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For more details and additional references we refer to arti-
cles by Tucciarone [1] and Ferraro [2]. The idea of the 
asymptotic series comes from Poincaré, who introduced 
the definition of an asymptotic expansion. Nowadays, the 
importance of methods which are based on asymptotic 
expansions of solutions in small or large parameters series 
has grown considerably in many branches of physical, 
chemical, biological and engineering sciences. We men-
tion several examples among a wide range of applications, 
and the list is not exhaustive. The fundamental problem 
of reconstruction of physical observables, based on diver-
gent power series expansions, has been considered in many 
areas of quantum physics. Dyson already showed in his 
pioneering work [3] that expansions in quantum electro-
dynamics diverge factorially. After that, it was found that 
divergent perturbation expansions of quantum physics are 
very common [4, 5]. This observation led to a substantial 
amount of research works in various areas of quantum 
physics, for example in quantum field theory [6–8] or in 
quantum mechanics [9, 10]. The asymptotic analysis of 
singularly perturbed problems is performed in the mono-
graph [11], based on expansions of analytical solutions in 
the power series with respect to a small parameter. In the 
light of this approach there are discussed models of popula-
tions, epidemiological problems, classical models of fluid 
dynamics and many others. The paper [12] deals with the 
method of asymptotic expansions of solutions to a singu-
larly perturbed system of integro-differential equations in 
epidemiology with two small parameters. Asymptotic solu-
tions are constructed by the Tikhonov-Vasil’eva method of 
boundary functions.

This work concerns a system of diffusion equations. 
When the number of components exceeds two, the term 
‘interdiffusion’ or ‘cross-diffusion’ is often used, see [13] 
in material sciences and [14] in life sciences. The drift in 

Abstract Ternary diffusion models lead to strongly cou-
pled systems of PDEs. We choose the smallest diffusion 
coefficient as a small parameter in a power series expan-
sion whose components fulfill relatively simple equations. 
Although this series is divergent, one can use its finite sums 
to derive feasible numerical approximations, e.g. finite dif-
ference methods (FDMs).
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1 Introduction

The subject of divergent series dates back to the distant 
past and is linked with the names of outstanding mathema-
ticians such as Euler, Poincaré, Borel, Padé, and Birkhoff. 
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each of the PDEs depends on the gradient of all other vari-
ables, so these models exhibit the phenomenon of cross-
diffusion. This makes the PDE system strongly coupled. In 
addition, the coefficients depend on the unknown functions 
and the parabolicity of this system is conditional, namely 
it can be proved only if solutions remain in an admissible 
set. The invariance of this set is connected to mass conser-
vation laws. Any violation of this property leads to serious 
analytical and computational problems. We overcome these 
problems by constructing conservative numerical schemes, 
i.e. preserving a discrete version of mass. In spite of math-
ematical and numerical difficulties, three dimensional 
interdiffusion problems are still of interest. Interdiffusion 
becomes an important topic in electrochemistry and bio-
chemistry, e.g. molecular channels (nano-channels) [15].

1.1  Preliminaries

Let Ω be a bounded domain in ℝn with a smooth boundary 
�Ω. The closure of Ω is denoted by Ω̄. In this manuscript, 
we investigate the system of diffusion equations

on [0, T] × Ω, where D1,D2,D3 > 0 and �D is the drift 
velocity given by

The system (1) is considered with the initial conditions

and the Neumann boundary conditions

where � denotes the outward normal vector to the boundary 
�Ω.

Our analysis of the strongly coupled system (1) starts 
from the simplest case w ≡ 0. Consider two chemical sub-
stances and their normalized densities u, v ≥ 0, u + v ≡ 1 
described by the system of differential equations

It is clear that the assumptions on initial functions u0, v0 ≥ 0 
and u0 + v0 ≡ 1 imply u, v ≥ 0, u + v ≡ 1. Indeed, consider 
new dependent variables p, q defined as linear combina-
tions of the functions u, v:

(1)

⎧

⎪

⎨

⎪

⎩

�u

�t
= ∇ ⋅

�

D1∇u − u �D
�

�v

�t
= ∇ ⋅

�

D2∇v − v �D
�

�w

�t
= ∇ ⋅

�

D3∇w − w �D
�

�D = ∇(D1u + D2v + D3w).

(2)
u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x) for x ∈ Ω̄,

(3)
�u

��
=

�v

��
=

�w

��
= 0 on �Ω.

(4)

{

�u

�t
= ∇ ⋅

(

D1∇u − u ∇(D1u + D2v)
)

�v

�t
= ∇ ⋅

(

D2∇v − v ∇(D1u + D2v)
)

(5)p = u + v, q = D1u + D2v.

Then we obtain the following system

Since u0 + v0 ≡ 1 it is seen that p ≡ 1 solves the first equa-
tion of system (6). Based on the relation v ≡ 1 − u we 
obtain from (4) partial differential equation

Therefore, the implication 0 ≤ u0 ≤ 1 ⇒ 0 ≤ u ≤ 1 fol-
lows easily from the maximum principle.

There are various numerical techniques for approxima-
tions of solutions of the ternary diffusion models (1)–(3). 
In particular, we refer to the papers [16, 17]. The authors of 
[16] analyze the method of lines for diffusion equations. The 
paper [17] deals with iterative methods for this problem. The 
authors of both papers study stability and convergence of 
the constructed method in L2 and in the Sobolev space W1,∞

. In this paper, as a tool for approximation of solutions to the 
initial boundary value problems for systems of equations 
obtained by an asymptotic expansion, we use a finite-differ-
ence methodology. In the construction of difference schemes 
we apply general ideas presented in [18, 19].

2  Small Parameter Method

Suppose that initial functions u0, v0,w0 ∈ C2(Ω̄,ℝ) in (2) 
satisfy the relation u0 + v0 + w0 = 1 for x ∈ Ω̄. In the sequel 
we assume that the diffusion coefficients D1,D2,D3 in the 
system (1) satisfy the relation D1 > D2 > D3 > 0. If u, v, w 
satisfy (1)–(3), then u + v + w ≡ 1 and the system (1) reduces 
to the system of two equations

It is more convenient to use the same change of variables 
u, v to p, q as in (5): p = u + v, q = D1u + D2v. For these 
functions we obtain the system of differential equations

where �: = D3. Observe that if � = 0 then (7) is equivalent 
to (6). We expand the functions p and q in the series with 
respect to the small parameter �:

(6)

{

�p

�t
= ∇ ⋅

(

∇q − p ∇q
)

�q

�t
= ∇ ⋅

(

− D1D2∇p + (D1 + D2)∇q − q ∇q
)

�u

�t
= ∇ ⋅

[

(D1(1 − u) + D2u))∇u
]

.

{

�u

�t
= ∇ ⋅

(

D1∇u − u
[

(D1 − D3)∇u + (D2 − D3)∇v
])

�v

�t
= ∇ ⋅

(

D2∇v − v
[

(D1 − D3)∇u + (D2 − D3)∇v
])

(7)

{

�p

�t
= ∇ ⋅

[

∇q − p∇(q − �p)
]

�q

�t
= ∇ ⋅

[

−D1D2∇p + (D1 + D2)∇q − q∇(q − �p)
]

(8)

p =p[0] + �p[1] + �2p[2] +⋯ =

∞
∑

l=0

�lp[l],

q =q[0] + �q[1] + �2q[2] +⋯ =

∞
∑

l=0

�lq[l].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


425Interdiscip Sci Comput Life Sci (2017) 9:423–433 

1 3

Once we substitute these expansions to the system (7) and 
compare the coefficients we get the recurrence relation

for k ≥ 0. We represent the initial conditions for the 
unknown functions p[k] and q[k] as follows:

where p0 = u0 + v0, q0 = D1u0 + D2v0. It is easy to see that 
p[0](0, x) =

1−w0(x)

1−w0(x)
≡ 1. If we compare the right-hand sides 

of (10) and (8), we obtain the initial conditions for the 
unknown coefficients p[k], q[k] for k ≥ 1:

for x ∈ Ω̄.
Using a small parameter expansion of functions p and q 

we replace the original system of equations (7) by a separate 
systems of equations (9) for each pair of functions (p[k], q[k]), 
k ≥ 0. The complexity of these systems is rising with increas-
ing values of k. Therefore, the expansions (8) are practically 
limited to several terms. According to this we are mainly 
interested in the asymptotic nature of this truncated expan-
sion for � → 0, 𝜀 ≪ 1, then the possible divergence of the 
whole series is in general not important.

The study of asymptotic expansions was first made 
by Poincaré. According to Poincaré’s definition, a series 
∑∞

n=0
p[n](t, x;�)�n is said to be asymptotic to a function 

p(t, x;�), i.e.

iff for every N ≥ 0 and � → 0, 𝜀 ≪ 1, we have

This definition is equivalent to the following conditions

(9)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�p[k]

�t
+ ∇ ⋅

�

p[k]∇q[0]
�

= −
∑k−1

l=1
∇ ⋅

�

p[l]∇q[k−l]
�

+
∑k−1

l=0
∇ ⋅

�

p[l]∇p[k−l−1]
�

�q[k]

�t
−
�

D1 + D2 − q[0]
�

∇2q[k] + 2∇q[0] ⋅ ∇q[k] = −D1D2∇
2p[k]

−
∑k−1

l=1
∇ ⋅

�

q[l]∇q[k−l]
�

+
∑k−1

l=0
∇ ⋅

�

q[l]∇p[k−l−1]
�

(10)

p[0](0, x) =
u0(x) + v0(x)

1 − w0(x)
= p0(x)

∞
∑

l=0

wl
0
(x),

q[0](0, x) =
D1u0(x) + D2v0(x)

1 − w0(x)
= q0(x)

∞
∑

l=0

wl
0
(x),

p[k](0, x) = −p0(x)
wk
0
(x)

�k
, q[k](0, x) = −q0(x)

wk
0
(x)

�k

p(t, x;�) ∼

∞
∑

n=0

p[n](t, x;�)�n,

p(t, x;�) −

N
∑

n=0

p[n](t, x;�)�n = o(�N).

lim
�→0

p(t, x;�)
∑∞

k=0
p[k](t, x;�)�k

= 1 or

lim
�→0

p(t, x;�) −
∑N

k=0
p[k](t, x;�)�k

�N
= 0.

Taking the first limit under consideration, we have

Since D3 = � → 0, the functions p(t,  x;  0), p[0](t, x;0) 
become solutions of the same initial boundary value prob-
lem which leads to the conclusion that the limit is equal to 
1 for every N. The same result we obtain for the expansion 
of q(t, x;�). Therefore, the expansions (8) are asymptotic if 
only 𝜀 ≪ 1. Even if the series do not converge, the asymp-
totic expansions give a good approximation of solutions if 
we take under consideration only few terms of these expan-
sions with a very small value of � [11, 20]. This conclusion 
is confirmed by our numerical analysis in one dimensional 
case presented in Example 1. It turns out that our method 
is very effective for multidimensional couples, even in the 
case of complicated geometries.

3  Numerical Analysis

This section is devoted to a numerical analysis of solutions to 
the problem (9), (10), obtained by the small parameter expan-
sion method. We construct a conservative difference scheme 
and present the numerical behavior of ternary solid solutions 
based on this method.

3.1  Finite Difference Method

We discretize the system of partial differential equations 
(9). Consider a uniform partition of [0, T] × Ω̄, where 
Ω̄ = [ − L,L] = [ − L1,L1] ×⋯ × [ − Ln,Ln]. Let K ∈ ℝ,

N1,… ,Nn are positive integers and N = (N1,… ,Nn). 
Let (h0, h), h = (h1,… , hn), stand for steps of a regular 
mesh on [0, T] × Ω̄, such that h0 = T∕K and h = L∕N. For 
m = (m1,… ,mn) ∈ ℤ

n we put x(m) = (m1h1,… ,mnhn) and

We convey that (p
[k]

h
, q

[k]

h
): =

(

(p[k])
(i,m)

h
, (q[k])

(i,m)

h

)

 will 
represent an approximation to the exact value of the func-
tions (p[k], q[k]) at the point (ti, xm) for i ∈ {0, 1,… ,K} and 
m ∈ {−N,−N + 1,… , N}.

Let ej = (0,… , 1,… 0) ∈ ℝ
n, 1 ≤ j ≤ n, where 1 is the 

jth coordinate. We employ standard and linear difference 
operators �t, �± = (�±

1
,… , �±

n
), �(2) = [�rj]rj=1,…,n:

lim
�→0

p(t, x;�)
∑∞

k=0
p[k](t, x;�)�k

=
p(t, x;0)

p[0](t, x;0)
.

ℝ
n
h
= { x(m): m ∈ ℤ

n }, Ω̄h = Ω̄ ∩ℝ
n
h
.

�tz =
z(i+1,m) − z(i,m)

h0
,

�+
j
z =

z(i,m+ej) − z(i,m)

hj
, �−

j
z =

z(i,m) − z(i,m−ej)

hj
,

�
(2)

jj
z =

z(i,m+ej) − 2z(i,m) + z(i,m−ej)

h2
j

= �+
j
�−
j
z, 1 ≤ j ≤ n.
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Denote by ∇h the discrete equivalent of the gradient opera-
tor ∇. Let ∇2

h
=
∑n

j=1
�
(2)

jj
 then we define

With these conventions, the finite-difference scheme will 
be given by the following discrete system

with the discrete initial conditions

The discrete Neumann boundary conditions have the form

for i ∈ {0,… ,K}.

3.2  Numerical Simulations

In this section we explore the capability of the constructed 
method (11)–(13) to provide good approximations to the 
exact solution of the PDE problem (1)–(3). We present 
some examples of tracer and up-hill diffusion in ℝ1 and 
tracer diffusion in ℝ2. Examples in one-dimensional case 
are similar to those presented in [16]. Therefore, one can 
compare the results of the method of lines obtained in [16] 
with the results obtained by our numerical scheme. We also 
provide more complicated two-dimensional cases which 
are absent from the literature.

Example 1 (Tracer at interface) Let n = 1. In the numeri-
cal analysis we take L = 1 and the diffusion parameters 
D1 = 0.18,D2 = 0.08,D3 = �. The initial distribution u0 is 
a small perturbation of the Heaviside function and v0 is a 
symmetry of u0 about the ordinate axis. The solution w is 
initiated by a smoothed small peak

∇±
h
⋅

(

y∇∓
h
z
)

=

n
∑

j=1

1

2

(

�+
j
y�−

j
z + �−

j
y�+

j
z
)

+ y∇2
h
z,

∇±
h
⋅

(

y∇±
h
z
)

=

n
∑

j=1

1

2

(

�+
j
y�+

j
z + �−

j
y�−

j
z
)

+ y∇2
h
z.

(11)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�tp
[k]

h
= −∇±

h
⋅

�

p
[k]

h
∇∓

h
q
[0]

h

�

−
∑k−1

l=1
∇±

h
⋅

�

p
[l]

h
∇∓

h
q
[k−l]

h

�

+
∑k−1

l=0
∇±

h
⋅

�

p
[l]

h
∇±

h
p
[k−l−1]

h

�

�tq
[k]

h
= −D1D2∇

2
h
p
[k]

h
+ (D1 + D2)∇

2
h
q
[k]

h
−
∑k

l=0
∇±

h

⋅

�

q
[l]

h
∇∓

h
q
[k−l]

h

�

+
∑k−1

l=0
∇±

h
⋅

�

q
[l]

h
∇±

h
p
[k−l−1]

h

�

(12)(p
[k]

h
)(0,m) = p[k](0, x(m)), (q

[k]

h
)(0,m) = q[k](0, x(m)).

(13)

(p
[k]

h
)(i,N+1) = (p

[k]

h
)(i,N−1), (q

[k]

h
)(i,N+1) = (q

[k]

h
)(i,N−1),

(p
[k]

h
)(i,−N−1) = (p

[k]

h
)(i,−N+1), (q

[k]

h
)(i,−N−1) = (q

[k]

h
)(i,−N+1),

(14)
u0(x) =Ψ(100x) − Φ(100x) + �(0.01,1](x)

v0(x) =u0( − x), w0(x) = 2Φ(100x),

where �A denotes the characteristic function of a set A, and

for x ∈ [ − 1, 1]. We analyze the results for the PDE system 
(1) with the initial distributions given by (14) with respect 
to the small parameter �. Illustrative simulations are pro-
vided with: h0 = 2 ⋅ 10−5 and h = 2 ⋅ 10−2. Based on for-
mula (5) we can derive

We consider expansions (8) for k = 0, 1, 2:

•	 k = 0, one term in each expansions: p = p[0], q = q[0].  
Numerical results for the respective u[0], v[0], w[0] cal-
culated by (15) are presented in Fig.  1. Note that 
we obtain an expected behavior of densities u, v, w 
regardless of the � value selection.

•	 k = 1, two terms in each expansions: p = p[0] + �p[1],

q = q[0] + �q[1]. In Fig.  2 we observe the distribu-
tions of u[1], v[1],w[1] computed by (15) with different 
values of �. Figure 3 presents the behavior of partial 
sums u[0] + �u[1], v[0] + �v[1],w[0] + �w[1] with differ-
ent values of �. Although oscillations of u[1], v[1],w[1] 
increase with decreasing values of �, we obtain rea-
sonable approximations of u, v, w by means of partial 
sums u[0] + �u[1],v[0] + �v[1],w[0] + �w[1], respectively. 
Notice that these partial sums take values in the inter-
val [0, 1] for all �.

•	 k = 2, three terms in each expansions: 
p = p[0] + �p[1] + �2p[2], q = q[0] + �q[1] + �2q[2].  
Figure  4 presents the behavior of u[2], v[2], w[2] com-
puted by (15). Numerical results of partial sums 
u
[0]

+ �u[1] + �2u[2], v[0] + �v[1] + �2v[2],w[0]
+ �w[1]

+

�2w[2] are presented in Fig.  5. Similarly as in the case 
k = 1, it can be observed that the oscillations of u[2], v[2],  
w[2] increase. Unlike the case k = 1, the partial sums for 
u, v, w take values in [0,  1] for sufficiently small �. If 
� = 0.01, the partial sums for u, v are not monotone. In 
Fig. 6 one can observe additional results for partial sums 
u
[0]

+ �u[1] + �2u[2], v[0] + �v[1] + �2v[2],w[0]
+ �w[1]

+

�2w[2] at times t = 0.1 and t = 0.2 with fixed � = 0.001.  
We present these results to illustrate the dynamics of 
approximate distributions.

Ψ(x) =
−x3 + 3x + 2

4
�[−1,1](x),

Φ(x) =
(x2 − 1)2

40
�[−1,1](x)

(15)
u[i] =

D2p
[i] − q[i]

D2 − D1

, v[i] =
q[i] − D1p

[i]

D2 − D1

,

w[i] = 1 − u[i] − v[i], i = 0,… , k.
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We conclude that the number of terms in the expansions 
(8) is closely related to the size of the parameter �. Once 
we use more terms in the expansions, we need to decrease 
the value of � to get reasonable approximation of u, v, w by 
means of respective partial sums, i.e. taking values in the 
interval [0, 1] and preserving monotonicity of partial sums 
for u, v.

Example 2 (Up-hill diffusion) We consider the one-
dimensional case and we set L = 1 similarly as in Example 
1. We take D1 = 0.2,D2 = 0.08,D3 = 0.001 = �. We put 
some monotone functions as initial distributions of sub-
stances u, v and we assume a constant initial distribution w:

u0(x) = Ψ(100x) + 0.49�[−0.01,0.01](x) + 0.98�(0.01,1](x),

v0(x) = u0( − x), w0(x) = 0.02,

where

Results of numerical simulations for partial sums 
u
[0]

+ �u[1] + �2u[2], v[0] + �v[1] + �2v[2],w[0]
+ �w[1]

+ �2w[2] 
computed with h0 = 2 ⋅ 10−5, h = 2 ⋅ 10−2 are given in 
Fig. 7(b) at time t = 0.1. Figure 7a presents initial functions 
u0, v0,w0.

No numerical analysis for tracer diffusion in two-
dimensional case have been done so far in the literature 
because of the computational complexity, not to mention 
any efficient comparison of numerical results with real-
life experiments. Due to our approach we constructed a 
numerical method which allows to perform computations 

Ψ(x) =
(

30

176
x5 −

50

88
x3 +

139

176
x
)

�[−1,1](x).

Fig. 1  (Tracer at interface) the case k = 0: functions u[0], v[0],w[0] for different values of � at time t = 0.8

Fig. 2  (Tracer at interface) the case k = 1: functions u[1], v[1],w[1] for different values of � at time t = 0.8
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Fig. 3  (Tracer at interface) the case k = 1: partial sums u[0] + �u[1], v[0] + �v[1],w[0] + �w[1] for different values of � at time t = 0.8

Fig. 4  (Tracer at interface) the case k = 2: functions u[2], v[2],w[2] for different values of � at time t = 0.8

Fig. 5  (Tracer at interface) the case k = 2: partial sums u[0] + �u[1] + �2u[2], v[0] + �v[1] + �2v[2], w[0] + �w[1] + �2w[2] for different values of � at 
time t = 0.8
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even for multi-dimensional cases. We present two exam-
ples of numerical simulations for tracer diffusion in ℝ2.

Example 3 (Tracer diffusion ) Consider the case n = 2. 
Set L = 1 and D1 = 0.2,D2 = 0.08,D3 = 0.001 = �. Initial 
functions (Fig. 8) are given by

where

u0(x, y) =�(100x) − �(100x, 100y) + �(0.01,1](x),

v0(x, y) =u0( − x, y), w0(x, y) = 2�(100x, 100y),

�(x, y) =
(x2 + y2 − 1)2

100
�(x∈[−1,1],y∈[−1,1])(x, y)�x2+y2≤1(x, y),

�(x) =
−x3 + 3x + 2

4
�[−1,1](x).

In Fig. 9a we observe approximate distributions of partial 
sums for u,  v,  w with k = 2 and the step sizes h0 = 2−15, 
h = 2−3 at time t = 0.2. Figure 9b presents enlargement of 
w.

In the above example initial distribution of u and v 
is symmetrical with respect to the plane x = 0. Now we 
present two-dimensional example where the symmetry of 
initial distribution is broken.

Example 4 (Tracer diffusion) Consider the case n = 2. Set 
L = 1 and D1 = 0.15,D2 = 0.08,D3 = 0.001 = �. Initial 
functions (Fig. 10) are given by

u0(x, y) = �(100(x − 0.2y2)) − �(100x, 100y) + �(0.01+0.2y2,1](x),

v0(x, y) = �( − 100(x − 0.2y2)) − �(100x, 100y) + �[−1,−0.01+0.2y2)(x),

w0(x, y) = 2�(100x, 100y),

Fig. 6  (Tracer at interface) the case k = 2: partial sums for u, v, w at time t = 0.1 and t = 0.2

(a) (b)

Fig. 7  (Up-hill diffusion) a initial functions u0, v0, w0, b partial sums u[0] + �u[1] + �2u[2], v[0] + �v[1] + �2v[2],w[0] + �w[1] + �2w[2] at time 
t = 0.1
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where � and � are the same as in Example 3. We perform 
simulations with parameters: the step sizes h0 = 2−15,

h = 2−3 and the length of series expansions k = 2. In 
Fig.  11(a) the approximate distributions of partial sums 
for u, v, w at time t = 0.2 are presented. Figure 11b shows 
enlargement of w.

We conduct a brief analysis of marker positions in time, 
see [21]. By ‘marker’ we understand a small amount of sub-
stance placed in the diffusion couple, this substance moves 
according to locally not-balanced diffusive fluxes. Recall that 
diffusive fluxes are proportional to gradients of u, v, w. In the 
above tracer diffusion examples the marker is represented 
by the substance w. Referring to Example 1 the trajectory 
of the marker position is described by the ODE initial value 
problem

(16)
{

z�(t) = �D(t, z(t)) = D1ux + D2vx + D3wx,

z(0) = 0,

where �D is the drift velocity. Since the diffusion coefficient 
D3 is small, it can be omitted,

then the solution of the Cauchy problem (16) can be 
approximated by the solution of the following ODE 
problem

To solve the problems (16) and (17) numerically, we first 
use a polynomial fitting for discrete functions u, v, w with 
respect to spatial variable. Then approximate solutions to 
the above ODE problems are computed by a second-order 
Runge–Kutta method. The results of computations with 
step sizes: h0 = 2 × 10−5, h = 2 × 10−2 are illustrated in 
Fig. 12. A mesh refinement leads to better accuracy, i.e. the 
solution to problem (17) gives a very good approximation 

�D(t, z(t)) ≈ qx(t, z(t)) = D1ux + D2vx,

(17)
{

z�(t) = qx(t, z(t)) = D1ux + D2vx,

z(0) = 0.

(a) (b)

Fig. 8  (Tracer diffusion) initial distributions: a u0, v0,w0, b enlargement of w0

(a) (b)

Fig. 9  (Tracer diffusion) partial sums with k = 2 at time t = 0.2: a for u, v, w, b enlargement of w
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of the solution to problem (16). An analogous discussion 
can be conducted for Examples 3 and 4.

4  Conclusions and Remarks

Before we close this paper with concluding remarks we 
would like to mention other applications of asymptotic 
expansion methods, in addition to those given in the intro-
duction, to point out the importance of these techniques in 
a different branches of knowledge. Some applications can 
be observed in the fluid and solid mechanics theory. In 
[22] the asymptotic expansion method was used as a tool 
to derive a new two-dimensional shallow water model from 
the time-averaged non-dimensional Navier–Stokes equa-
tions. Asymptotic simplification procedures for linear and 
nonlinear wave propagation problems that contain large 
parameters are examined in [20]. A divergent asymptotic 

series found applications also in the boundary layer theory 
[23] and in the nonlinear wave theory [24].

We use the asymptotic expansion techniques to the ter-
nary diffusion problem. Modeling of interdiffusion phe-
nomena is not yet unified, and various methods differ from 
each other in the arbitrary choice of the reference velocity, 
i.e. the drift or convection velocity. In computational solid 
mechanics and physics it is defined as being equal to the 
mass average velocity [13]. In gases and fluids the drift is 
defined based on the volume average velocity [25]. It is still 
common to neglect drift (convection) and assume Fick-
ian diffusion [26]. Such simplified approach to the mass 
transport was used there to a three-dimensional model of 
interdiffused quantum dots. The above methods do not 
allow considering all interdiffusion effects [26]. The use of 
widely accepted Onsager method [27, 28] is narrow by very 
limited data on transport coefficients. In material sciences 
and chemistry the drift definition bases on the Darken 

(a) (b)

Fig. 10  (Tracer diffusion) initial distributions: a u0, v0,w0, b enlargement of w0

(a) (b)

Fig. 11  (Tracer diffusion) partial sums with k = 2 at time t = 0.2: a for u, v, w, b enlargement of w
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method [29, 30]. The Darken’s basic postulate is that the 
reference velocity in multicomponent systems coincides 
with the drift velocity [30]. The drift in solids is often the 
vacancy flux generated during an interdiffusion process 
caused by the difference in the diffusion coefficients. The 
compatibility of Darken and Onsager formalisms has been 
already proved [31]. Onsager’s and Fickian laws are known 
in life sciences, see [14].

In this paper we consider a strongly coupled system of 
diffusion equations with Neumann boundary conditions. 
This system is strongly coupled, highly nonlinear and pos-
sesses a parabolic type only in a very restricted subregion 
of the phase space, which is related to the mass conserva-
tion. This causes analytical and numerical difficulties. To 
overcome these difficulties we use asymptotic expansions 
of solutions in divergent series with respect to a small 
parameter �: = D3. We obtain another system of equa-
tions which is more convenient to analyze. Our exam-
ples described in the previous section are based on this 
method and illustrate the behavior of ternary solid solutions 
(alloys), in particular: up-hill diffusion in ℝ1, tracer diffu-
sion in ℝ1 and tracer diffusion in a complex geometry in 
ℝ

2. We observe that solutions of the new system obtained 
by the expansion method with several terms, e.g. k = 1 or 
k = 2, reflect an expected behavior of solutions of the origi-
nal diffusion problem. There are many open questions in 
the theory and practice of small parameter expansions:

•	 Whether or not it is possible to extend the small param-
eter method onto the case of singularities [11]? In the 
case of ternary diffusion problems singularities may be 
caused by irregularity of initial distributions u, v, w, e.g. 
Heaviside or smoothed peak type functions.

•	 Is it possible to apply the small parameter method to a 
derivation of interfaces, e.g. via Matano’s method [32]?

•	 If indeed replacing Neumann boundary conditions by 
Stefan free boundary conditions is easy to conduct?

•	 Is it possible to generalize our method onto the case of 
media with variable diffusion coefficients and multi-
phase media?

•	 Is it possible to formulate and perform computations by 
means of a small parameter method within Onsager’s 
formalism? [33–35]
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