 6.20

higher order three-mode 2.68 0.78 2.27 0.90 5.45 5.82

Two-dimensional beam theories (ǫxx 6= ǫrr 6= 0, ǫφφ = 0)

beam theory Ia1 [%] Ia2 [%] Ib1[%] Ib2[%] Ia3 [%] Ib3[%]

higher order two-mode 0.66 0.35 1.47 1.22 0.91 2.66

three-mode 0.26 0.18 0.29 0.16 0.94 0.91

higher order three-mode A 1.85 0.62 1.55 0.73 4.18 4.48

higher order three-mode B 0.77 0.30 0.67 0.34 1.92 2.02

four-mode 1.53 0.47 1.19 0.64 5.78 6.67

higher order four-mode 1.90 0.65 1.79 0.59 7.77 7.12

five-mode A 1.89 0.64 1.75 0.60 12.0 11.1

five-mode B 1.62 0.51 1.41 0.54 9.67 9.77

six-mode 1.92 0.66 1.85 0.57 17.7 15.8

Three-dimensional beam theories (ǫxx 6= ǫrr 6= ǫφφ 6= 0)

beam theory Ia1 [%] Ia2 [%] Ib1[%] Ib2[%] Ia3 [%] Ib3[%]

higher order two-mode 1.29 0.97 2.18 1.45 2.22 3.49

higher order three-mode 0.94 0.64 1.45 0.88 3.41 4.93

higher order four-mode 0.03 0.04 0.17 0.21 0.30 1.49

five-mode 0.37 0.29 0.73 0.57 4.08 7.96

higher order five-mode 0.00 0.00 0.02 0.03 0.04 0.30

six-mode 0.30 0.22 0.54 0.38 4.57 8.01

seven-mode 0.01 0.01 0.06 0.07 0.34 1.49

eight-mode 0.00 0.00 0.01 0.01 0.06 0.36
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theories of beam flexural behaviour investigated in this work it is necessary to
identify a certain averaged indicator that could be capable to characterise the
theories and that should take into account not only their accuracy but also
the multimode nature of the theories. The authors propose to built it as based
on three other indicators averaging the relative error δ as well as averaging
its variation within the chosen range of the frequency parameter f · d, in the
current case limited to 3.0 MHz· mm. They are defined as follows:

I i1 =
1

xi

xi
∫

0

|δ(x)| dx

I i2 =

√

√

√

√

√

1

xi

xi
∫

0

{|δ(x)| − I i1}
2
dx

I i3 =
I i1I

i
2

I i1 + I i2
n2

(52)

where n is the total number of modes used by the theories, while xi = fi·d, with
i = a, b, denotes the values of the frequency parameter corresponding to the
first cut-off frequency fa · d or the second cut-off frequency fb · d, respectively.
It can be noticed that the indicator I i3 as proportional to the square of the
mode number n indicates not only the averaged accuracy of the beam theories
assessed, but it also reflects the cost of computer memory usage required to
store the characteristic matrices of beam elements based on these theories.

The results presented in Table 1 clearly indicate that out of all one-, two- and
three-dimensional theories of beam flexural behaviour investigated the three-
dimensional higher order five-mode theory is characterised by the smallest,
near to zero, values of the indicator Ia3 and Ib3 equal to 0.04% and 0.3%, in
both the ranges of the frequency parameter f · d. Similar results were ob-
tained for the three-dimensional eight-mode theory and also in the case of the
two-dimensional three-mode theory. However in those two cases the values of
the indicators Ia3 and Ib3 are greater and equal to 0.06% and 0.36% as well
as to 0.94% and 0.91%, respectively. It is very interesting to note that the
one-dimensional theories, despite their relative simplicity of practical imple-
mentation, offer degrees of accuracy much lower than more demanding in that
respect two- or even three-dimensional theories. In the best case of the higher
order two-mode Reddy theory the values of the indicators Ia3 and Ib3 are as
high as 2.31% and 2.6%. As a consequence of that the errors resulting from
the application of simplified theories may mask very important and relevant
information that otherwise could be revealed if only two- or three-dimensional
theories of beam flexural behaviour were used instead.
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4 Conclusions

In this work different theories of beam flexural behaviour have been discussed
and compared that are commonly used to investigate beam behaviour asso-
ciated with dynamics or propagation of flexural elastic waves. This includes
various one-, two- and three-dimensional theories comprising the classical one-
dimensional Bernoulli, Bernoulli-Rayleigh, Timoshenko and Reddy theories,
as well as various higher order and/or higher-mode theories of beam flexural
behaviour developed by the authors.

Based on the results presented in this work certain general conclusions can be
drawn:

1. One-dimensional theories of beam flexural behaviour, due to their relative
simplicity, offer the worst accuracy in a broad range of frequencies. This prob-
lem becomes very important for high frequency regimes, as is propagation of
flexural elastic waves. For this reason one-dimensional theories may be effec-
tively used in the case of static or low-frequency dynamic problems.

2. Two-dimensional theories of beam flexural behaviour offer an increased
level of accuracy in comparison to the one-dimensional theories at the cost
of their increased complexity, however, this is true only in the case of lower-
mode theories. Because of the same reasons two-dimensional theories may be
successfully applied in the case of static or low-to-medium frequency dynamic
problems.

3. It should be strongly emphasised that all higher order and/or higher-mode
one- and two-dimensional theories of beam flexural behaviour suffer from fall
in their accuracy with enrichment of their displacement field by higher or-
der terms of the series expansion of the fully three-dimensional displacement
field. This is a direct consequence of their inability to mimic the real three-
dimensional nature of the strain field associated with propagation of elastic
flexural waves.

4. Three-dimensional theories of beam flexural behaviour are characterised
by superior accuracy at their moderate complexity. They can be successfully
applied for all types of dynamic problems including propagation of elastic
flexural waves in wide ranges of frequencies. Moreover, higher order and/or
higher-mode theories always offer improved accuracy in comparison to lower-
mode theories.

5. Special attention should be paid for all these problems that concern very
high-frequency dynamics and are related with simultaneous propagation of
multiple modes of flexural waves. In all such case the accuracy of the beam the-
ory applied should be always individually assessed, however, it is recommended
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by the authors that higher order and/or higher-mode three-dimensional theo-
ries are used for that purpose.

6. It should be noted that the development and subsequent application of
higher order higher-mode theories of beam flexural behaviour is relatively sim-
ple in the case of isotropic materials. Despite its complexity in a more general
circumstances of anisotropic materials the same methodology can be adopted.
Unfortunately all resulting relations are much more complicated mathemati-
cally therefore it is recommended by the authors to use higher-mode theories
of in all such cases.
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vants Étrangers, 14, 233-560, 1855.
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[34] M. Krawczuk, M. Palacz, A. Żak, W. Ostachowicz: Transmission and

reflection coefficients for damage identification in 1D elements. Key En-
gineering Materials, 413-414, 95-100, 2009.

[35] M. Rucka: Experimental and numerical study on damage detection in an

L-joint using guided wave propagation. Journal of Sound and Vibration,
329, 1760-1779, 2010.

[36] J. Tian, Z. Li, X. Su: Crack detection in beams by wavelet analysis of

transient flexural waves. Journal of Sound and Viration, 261, 715-727,
2003.

[37] M. Mitra, S. Gopalakrishnan: Spectrally formulated wavelet finite ele-

ment for wave propagation and impact force identification in connected

1-D waveguides. International Journal of Solids and Structures, 42,
4695-4721, 2005.

[38] M. Mitra, S. Gopalakrishnan: Wavelet based spectral finite element for

analysis of coupled wave propagation in higher order composite beams.

Composite and Structures, 73, 263-277, 2006.
[39] J. D. Achenbach: Wave propagation in elastic solids. North-Holland

Publishing Company, Amsterdam, 1973.
[40] J. L. Rose: Ultrasonic waves in solid media. Cambridge University Press,

Cambridge, 1999.
[41] <URL: http://http://www.mathworks.com>

[42] A. Ralston: A first course in numerical analysis. McGraw-Hill Book
Company, New York, 1965.

31

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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