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ABSTRACT. Quadratic stochastic operators can exhibit a wide variety of asymptotic be-
haviours and these have been introduced and studied recently in the ℓ1 space. It turns out
that in principle most of the results can be carried over to the L1 space. However, due to
topological properties of this space one has to restrict in some situations to kernel quadratic
stochastic operators. In this article we study the uniform and strong asymptotic stability
of quadratic stochastic operators acting on the L1 space in terms of convergence of the
associated (linear) nonhomogeneous Markov chains.

1. INTRODUCTION

The study of chains of Markov operators has become a subject of interest due to their
applications in many different areas of science and technology. However, a description of
many phenomena requires the use of nonlinear methods. Population and disease dynamics,
physics, evolutionary biology and economic and social systems are some examples of fields
where stochastic nonlinear dynamics are encountered (see e.g. the book of [20] for a
detailed overview of results and models related with nonlinear Markov processes). This
work here is devoted to the study of quadratic stochastic operators which are bilinear by
nature (cf. Definition 2.2). They were first introduced by [8] to describe the evolution of a
distribution of classes of individuals (i.e. groups of individuals possessing a particular trait)
in a population. Since then the theory has grown in different directions with biology often
motivating the development [7, 12, 15, 16, 17, 13]. A detailed review of mathematical
results and open problems is presented by [18].

A fundamental issue is the study of limit properties of quadratic stochastic operators
(see e.g. [14, 17, 13] for very recent studies on non–ergodicity of quadratic stochastic
operators). However, because of the inherent nonlinearity it appears rather difficult. On
the other hand, there exists a relation between quadratic stochastic operators and (linear)
Markov operators [11]. This correspondence allows one to study a linear model instead of
a nonlinear one. The aim of this paper is to define different types of asymptotic behaviour
(mixing) of a quadratic stochastic operator considered on the L1 space and express them
in terms of convergence of a nonhomogeneous chain of (linear) Markov operators. Hence,
while studying the limit properties of a quadratic stochastic operator one can apply the
theory of nonhomogeneous Markov chains.

The asymptotic stability and the uniform asymptotic stability of quadratic stochastic
operators considered on the ℓ1 space of all absolutely summable real sequences was de-
scribed by [6]. In this work we move to the L1 space and generalize the results of [6]. Most
can be carried over, but is some cases we have to restrict ourselves to a very particular type
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2 K. Bartoszek and M. Pułka

of quadratic stochastic operators, which we call kernel (cf. Definition 3.2). The concepts
and proofs in this paper often follow those of [6], but for the convenience of the reader and
clarity of the work we present all the arguments.

2. BASIC DEFINITIONS AND PROPERTIES

Let (X ,A ,µ) be a separable σ -finite measure space. Throughout the paper we con-
sider the (separable) Banach lattice of real and A -measurable functions f such that | f |
is µ-integrable, equipped with the norm ∥ f∥1 :=

∫
X | f |dµ and we denote it by L1. By

D := D (X ,A ,µ) we denote the convex set of all densities on X , i.e.

D =
{

f ∈ L1 : f ≥ 0,∥ f∥1 = 1
}
.

We say that a linear operator P : L1 → L1 is Markov (or stochastic) if

P f ≥ 0 and ∥P f∥1 = ∥ f∥1

for all f ≥ 0, f ∈ L1. It follows that ∥|P|∥ := sup∥ f∥1=1 ∥P f∥1 = 1 and P(D) ⊂ D . The
sequence of such operators denoted by P = (P[n,n+1])n≥0 is called a (discrete time) nonho-
mogeneous chain of stochastic operators or shorter, a nonhomogeneous Markov chain. For
m,n ∈ N0 := N∪{0}, n−m ≥ 1, and any f ∈ L1 we set

P[m,n] f = P[n−1,n](P[n−2,n−1](· · ·(P[m,m+1] f ) · · ·))

and P[n,n] = I. If for all n ≥ 0 one has P[n,n+1] = P, then we say that P = (P)n≥0 is homo-
geneous. The set of all chains of Markov operators P = (P[n,n+1])n≥0 will be denoted by
S.

The geometric structure of the set S (endowed with suitable natural metric topology)
has been recently intensively studied by [24, 25]. Let us recall

Definition 2.1. A discrete time nonhomogeneous chain of stochastic operators P ∈ S is
called

(1) uniformly asymptotically stable if there exists a unique f∗ ∈ D such that for any
m ≥ 0

lim
n→∞

sup
f∈D

∥∥∥P[m,n] f − f∗
∥∥∥

1
= 0,

(2) almost uniformly asymptotically stable if for any m ≥ 0

lim
n→∞

sup
f ,g∈D

∥∥∥P[m,n] f −P[m,n]g
∥∥∥

1
= 0,

(3) strong asymptotically stable if there exists a unique f∗ ∈ D such that for all m ≥ 0
and f ∈ D

lim
n→∞

∥∥∥P[m,n] f − f∗
∥∥∥

1
= 0,

(4) strong almost asymptotically stable if for all m ≥ 0 and f ,g ∈ D

lim
n→∞

∥∥∥P[m,n] f −P[m,n]g
∥∥∥

1
= 0 .

The asymptotic behavior of nonhomogeneous chains of Markov operators has an ex-
tensive literature, e.g. [19] presents a detailed classification of different types of limit
behaviour of nonhomogeneous Markov chains. The papers of [21, 22, 23] are examples of
very recent studies in this direction.
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 3

We proceed with the concept of a quadratic stochastic operator acting on the L1 space.

Definition 2.2. A bilinear operator Q : L1 ×L1 → L1 is called a quadratic stochastic op-
erator if

Q( f ,g)≥ 0 , Q( f ,g) = Q(g, f ) and ∥Q( f ,g)∥1 = ∥ f∥1∥g∥1

for all f ,g ≥ 0, f ,g ∈ L1.

It follows that Q is bounded as sup∥ f∥1=1,∥g∥1=1 ∥Q( f ,g)∥1 = 1. Moreover if f̃ ≥ f ≥ 0
and g̃≥ g≥ 0 then Q( f̃ , g̃)≥Q( f ,g). Clearly, Q(D×D)⊆D . The family of all quadratic
stochastic operators will be denoted by Q.

In this paper we pay special attention to a nonlinear mapping D ∋ f 7→Q( f ) :=Q( f , f )∈
D . This restriction to the “diagonal” is very relevant from a biological application point of
view. The iterates Qn( f ), where n = 0,1,2, . . ., can describe the evolution of a distribution
of some trait of an inbreeding or hermaphroditic population. Clearly, Q(D)⊆ D .

Remark 2.1. Let us note that any homogeneous chain of stochastic operators P=(P)n≥0 ∈
S may be represented by such a nonlinear mapping Q : D → D . In fact, let P : L1 → L1

be a (linear) Markov operator. Consider Q ∈Q defined by

Q( f ,g) = 1
2

((∫
X

gdµ

)
P f +

(∫
X

f dµ

)
Pg
)

for any f ,g ∈ L1. Then for f ∈ D we have Q( f ) = P f . In particular Qn and Pn restricted
to D are identical. It follows that any homogeneous Markov dynamics on D may be viewed
as a quadratic mapping Q : D → D .

It follows from the triangle inequality and the fact that Q is bilinear (by definition) that
for any f ,g, f̃ , g̃ ∈ L1∥∥∥Q( f ,g)−Q( f̃ , g̃)

∥∥∥
1
≤
∥∥∥Q( f ,g)−Q( f̃ ,g)

∥∥∥
1
+
∥∥∥Q( f̃ ,g)−Q( f̃ , g̃)

∥∥∥
1

≤
∥∥∥ f − f̃

∥∥∥
1
∥g∥1 +∥g− g̃∥1

∥∥∥ f̃
∥∥∥

1
.

If all the vectors f ,g, f̃ , g̃ are from the unit ball∥∥∥Q( f ,g)−Q( f̃ , g̃)
∥∥∥

1
≤
∥∥∥ f − f̃

∥∥∥
1
+∥g− g̃∥1

and hence

∥Q( f )−Q(g)∥1 = ∥Q( f , f )−Q(g,g)∥1 ≤ 2∥ f −g∥1 .

Thus Q is continuous on L1 ×L1 and uniformly continuous if applied to vectors from the
unit ball in L1. In particular, Q is uniformly continuous on the unit ball in L1.

3. MUTUAL CORRESPONDENCE BETWEEN L1 AND ℓ1 SPACES AND ITS
CONSEQUENCES

The fact that the properties of quadratic stochastic operators acting on ℓ1 carry over to
L1 is that these spaces are quite closely connected.

Let us recall that a measurable countable partition ξ := {Bk} of X is called consistent
with σ–finite measure µ if 0 < µ(Bk) < ∞ for all k. The existence of such partitions is
evident due to σ–finiteness of the measure µ . Given a consistent measurable countable
partition ξ := {Bk} and any f1, f2 ∈ L1 we write
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4 K. Bartoszek and M. Pułka

f1 ∼ f2 ⇔∀i

∫
Bi

f1dµ =
∫

Bi

f2dµ .

We can see that we have defined an equivalence relationship on the L1 space. Each equiv-
alence class (taking f ∈ L1 as its representative) can be then associated with an element
p f ∈ ℓ1 in a natural way, namely take

ℓ1 ∋ p f =

(∫
B1

f dµ,
∫

B2

f dµ, . . .

)
.

Notice that the coordinates of the vector p f are actually the conditional expectations E [·|Bi]
for the density f and measure µ .

The presented connection between L1 and ℓ1 spaces gives that every counterexample
for quadratic stochastic operators acting on ℓ1 carries over to the L1 case. We will also see
in the further proofs that via this relation we can utilize arguments from [6].

Let us recall the definition of a quadratic stochastic operator on ℓ1 [6]:

Definition 3.1. A quadratic stochastic operator is defined as a cubic array of nonnegative
real numbers Qseq = [qi j,k]i, j,k≥1 if it satisfies

(D1) 0 ≤ qi j,k = q ji,k ≤ 1 for all i, j,k ≥ 1,
(D2) ∑k=1 qi j,k = 1 for any pair (i, j).

Such a cubic matrix Qseq may be viewed as a bilinear mapping Qseq : ℓ1×ℓ1 → ℓ1 if we
set Qseq((x1,x2, . . .),(y1,y2, . . .))k = ∑i, j=1 xiy jqi j,k for any k ≥ 1.

The following definition is motivated by the mutual correspondence between L1 and ℓ1

spaces discussed above.

Definition 3.2. A quadratic stochastic operator Q : L1 ×L1 → L1 is called a kernel qua-
dratic stochastic operator if there exists an A ⊗A ⊗A –measurable, nonnegative function
q : X ×X ×X → R+ such that

Q( f ,g)(z) =
∫

X

∫
X

f (x)g(y)q(x,y,z)dµ(x)dµ(y)

and q(x,y,z) = q(y,x,z) for any x,y,z ∈ X, and
∫

X q(x,y,z)dµ(z) = 1 for every (x,y) ∈
X ×X.

One can immediately see a close relation of kernel quadratic stochastic operators to
quadratic stochastic operators on ℓ1, namely the latter have an obvious kernel form.

4. ERGODIC STRUCTURE

We will consider different types of asymptotic behaviours of quadratic stochastic oper-
ators.

Definition 4.1. A quadratic stochastic operator Q ∈Q is called:

(1) norm mixing (uniformly asymptotically stable) if there exists a density f ∈D such
that

lim
n→∞

sup
g∈D

∥Qn(g)− f∥1 = 0 ,
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 5

(2) strong mixing (asymptotically stable) if there exists a density f ∈ D such that for
all g ∈ D we have

lim
n→∞

∥Qn(g)− f∥1 = 0 ,

(3) strong almost mixing if for all g,h ∈ D we have

lim
n→∞

∥Qn(g)−Qn(h)∥1 = 0 .

The sets of all norm mixing, strong mixing, strong almost mixing quadratic stochastic
operators are denoted respectively by Qnm, Qsm, Qsam. Taking into account the mutual
correspondence between L1 and ℓ1 and using the results from [6] we can easily see that
Qnm ⊊Qsm ⊊Qsam.

The key issue for our further studies is the existence of the relation between quadratic
stochastic operators and (linear) Markov operators. The idea of studying the so–called
associated Markov chains comes from [11], which was successfully employed by others
[6].

Definition 4.2. Let Q ∈ Q. For arbitrarily fixed initial density function g ∈ D a nonho-
mogeneous Markov chain associated with Q and g ∈ D is defined as a sequence Pg =

(P[n,n+1]
g )n≥0 of Markov operators P[n,n+1]

g : L1 → L1 of the form

P[n,n+1]
g (h) := Q(Qn(g),h) .

Let us notice that if the initial density f is Q–invariant (i.e. Q( f ) = f ), then the asso-
ciated Markov chain P f is homogeneous as for any h ∈ L1 the expression Q(Qn( f ),h) =
Q( f ,h) does not depend on n. Then we write P[n,n+1]

f =: Pf and P[0,n]
f =: Pn

f .
We proceed with studying the ergodic structure of the set Q. Recall that the support of

g ∈ L1 is defined to be the set supp(g) := {x ∈ X : g(x) ̸= 0}.

Definition 4.3. Let Q ∈Q. We say that the subset D ⊆ X is Q–invariant (or Q–absorbing)
if ∫

X\D
Q(g,h)dµ = 0

for all g,h ∈ D(D) := {g ∈ D : supp(g)⊆ D}, i.e. Q(g,h) is supported on D.

We will now show that if f is a Q–invariant density then its support
supp( f ) := {x ∈ X : f (x) ̸= 0} := D f is a Q–invariant set. It is sufficient to show that
for every ε > 0 and all Aε ,Bε ⊆ {x : f (x)≥ ε} one has Q(1Aε ,1Bε ) = 0 on DC

f := X \D f .
Indeed, the set {∑

J
j=1 a j1Aε

j
: J ∈ N,ε > 0} is L1–norm dense in L1(D f ) and Q(·, ·) is

continuous. Clearly∥∥∥Q(1Aε ,1Bε )1DC
f

∥∥∥
1
≤
∥∥∥Q( 1

ε
f , 1

ε
f )1DC

f

∥∥∥
1
= 1

ε2

∥∥∥Q( f , f )1DC
f

∥∥∥
1
= 1

ε2

∥∥∥ f 1DC
f

∥∥∥
1
= 0.

Let f be a Q–invariant density. Using the fact that D f is Q–invariant we will show that
the Markov operator Pf (associated with Q) restricted to D f overlaps supports, i.e. for any
pair of g,h ∈ D(D f ) there exists a natural number n such that Pn

f (g)∧Pn
f (h) ̸= 0 (where ∧

stands for the ordinary minimum in L1). Let g,h∈D(D f ) and suppose that Pf (g)∧Pf (h)=
0. For some B,G ∈ A of positive measure we have g1B ≥ ε f 1B, h1G ≥ ε f 1G for some
ε > 0. Now,
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6 K. Bartoszek and M. Pułka

Pf (g) = Q( f ,g)≥ Q( f ,ε f 1B) = εQ( f , f 1B),
Pf (h) = Q( f ,h)≥ Q( f ,ε f 1G) = εQ( f , f 1G)

and by our assumption

Q( f , f 1B)∧Q( f , f 1G) = 0
giving

Q( f 1G, f 1B)≤ Q( f , f 1B),
Q( f 1G, f 1B)≤ Q( f , f 1G).

Hence Q( f 1G, f 1B) = 0. But ∥Q( f 1G, f 1B)∥1 = ∥ f 1G∥1 · ∥ f 1B∥1 > 0. This is a contra-
diction and hence ∥Pf (g)∧Pf (h)∥1 > 0 if g,h ∈ D(D f ).

[5] show that if a stochastic operator overlaps supports, has a strictly positive invariant
density and is also at least partially kernel then it is asymptotically stable. Hence we obtain
the following lemma.

Lemma 4.1. Let Q be a kernel quadratic stochastic operator. If f is a Q–invariant den-
sity, then L1(supp( f )) is a Pf –invariant set, i.e. Pf (L1(supp( f ))) ⊆ L1(supp( f )), for the
associated Markov operator Pf and

lim
n→∞

∥∥∥∥Pn
f (h)−

(∫
X

hdµ

)
f
∥∥∥∥

1
= 0

for all h ∈ L1(supp( f )) (i.e. Pf is asymptotically stable on L1(supp( f ))).

The following theorem assumes that the quadratic stochastic operator is a kernel one.
This is as we use Lemma 4.1. If one can show that another set of quadratic stochastic
operators will be asymptotically stable and also have the property that trajectory sets of the
associated nonhomogeneous Markov operator will be norm relatively compact then Thm.
4.1 will also hold for them. These are in fact a non–trivial problems and the latter was
discussed by [5] and [26, 27]. Notice that [27] provides an example of a Markov operator
that overlaps supports, possesses an invariant density but is unstable.

Theorem 4.1. Let Q be a kernel quadratic stochastic operator and let g ∈ D . If

lim
n→∞

∥Qn(g)− f∥1 = 0

(then f is a Q–invariant density), then

lim
n→∞

∥∥∥P[0,n]
g (h)− f

∥∥∥
1
= 0,

for any h ∈ L1 satisfying supp(h)⊆ supp(g).

Proof. Let g ∈ D be such that P[0,n]
g (g) =Qn(g)→ f . If h satisfies 0 ≤ h ≤ g (h need not

belong to D) then by monotonicity of quadratic stochastic operators we get 0 ≤ P[0,n]
g (h)≤

P[0,n]
g (g). Indeed,

0 ≤ P[0,1]
g (h) = Q(g,h)≤ Q(g,g) =Q(g)

and hence

0 ≤ P[0,2]
g (h) = P[1,2]

g (P[0,1]
g (h)) = Q(Q(g),P[0,1]

g (h))≤ Q(Q(g),Q(g)) =Q2(g) .
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 7

Thus by iterating, for any natural n

0 ≤ P[0,n]
g (h) = Q(Qn−1(g),P[0,n−1]

g (h))≤ Q(Qn−1(g),Qn−1(g)) =Qn(g).

We conclude that Ag := {P[0,n]
g (h) : 0 ≤ h ≤ g,n ≥ 1} is relatively weakly compact as

ordered intervals in the Banach lattice L1 are weakly compact [L1 has order continuous
norm; see e.g. Theorem 4.9 in 1]. Hence for any fixed h and any sequence P[0,km]

g (h) there
exists a subsequence ni = kmi such that P[0,ni]

g (h) converges weakly (obviously P[0,ni+1]
g (h)

converges weakly too). Let us denote w := lim
i→∞

P[0,ni]
g (h) (weakly). We will now show that

choosing a subsequence we may guarantee that P[0,ni]
g (h) converges in norm. We can see

immediately that∥∥∥P[0,ni+1]
g (h)−Q( f ,P[0,ni]

g (h)∧ f )
∥∥∥

1

=
∥∥∥Q(Qni(g),P[0,ni]

g (h))−Q( f ,P[0,ni]
g (h)∧ f )

∥∥∥
1

≤ ∥Qni(g)− f∥1

∥∥∥P[0,ni]
g (h)

∥∥∥
1
+
∥∥∥P[0,ni]

g (h)−P[0,ni]
g (h)∧ f

∥∥∥
1
∥ f∥1 → 0

as

(1)
∥∥∥P[0,ni]

g (h)∧ f −P[0,ni]
g (h)

∥∥∥
1
→ 0.

This means that we can choose a pointwise convergent subsequence (for µ almost all
z ∈ X). With a little abuse of notation we still denote this subsequence as n j. Now for
µ almost all z ∈ X

(2) P
[0,n j+1]
g (h)(z)−

(
Q( f ,P

[0,n j ]
g (h)∧ f )

)
(z)→ 0.

We consider the second term of Eq. (2), assuming that z ∈ X is temporarily fixed,

∫
X

(
P
[0,n j ]
g (h)∧ f

)
(x)

f (x)

∫
X

f (x) f (y)q(x,y,z)dµ(y)dµ(x)

and see that
(

P
[0,n j ]
g (h)∧ f

)
(x)/ f (x) ∈ L∞ as both the numerator and denominator are

positive, and
∫
X

f (x) f (y)q(x,y,z)dµ(y) ∈ L1. If A ⊂ X such that µ(A)< ∞ then by Eq. (1)

and the weak convergence ∫
X

(
P
[0,n j ]
g (h)∧ f

) 1A

f
dµ

converges. This gives us that for any r ∈ L1,

∫
X

P
[0,n j ]
g (h)∧ f

f
rdµ

converges. Hence as for almost all z ∈ X the left hand side of Eq. (2) converges to 0 and
the second term converges too, we obtain that P

[0,n j+1]
g (h) converges pointwise as required.

Then this combined with the weak convergence stated above will give norm convergence
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8 K. Bartoszek and M. Pułka

[Theorem 4.21.5, Corollary 4.21.6 in 10]. Summarizing: from any sequence P[0,km]
g (h)

we managed to select a subsequence P
[0,n j+1]
g (h) converging in the L1–norm. In particular

{P[0,m]
g (h) : m = 1,2, . . .} is norm relatively compact.
Let us introduce the L1–norm ω–limit set

ωg(h) = {w = lim
ι→∞

P[0,nι ]
g (h) for those subsequences for whom such a limit exists}.

It follows from the above that

ωg(h) = {w = lim
i→∞

P[0,ni]
g (h) weakly}.

Clearly ωg(h) is weakly closed as well. If ∥P
[0,n j ]
g (h)−w∥1 → 0 then∥∥∥P

[0,n j+1]
g (h)−Pf (w)

∥∥∥
1
=
∥∥∥Q(Qn j(g),P

[0,n j ]
g (h))−Q( f ,w)

∥∥∥
1

≤ ∥Qn j(g)− f∥1 +
∥∥∥P

[0,n j ]
g (h)−w

∥∥∥
1

j→∞−−−→ 0.

It follows that Pf (w) ∈ ωg(h) whenever w ∈ ωg(h). Similarly considering

∥P
[0,n j−1]
g (h)− w̃∥1 → 0 we get ∥P

[0,n j ]
g (h)− Pf (w̃)∥1 → ∥w − Pf (w̃)∥1 = 0. Hence

Pf (ωg(h)) = ωg(h).
Now let us temporarily summarize some properties of the set ωg(h):

• ωg ⊆ {w : 0 ≤ w ≤ f} as 0 ≤ g ≤ h implies 0 ≤ P[0,nι ]
g (h)︸ ︷︷ ︸
→w

≤Qnι (g)→ f and hence

supp(w)⊆ supp( f ),
• ωg(h) is norm compact,
• every element of w ∈ ωg(h) is of the form w = Pf (vw),
• ωg(h) is Pf invariant (i.e. Pm

f (ωg(h)) = ωg(h) for all m ≥ 0),
• if w ∈ ωg(h) then ∥w∥1 = ∥h∥1.

Therefore for every m ∈N and w ∈ ωg(h) let wm ∈ ωg(h) be such that Pm
f (wm) = w and by

compactness taking an appropriate subsequence wmι
we have lim

ι→∞
wmι

= w∗ ∈ ωg(h). We
obtained ∥∥∥Pmι

f (w∗)−w
∥∥∥

1
=
∥∥∥Pmι

f (w∗)−Pmι

f (wmι
)
∥∥∥

1
≤ ∥w∗−wmι

∥1 → 0.

As w∗ ≤ f we have supp(w∗)⊆ supp( f ) therefore by Lemma 4.1

lim
m→∞

Pm
f (w∗) = ∥w∗∥1 f = ∥h∥1 f = w.

Hence every element w ∈ ωg(h) is of the form w = ∥h∥1 f . Thus ωg(h) = {∥h∥1 f} and
therefore the norm limit lim

n→∞
P[0,n]

g (h) = ∥h∥1 f exists.

As the operators P[0,n]
g are linear, h comes from an ordered interval, [0,g] spans the

whole space L1(supp(g)), we obtained that lim
n→∞

P[0,n]
g (h) = ∥h∥1 f for h ∈ L1(supp(g)). If

in addition h ∈ D and supp(h)⊆ supp(g) we obtain lim
n→∞

P[0,n]
g (h) = f . □

Corollary 4.1. Let Q be a kernel quadratic stochastic operator and let g ∈D . The iterates
Qn(g) converge in norm to a Q–invariant density f if and only if
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 9

lim
n→∞

∥∥∥P[0,n]
g (u)− f

∥∥∥
1
= 0

for all u ∈ D such that supp(u)⊆ supp(g).

Proof. Only the sufficient condition needs to be proved. Take u = g and notice that
P[0,n]

g (g) =Qn(g). □

Example 4.1. Let {Bk} be a consistent measurable countable partition of X. Define Q∈Q
for any g,h ∈ L1 by

Q(g,h) = 1
µ(B1)

1B1

∫
B1

gdµ
∫

B1
hdµ

+ 1
µ(B2)

1B2

(∫
B1

gdµ
∫

B2
hdµ +

∫
B2

gdµ
∫

B1
hdµ +

∫
B2

gdµ
∫

B2
hdµ

)
+ 1

µ(B4)
1B4

(∫
B1

gdµ
∫

B3
hdµ +

∫
B3

gdµ
∫

B1
hdµ

)
+

∞

∑
k=5

(
k−1
∑
j=1

∫
B j

gdµ
∫

Bk− j
hdµ

)
1

µ(Bk)
1Bk .

We can see that f = 1
µ(B1)

1B1(·) is Q–invariant and 1
µ(B2)

1B2(·) is Pf –invariant. Hence

P[0,n]
f (u) does not converge to f whenever

∫⋃
∞
i=2 Bi

udµ > 0. Moreover if
∫⋃

∞
i=3 Bi

udµ > 0

then the sequence P[0,n]
f (u) does not converge weakly.

5. ASYMPTOTIC STABILITY PROPERTIES

In this section we give the equivalent conditions of asymptotic stability and uniform
asymptotic stability of quadratic stochastic operators expressed in terms of convergence
of the associated nonhomogeneous (linear) Markov chain. The first result follows from
Theorem 4.1 and hence we formulate it for kernel quadratic stochastic operators.

Theorem 5.1. Let Q be a kernel quadratic stochastic operator. The following conditions
are equivalent:

(1) There exists f ∈ D such that for every g ∈ D we have

lim
n→∞

∥Qn(g)− f∥1 = 0

(i.e. Q is asymptotically stable).
(2) There exists f ∈ D such that for all g,h ∈ D such that supp(h) ⊆ supp(g) we

have

lim
n→∞

∥∥∥P[0,n]
g (h)− f

∥∥∥
1
= 0.

(3) There exists f ∈ D such that for all m ≥ 0 and g,h ∈ D satisfying supp(h) ⊆
supp(Qm(g)) we have

lim
n→∞

∥∥∥P[m,n]
g (h)− f

∥∥∥
1
= 0.

Proof. The implication (1) ⇒ (2) follows from Theorem 4.1 (hence we need to assume
that Q is kernel). To see that (2)⇒ (3) holds true, notice that for any associated nonhomo-
geneous Markov chain Pg we have P[m,n]

g (h) = P[0,n−m]
Qm(g) (h), where h ∈ D and 0 ≤ m < n.
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10 K. Bartoszek and M. Pułka

Using (2) we get lim
n→∞

∥P[m,n]
g (h)− f∥1 = lim

n→∞
∥P[0,n−m]

Qm(g) (h)− f∥1 = 0. The implication

(3)⇒ (1) is trivial as it is enough to take m = 0 and g = h. □

Similarly as it was observed by [6], we can suspect that the assumptions supp(h) ⊆
supp(g) in (2) and supp(h)⊆ supp(Qn(g)) in (3) might be possible to drop. We construct
the below example.

Example 5.1. As before, let {Bk} be a consistent measurable countable partition of X. We
define the operator Q on the space {g ∈ L1 : supp(g)⊆ B1 ∪B2} as follows: for any g,h

Q(g,h) := 1
µ(B1)

1B1

((∫
B1

gdµ

)(∫
B1

hdµ

)
+ 1

2

(∫
B1

gdµ

)(∫
B2

hdµ

)
+ 1

2

(∫
B2

gdµ

)(∫
B1

hdµ

)
+
(∫

B2
gdµ

)(∫
B2

hdµ

))
+ 1

µ(B2)
1B2

(
1
2

(∫
B1

gdµ

)(∫
B2

hdµ

)
+ 1

2

(∫
B2

gdµ

)(∫
B1

hdµ

))
.

If g ∈ D , supp(g)⊆ B1 ∪B2 then for all n ≥ 1

Qn+1(g)|B2 =
1B2

µ(B2)

∫
B1
Qn(g)dµ

∫
B2
Qn(g)dµ

=
1B2

µ(B2)

∫
B2
Qn(g)dµ

(
1−

∫
B2
Qn(g)dµ

)
dµ.

Denote bn :=
∫

B2
Qn(g)dµ . Clearly 0 ≤ bn ≤ 1 and bn+1 = bn(1− bn). Hence obviously

bn → 0 entailing
∫

B1
Qn(g)dµ → 1. We conclude that Qn(g) → 1

µ(B1)
1B1 . Moreover,

1
µ(B1)

1B1 is Q–invariant and hence we proved that Q is asymptotically stable. Clearly,

the (linear) Markov operator associated with Q and the density 1
µ(B1)

1B1 is of the form

P 1
µ(B1)

1B1
(h) =

1B1

µ(B1)

[∫
B1

hdµ +
1
2

∫
B2

hdµ

]
+

1B2

µ(B2)

1
2

∫
B2

hdµ,

where h ∈ D , supp(h)⊆ B1 ∪B2. By induction we get

P[0,n]
1

µ(B1)
1B1

(h) =
1B1

µ(B1)

[∫
B1

hdµ +

(
1−
(

1
2

)n)∫
B2

hdµ

]
+

1B2

µ(B2)

(
1
2

)n ∫
B2

hdµ

and hence

P[0,n]
1

µ(B1)
1B1

(h)→ 1
µ(B1)

1B1 .

The inclusion supp(h)⊆ supp(g) appear to be redundant.

Theorem 5.2. Let Q be a kernel quadratic stochastic operator such that for all g,h∈D the
trajectories {P[0,n]

g (h) : n= 1,2, . . .} are norm relatively compact. The following conditions
are equivalent:

(1) There exists f ∈ D such that for every g ∈ D we have

lim
n→∞

∥Qn(g)− f∥1 = 0.

(2) There exists f ∈ D such that for all g,h ∈ D we have

lim
n→∞

∥∥∥P[0,n]
g (h)− f

∥∥∥
1
= 0.
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 11

(3) There exists f ∈ D such that for all m ≥ 0 and h,g ∈ D we have

lim
n→∞

∥∥∥P[m,n]
g (h)− f

∥∥∥
1
= 0.

Proof. The implication (2) ⇒ (3) follows from the equality P[m,n]
g (h) = P[0,n−m]

Qm(g) (h) for
arbitrary g,h ∈ D and 0 ≤ m < n. The proof of (3) ⇒ (1) is trivial as it is enough to
substitute m = 0 and h = g in (3). We now show that (1)⇒ (2).

Fix g,h ∈ D and denote

ωg(h) := {w : ∃n j↗∞ P
[0,n j ]
g (h)→ w}

∥·∥1

the closed ω–limit set. By the norm relative compactness assumption ωg(h) is nonempty
and compact in ∥ · ∥1. By the same argument as before Pf (ωg(h)) = ωg(h).

Now, for fixed g ∈ D and arbitrary h ∈ D let us introduce,

L(h) := limsup
n→∞

∫
D f

P[0,n]
g (h)dµ = sup

w∈ωg(h)

∫
D f

wdµ,

where D f = supp( f ). By the norm relative compactness of ωg(h) there exists w∗ ∈ ωg(h)
such that L(h) =

∫
D f

w∗dµ . We recall that D f is a Q–invariant set (as Q( f ) = f ) giving for
kernel quadratic stochastic operators Q that for almost all (x,y) ∈ D f ×D f∫

D f

q(x,y,z)dµ(z) = 1.

Denote by P∗
f : (L1)∗ → (L1)∗ the adjoint operator of Pf . For any B ⊆ D f

∫
B P∗

f (1D f )(y)dµ(y) =
∫

B

[∫
X
∫

X f (x)q(x,y,z)dµ(x)1D f (z)dµ(z)
]

dµ(y)

=
∫

B

[∫
D f

f (x)
∫

X q(x,y,z)1D f (z)dµ(z)dµ(x)
]

dµ(y)
=

∫
B dµ(y) = µ(B).

Therefore P∗
f (1D f ) = 1 on D f . Obviously P∗

f (1D f )≥ 0. Hence P∗
f (1D f )≥ 1D f . Using the

standard notation for dual operations,

∫
D f

Pf (w∗)dµ = ⟨Pf (w∗),1D f ⟩= ⟨w∗,P∗
f (1D f )⟩ ≥ ⟨w∗,1D f ⟩=

∫
X

w∗1D f dµ = L(h).

Since Pf (w∗) ∈ ωg(h), then L(h) ≥
∫

D f
Pf (w∗)dµ and so L(h) =

∫
D f

Pf (w∗)dµ . By the
induction method we obtain that L(h) =

∫
D f

Pn
f (w∗)dµ for n = 0,1, . . ..

If L(h) = 1 then supp(w∗)⊆ D f . Therefore by Lemma 4.1 we have,

lim
n→∞

∥∥Pn
f (w∗)− f

∥∥
1 = 0.

In particular f ∈ ωg(h) as Pn
f (ωg(h)) = ωg(h). Let n j ↗ ∞ be a sequence such that

∥P
[0,n j ]
g (h) − f∥1 → 0. For any w ∈ ωg(h) there exists k j ↗ ∞ such that

lim
j→∞

∥P
[0,n j+k j ]
g (h)−w∥1 = 0 (by definition of ωg(h)). Therefore
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12 K. Bartoszek and M. Pułka

∥w− f∥1 = lim
j→∞

∥∥∥P
[0,n j+k j ]
g (h)−Qn j+k j(g)

∥∥∥
1

= lim
j→∞

∥∥∥P
[0,k j ]

Qn j (g)

(
P
[0,n j ]
g (h)

)
−P

[0,k j ]

Qn j (g)
(Qn j(g))

∥∥∥
1

= lim
j→∞

∥∥∥P
[0,k j ]

Qn j (g)

(
P
[0,n j ]
g (h)−Qn j(g)

)∥∥∥
1

≤ lim
j→∞

∥∥∥P
[0,n j ]
g (h)−Qn j(g)

∥∥∥
1

= lim
j→∞

∥∥∥P
[0,n j ]
g (h)− f

∥∥∥
1
= 0.

Hence L(h) = 1 implies ωg(h) = { f} and lim
n→∞

P[0,n]
g (h) = f .

Let us assume now that 0 < L(h)< 1. Then we represent w∗ in the form

w∗ = L(h)1D f

w∗
L(h)

+(1−L(h))u∗,

where u∗ := 1DC
f

w∗
1−L(h) . Notice that for every natural j the function P j

f (u∗) is concentrated

on DC
f , otherwise

limsup
n→∞

∫
D f

P[0,n+ j]
g (h)dµ ≥ L(h)+(1−L(h))

∫
D f

P j
f (u∗)dµ > L(h).

Recalling that we assumed relative compactness of trajectories we apply the Eberlein mean
ergodic theorem [see Theorem 5.1 in 9] and obtain that the Cesàro means converge

lim
N→∞

1
N

N

∑
n=1

Pn
f (u∗) =: a

and a ∈ L1 is Pf –invariant. Denoting Da := supp(a) we additionally get Da ⊆ DC
f .

For a fixed u ∈ L1 let us denote A(u) :=
∫

D f
udµ and B(u) :=

∫
Da

udµ . We will show
that B(Q(u))≥ 2A(u)B(u). Notice that

a(z) = Pf (a)(z) = Q( f ,a)(z) =
∫

X

∫
X

f (x)a(y)q(x,y,z)dµ(x)dµ(y)

implies supp(q(x,y, ·))⊆ supp(a) for almost all (x,y)∈ supp( f )×supp(a). It follows that∫
DC

a
Q(h|D f ,v|Da)dµ = 0 for any pair of densities h,v. In particular for any density u we

have ∫
X

Q(u|D f ,u|Da)dµ = ∥u|D f ∥1∥u|Da∥1 = A(u)B(u) =
∫

Da

Q(u|D f ,u|Da)dµ.

Thus using the symmetry of Q(·, ·)

B(Q(u)) =
∫

Da
Q(u)dµ =

∫
Da

Q(u|Da +u|DC
a
)dµ

=
∫

Da
Q(u|Da)dµ +

∫
Da

Q(u|DC
a
)dµ +2

∫
Da

Q(u|Da ,u|DC
a
)dµ

≥ 2
∫

Da
Q(u|Da ,u|D f +u|DC

a \D f
)dµ

≥ 2
∫

Da
Q(u|Da ,u|D f )dµ = 2∥u|D f ∥1∥u|Da∥1

= 2A(u)B(u).

Now consider the Pf –invariant density s := L(h) f +(1−L(h))a (recall that we are in the
0< L(h)< 1 regime). Since we assume that Q is asymptotically stable, we clearly have that
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 13

lim
n→∞

Qn(s) = f implying lim
n→∞

A(Qn(s)) = 1 and so there exists n0 such that A(Qn(s)) ≥ 3
4

for n ≥ n0. Obviously B(Qn(s))> 0 as L(h)< 1. Therefore

limsup
k→∞

B(Qn0+k(s)) = limsup
k→∞

B(Q(Qn0+k−1(s)))

≥ limsup
k→∞

2A(Qn0+k−1(s))B(Qn0+k−1(s))

≥ limsup
k→∞

3
2 B(Qn0+k−1(s))≥ ·· · ≥ limsup

k→∞

( 3
2

)k
B(Qn0(s)) = ∞,

a contradiction.
Assume L(h) = 0. Then

∫
D f

Pn
f (w)dµ = 0 for every w ∈ ωg(h) and any n = 0,1,2, . . ..

As before, using the Eberlein mean ergodic theorem the limit

lim
N→∞

1
N

N

∑
n=1

Pn
f (w) =: a

exists, it is Pf –invariant and a is concentrated outside D f (i.e. Da ⊆ DC
f ). Taking

Pf –invariant density s := 1
2 f + 1

2 a similarly to the previous case we obtain B(Qn(s))→ ∞,
a contradiction.

□

In the next theorem we describe the uniform asymptotic stability of quadratic stochastic
operators. We give equivalent conditions for norm mixing of nonlinear transformation Q
expressed in terms of convergence of associated with Q nonhomogeneous linear Markov
chain. We first show an auxiliary lemma.

Lemma 5.1. Let P : L1 → L1 be a stochastic operator with invariant density f . If there
exist ρ > 0 and k0 ∈ N such that

(3)
∥∥∥Pk0(w)∧ f

∥∥∥
1
≥ ρ

for all w ∈ D then there exists d0 ∈ N such that Pnd0 is convergent in the operator norm to
a finite dimensional projection.

Proof. We will show that Eq. (3) entails that the operator P is uniformly η–smoothing [4],
i.e. there exist 0 < η < 1, F ⊆ X with µ(F)< ∞, and 0 < δ such that for some natural k0

sup
w∈D

∫
E∪FC

Pk0(w)dµ ≤ η

for all E ⊆ X satisfying µ(E)< δ .
Let 0 < ε < ρ/3 and take κ such that ∥ f 1{1/κ< f≤κ} − f∥1 ≤ ε . Define

F = {x ∈ X : 1/κ < f (x) ≤ κ}. Obviously µ(F) < ∞. Let 0 < δ < ρ/(3κ) and E ⊆ F
such that µ(E)< δ . Then

∫
E f dµ < κ ·ρ/(3κ) = ρ/3. Hence

∫
E∪FC Pk0(w)dµ =

∫
E∪FC Pk0(w)∧ f dµ +

∫
E∪FC Pk0(w)−Pk0(w)∧ f dµ

≤
∫

FC f dµ +
∫
E

f dµ +
∫

E∪FC Pk0(w)−Pk0(w)∧ f dµ

≤ ε +δκ +1−ρ ≤ ρ/3+ρ/3+1−ρ ≤ 1−ρ/3.

We therefore have that P is uniformly smoothing with η = 1−ρ/3 and hence it is quasi–
compact [4], i.e. ∥|Pn −K|∥ < 1 for some compact operator K and natural n. It follows
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14 K. Bartoszek and M. Pułka

from [4] [but see also 2, 3] that there is a d0 ∈ N such that Pnd0 is norm convergent as
n → ∞. In particular there are pairwise disjoint densities f1, . . . , fd ∈ D and functionals
Λ1, . . . ,Λd ∈ L∞ such that

sup
w∈D

∥∥∥∥∥Pnd0(w)−
d

∑
j=1

Λ j(w) f j

∥∥∥∥∥
1

n→∞−−−→ 0.

□

Theorem 5.3. Let Q be a quadratic stochastic operator. The following conditions are
equivalent:

(1) There exists f ∈ D such that

lim
n→∞

sup
g∈D

∥Qn(g)− f∥1 = 0.

(2) There exists f ∈ D such that

lim
n→∞

sup
g,h∈D

∥∥∥P[0,n]
h (g)− f

∥∥∥
1
= 0.

(3) There exists f ∈ D such that for every m ≥ 0 we have

lim
n→∞

sup
g,h∈D

∥∥∥P[m,n]
h (g)− f

∥∥∥
1
= 0,

i.e. independently of the seed g ∈ D , all nonhomogeneous Markov chains Pg =

(P[n,n+1]
g )n≥0 are norm mixing with a common limit distribution f and the rate of

convergence is uniform for g.

Proof. Similarly as in the case of Theorem 5.2 it suffices to show the implication (1)⇒ (2).
The proof is ad absurdum; assume that (1) holds true and suppose that (2) is false, i.e. there
exists ε > 0 such that for sufficiently large n there are g,h∈D satisfying ∥P[0,n]

g (h)− f∥1 ≥
ε . We will proceed in three steps.

Step 1 Let m ∈N be fixed. By assumption (1) and uniform continuity of Q (on the unit
ball in L1) there exists L ∈N such that for any g ∈ D and l ≥ L we have ∥Ql(g)− f∥1 ≤ δ

and δ > 0 is chosen such that ∥|P[0,m]
g1 −P[0,m]

g2 |∥ < ε/2 if ∥g1 − g2∥1 ≤ δ . Let n = l +m
and g,h ∈ D be such that ∥P[0,l+m]

g (h)− f∥1 ≥ ε . Then

ε ≤
∥∥∥P[0,l+m]

g (h)− f
∥∥∥

1

=
∥∥∥P[0,m]

Ql(g)
(P[0,l]

g (h))− f
∥∥∥

1

≤
∥∥∥P[0,m]

Ql(g)
(P[0,l]

g (h))−Pm
f (P

[0,l]
g (h))

∥∥∥
1
+
∥∥∥Pm

f (P
[0,l]
g (h))− f

∥∥∥
1

< ε

2 +
∥∥∥Pm

f (P
[0,l]
g (h))− f

∥∥∥
1

giving

ε

2
<
∥∥∥Pm

f (P
[0,l]
g (h))− f

∥∥∥
1
.

Hence ∥Pm
f (r)− f∥1 >

ε

2 , where r = P[0,l]
g (h) ∈ D and m = n− l can be arbitrarily large.

Thus the iterates Pm
f would not converge uniformly (in the operator norm).
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Asymptotic properties of quadratic stochastic operators acting on the L1 space 15

Step 2 Suppose that there exist ρ > 0 and k0 ∈ N such that for all w ∈ D we have

∥Pk0
f (w)∧ f∥1 ≥ ρ . Therefore by Lemma 5.1 we obtain that Pf is quasi–compact. Fur-

thermore it overlaps supports (see the remark prior to Lemma 4.1) and hence asymptotic
periodicity turns to convergence, i.e. d = 1 [2, 3]. In particular,

sup
w∈D

∥∥Pn
f (w)− f

∥∥
1

n→∞−−−→ 0

and by Step 1 we obtain a contradiction. Hence we showed that if the iterates P j
f do

not converge in the operator norm to 1⊗ f , then infw∈D ∥Pk
f (w)∧ f∥1 = 0 for all k, or

equivalently, supw∈D ∥Pk
f (w)− f∥1 = 2.

Step 3 Let J ∈ N be such that ∥Q j(u)− f∥1 < ε/4 for all u ∈ D and j ≥ J , where
ε > 0. First we show that for any β > 0 and any fixed k∗ ∈ N there exists w ∈ D such
that ∥ f −w∥1 ≥ 2− β (or equivalently ∥ f ∧w∥1 < β/2) and ∥Pl

f (w)−w∥1 < β for all
0 ≤ l ≤ k∗. For this fix β > 0 and k∗ ∈N and consider natural k ≥ max{k∗,2β}. Applying
Step 2 we find a v ∈ D such that ∥Pk2

f (v)− f∥1 > 2− β/k2. Since Pf is stochastic, the
sequence l 7→ ∥Pl

f (v)− f∥1 is non–increasing and hence ∥Pl
f (v)− f∥1 > 2−β/k2 for any

0 ≤ l ≤ k2, or equivalently ∥k2Pl
f (v)∧ k2 f∥1 ≤ β/2 for l = 0,1, . . . ,k2. Let

w =
(

v+Pf (w)+ . . .+Pk2−1
f (v)

)
/k2.

Clearly w ∈ D . We have

∥ f ∧w∥1 = 1
k2

∥∥∥k2 f ∧
(

v+Pf (v)+ · · ·+Pk2

f (v)
)∥∥∥

1

≤ 1
k2 ∑

k2−1
l=0

∥∥∥k2 f ∧ k2Pl
f (v)

∥∥∥
1
< β

2 ,

or equivalently ∥ f −w∥1 > 2−β , and for all 0 ≤ l ≤ k∥∥∥Pl
f (w)−w

∥∥∥
1

= 1
k2

∥∥∥∑
l−1
j=0

(
Pk2+l−1− j

f (v)−P j
f (v)

)∥∥∥
1

≤ 1
k2 ∑

l−1
j=0

∥∥∥Pk2+l−1− j
f (v)−P j

f (v)
∥∥∥

1
≤ 1

k2 ·2l ≤ 1
k2 ·2k < 2 · β

2 = β .

We call the density w constructed above a (k∗,β )–approximate fixed point of Pf = Q( f , ·)
as Pf (w)≈ w and w ≈⊥ f .

Let η ∈ (0,ε] (in the further part of the proof we take η = ε < 1/2 and without loss of
generality assume β < ε/4) and let g,u ≥ 0. Denote

C(η ,u,g) :=
{

sup{τ ∈ (0,1] : ∥u∧ g
τ
∥1 ≥ (1−η)∥u∥1},

0, if the set of such τ is empty.
Notice that

C(η ,u,g) = sup{τ ∈ [0,1] : ∃r∈[0,u] ∥r∥1 ≥ (1−η)∥u∥1 and τr ≤ g}.
If C(η ,u,g) > 0 then for any positive τ < C(η ,u,g) there exists 0 ≤ r ≤ u∧ g

τ
such that

∥r∥1 = (1−η)∥u∥1. Clearly τr ≤ u and τr ≤ g, hence τr ≤ u∧g. Thus τ(1−η)∥u∥1 =
τ∥r∥1 ≤ ∥u∧g∥1 implying

τ ≤ ∥u∧g∥1
(1−η)∥u∥1

and resulting
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C(η ,u,g)≤ ∥u∧g∥1

(1−η)∥u∥1
.

We apply the above estimation for w, where w ∈ D is an arbitrary (k∗,β )–approximate
fixed point of Pf , and for g ∈Q j(u), j ≥ J and where u ∈ D . We have

C(η ,w,Q j(u)) ≤ ∥w∧Q j(u)∥1
(1−η)∥w∥1

=
1− 1

2 ∥w−Q j(u)∥1
1−η

≤ 1− 1
2 (∥w− f∥1−∥ f−Q j(u)∥1)

1−η

<
1− 1

2 (2−β )+
1
2 ·

ε
4

1−η
=

1
2 β+

1
2 ·

ε
4

1−η
<

ε
4

1−ε
< ε

2 .

By norm continuity of lattice operations on L1 we have

lim
ηn→η ,wn→w,gn→g

C(ηn,wn,gn) =C(η ,w,g)

where the convergence of sequences (wn)n≥0, (gn)n≥0 holds in L1 norm.
We estimate C(η ,w,Q j(h)) from below where w ∈ D is a (2J ,β )–approximate fixed

point of Pf and h = (w+ f )/2. We have

Q(h) =
1
4

f +
1
2

Q( f ,w)+
1
4
Q(w).

Passing with β → 0+ we get liminfβ→0+ C(η ,w,Q(h))≥ 1/2. We take

Q2(h) =
1
42 f +2 · 1

4
· 1

2
Q( f ,Q( f ,w))+ · · ·= 1

24 f +
1
4

P2
f (w)+ · · ·

and we obtain liminfβ→0+ C(η ,w.Q2(h))≥ 1/4. Iterating further until reaching J

QJ (h) = 2−2J
f +2J−2J

PJ
f (w)+ some nonnegative function.

Using the continuity of Q(·, ·) for a fixed J (choosing β sufficiently small) we can assume
that a (2J ,β )–approximate fixed point w ∈ D of Pf satisfies

C(η ,w,QJ )>
1
2
·2J−2J

> 2J−1−2J
.

For j ≥J we can write Q j(h) = v( j)+C(η ,w,Q j(h))r( j), where v( j)≥ 0, r( j)≤ w and
∥r( j)∥1 = 1−η = 1−ε . We can find such a r( j) from the ordered interval [0,w] such that
∥r( j)∥1 ≥ (1−η)∥w∥1 (remembering η = ε) and τr ≤ w, τ ≤ C(η ,w,Q j(h)). We now
get (for j ≥ J )

∥v( j)− f∥1 ≤
∥∥v( j)−Q j(h)

∥∥
1 +
∥∥Q j(h)− f

∥∥
1 ≤C(η ,w,Q j(h))∥r( j)∥1 +

ε

4
<

3
4

ε.

If we apply the Q transformation once more we obtain,

Q j+1(h) = Q(v( j)+C(η ,w,Q j(h))r( j))
= Q(v( j))+2C(η ,w,Q j(h))Q(v( j),r( j))+C(η ,w,Q j(h))2Q(r( j)).

Since Q(v( j),r( j))≤ Q(Q j(h),w) as v( j)≤Q j(h), r( j)≤ w, we arrive at
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∥Q(v( j),r( j))−w∥1 ≤ ∥Q(v( j),r( j))−Q( f ,w)∥1 +∥Q( f ,w)−w∥1
≤ ∥v( j)− f∥1 ∥r( j)∥1 +∥r( j)−w∥1 ∥ f∥1 +β

≤ ∥v( j)− f∥1 +∥r( j)−w∥1 +β ≤ ε

2 +
ε

4 + ε + ε

4
= 2ε

and in particular

∥Q(v( j),r( j))∧w∥1 ≥ 1− ε = 1−η .

Hence

C(η ,w,Q j+1(h))≥ 2C(η ,w,Q j(h)).
Iterating the above estimation k = 2J −J times we obtain

ε

2
≥C(η ,w,QJ+k(h))≥ 2kC(η ,w,QJ (h))≥ 2k2J−2J −1 =

1
2
≥ ε

a contradiction, proving our theorem. □
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