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ABSTRACT Detecting energy consumption anomalies is a popular topic of industrial research, but there is
a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting
systems. However, there is a need for such research because the lighting system, a key element of the Smart
City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based
on the deep learning method using the Autoencoder model with LSTM and 1D Convolutional networks
for various configurations and training periods. The evaluation of the algorithms was carried out based on
real data from an extensive lighting control system. A practical approach was proposed using real-time,
unsupervised algorithms employing limited computing resources that can be implemented in industrial
devices designed to control intelligent city lighting. An anomaly detection algorithm based on classic LSTM
networks, single-layer and multi-layer, was used for comparison purposes. Error matrix calculus was used
to assess the quality of the models. It was shown that based on the Autoencoder method, it is possible to
construct an algorithm that correctly detects anomalies in power measurements of lighting systems, and it is
possible to build a model so that the algorithm works correctly regardless of the season of the year.

INDEX TERMS Anomaly detection, autoencoder, machine learning, road lighting systems, smart city, smart
meters.

I. INTRODUCTION
Lighting management systems for roads, parks, and other
public places are vital to Smart City infrastructure. Using
such systemsmakes it possible to reduce electricity consump-
tion and optimize control. Commonly used LED lighting,
apart from the greater efficiency of the light source, enables
effective reduction of road lighting levels, which brings addi-
tional energy savings and facilitates the implementation of
adaptive lighting. Based on the data obtained from the sen-
sors, the system dynamically adjusts the light intensity of a
lamp or a group of lamps to weather or road conditions.

In lighting systems, there is a range of undesirable phe-
nomena, i.e., failures, that should be detected as anomalies.
Examples of such failures are switching off a group of lamps
during the night or switching on lamps during the day when
the lamps are switched on or off according to the schedule and
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incorrect power reduction in the systemwith such a reduction.
A specific type of failure is energy theft - connecting an unau-
thorized energy receiver to the lamp’s power supply circuit.
For this type of anomaly, there is a direct relationship between
their occurrence and instantaneous power consumption.

One of the most important functions of resource monitor-
ing in management systems is anomaly detection, which can
be done in Smart City systems based on data collected from
various sources, primarily from electricity meters [1], [2].

Detecting anomalies in energy consumption is a
well-studied problem in terms of different types of con-
sumers: residential [3], commercial buildings [4], [5], and
industry [6]. It is fostered by the widespread installation
of smart electricity meters (Smart Meters); for example,
in Europe, the penetration rate of smart electricity meters has
reached 56% by the end of 2022. Additional factors include
the provision of available metering databases to test research
models. Unfortunately, road lighting systems have not yet
been the subject of such interest; to the authors’ knowledge,
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the available publications have not yet dealt with studying
anomalies in energy consumption for such systems. However,
such a need exists since lighting systems are increasingly
equipped with Smart Meters that record real-time power grid
parameters. Incorporating such systems into the Smart City
infrastructure makes it possible to acquire data from smart
energy meters in real time and use it to analyze, forecast, and
manage energy consumption.

The practical approach to detecting anomalies as system
failures imposes specific requirements. First, it is preferred to
use ‘‘online’’ algorithms [7], that is, algorithms that operate
in real-time, analyzing recorded data and making a decision
in a finite amount of time, as opposed to ‘‘offline’’ algorithms
that analyze the complete data set after a period of observa-
tion. Second, unsupervised anomaly detection is preferred,
which does not require data annotation, as they are classified
based solely on the intrinsic properties of the dataset. Third,
the algorithms must assume limited resources used for data
processing so that the algorithms can be implemented in
industrial equipment operating under harsh conditions.

The data read from the energy meters are recorded at equal
time intervals, whichmakes them naturally form discrete time
series. At the same time, the current, voltage, active power,
and power factor values are recorded. However, only active
power records will be used for this paper so that the analysis
will be on Univariate Time Series. An overview of methods
for detecting anomalies in time series has been presented
previously in the literature, for example, in [8].
The power consumption of the lighting system is strictly

periodic, with a period of 24 hours, due to the system’s
primary purpose, namely to illuminate public places from
dusk to dawn. The course of power consumption corresponds
to a unipolar rectangular wave with a variable filling factor,
as the length of day and night change throughout the year.
Depending on the time of year, the nighttime and lighting
time lengthens or shortens, and this cycle repeats every year.
Such variability in power consumption makes us deal with
a non-stationary time series. When choosing representation
models, it is necessary to account for this variability in the
model (Concept Drift) through, for example, by correcting
hyperparameters [9].

There are many methods for detecting anomalies in
time series: statistical methods such as ARIMA/SARIMA,
machine learning methods such as K-Means Clustering,
Isolation Forest, or methods using neural networks (Deep
Learning), among others: Convolutional Neural Networks,
Long Short Term Memory (LSTM), Autoencoder. In the
paper [10], the authors analyzed statistical methods based on
the SARIMA model and Deep Learning methods based on
LSTM networks.

Detecting anomalies in energy consumption from smart
meters is used in fraud detection systems (FDS) for advanced
metering infrastructure. A comparison of different cluster-
ing algorithms, FCM (fuzzy C-means), K-means, and SOM
(Self-Organizing Map), was carried out in [11]. The FCM
clustering method can be supplemented with DWT-based

feature extraction [12]. Other clustering methods in FDS
systems, maximum information coefficient, and clustering
technique by fast search and finding density peaks are pre-
sented in [13].

Using Smart Meters in road lighting systems creates new
opportunities for automatic diagnosis of undesirable phe-
nomena such as lamp failures, deviations from the schedule,
or theft of energy from the power supply network. This
solution fits into the concept of Smart Cities, where using
an adaptive lighting system creates new challenges for the
monitoring function.

This paper deals with a method using the Autoencoder
(AE) network model. The primary function of such a network
is to reproduce input data at the output based on a learned
pattern. However, when data in the input significantly differs
from the memorized pattern, the AE will not be able to
reproduce it correctly, which may indicate the presence of
anomalies in the data. Since sequential data is being analyzed,
models based on recurrent networks were chosen: the spline
and LSTM networks.

II. RELATED WORKS
As mentioned, there is a lack of articles studying anoma-
lous energy consumption by lighting systems. A very similar
topic is dealt with by the authors of [14], although their
focus is on methods for detecting and classifying abnormal
behavior in the communication network of a lighting system
using supervised learning. Various types of autoencoders and
learning schemes used for unsupervised detection of energy
consumption anomalies are analyzed in [15]. An autoencoder
model using the clustering (ensemble) method was proposed,
and a comparison of autoencoders based on unidirectional
(Fully connected feed-forward) and convolutional (1D con-
volutional) networks was carried out, presenting techniques
for evaluating autoencoder performance. The convolutional
autoencoder achieved the best performance. The paper [6]
investigated using an autoencoder using an LSTM network to
detect elevated energy consumption in industrial applications,
making it possible to identify improperly controlled, improp-
erly maintained, or obsolete subsystems. An autoencoder
using multiple layers of LSTM (Stacked AE) was tested in
[18] for short-term forecasting capabilities. The model was
extended with an attention mechanism (attention mechanism)
based on assigning appropriate weights to input functions.
Themodel was compared with several AE architectures using
real measurement data for better forecasting accuracy.

On the other hand, in [19], a bi-directional LSTM (BiL-
STM) network was used in the autoencoder to achieve
greater accuracy in anomaly detection since two unidirec-
tional LSTM networks more effectively extract features from
temporal data. The threshold selection problem in anomaly
detection was analyzed in [21]. A nonparametric, dynamic,
and unsupervised threshold selection method was presented.
In [23], it was shown that an autoencoder based on LSTM
network can detect anomalies in predictable, unpredictable,

VOLUME 11, 2023 124151

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


T. Śmiałkowski, A. Czyżewski: AE Application for Anomaly Detection in Power Consumption

periodic, aperiodic, and quasi-periodic time series. It is also
shown that the autoencoder can detect anomalies in short (30
samples) and long (more than 500 samples) time series. The
application of the transfer learning method for time series
classification is presented in [27].

III. SETUP
Models based on a recurrent neural network of the LSTM type
were chosen for the study because it was designed to handle
sequential data. For this type of network, a basic model con-
sisting of an LSTM decoder and encoder, hereafter referred to
as a single-layer model, and a deep model with an additional
hidden layer, also of the LSTM type, hereafter referred to
as a two-layer model, were studied. Fig. 1 and Fig. 2 show
the structure of the analyzed networks using LSTM. For
comparison, calculations were also carried out for AE with a
one-dimensional braided network - 1D Convolutional, whose
network structure is shown in Fig. 3.
In addition, for comparison purposes, classical LSTM,

single-layer, and multi-layer networks were used for the
anomaly detection algorithm, the structure of which is shown
in Fig. 4.

FIGURE 1. Single-layer autoencoder with LSTM network.

FIGURE 2. Dual-layer autoencoder with LSTM network.

FIGURE 3. Autoencoder with 1D Convolution spliced network.

When constructing an autoencoder model, it is necessary
to define several hyperparameters, the selection of which will
determine both the correctness of the model and the com-
putational complexity. The basic parameters of the selected
networks and the designations used further to denote the
simulations:

FIGURE 4. LSTM network applied to anomaly detection algorithm.

For AE LSTM single layer:
• AEL1U32 - Output space = 32
• AEL1U64 - Output space = 64
• AEL1U96 - Output space = 96
• AEL1U128 - Output space = 128

For AE LSTM two-layer:
• AEL2U32 - Output space 1st layer= 32, 2nd layer= 16
• AEL2U64 - Output space 1st layer= 64, 2nd layer= 32
• AEL2U96 - Output space 1st layer= 96, 2nd layer= 32
• AEL2U128 - Output space 1st layer = 128, 2nd layer =

32
For AE 1D Convolution:

• AEC7U32 - output space 1st layer= 32, 2nd layer= 16,
convolution window = 7

• AEC7U64 - output space 1st layer= 64, 2nd layer= 32,
convolution window = 7

• AEC9U64 - output space 1st layer= 64, 2nd layer= 32,
convolution window = 9

For the LSTM network:
• LSTxUyy - x: number of layers = 1,2,3,4; yy: output
space = 16, 32, 64

The research work described in this article was to analyze
the effectiveness of detection algorithms based on different
network architectures for selected sets of models. Since the
anomaly detection algorithm is intended to be a real-time
algorithm, it is essential to determine the minimum learning
period for the models. Models requiring a large amount of
training data, i.e., a long time, would have little practical use.
Therefore, training periods of 3 to 7 days were chosen for the
study.

Solving the anomaly detection problem can be approached
as a binary classification method. Although the values of the
analyzed signals have continuous values, defining a cutoff
value will make the values classifiable as positive or negative,
depending on whether the resulting value is higher or lower
than the cutoff value.

The evaluation of anomaly detection algorithms is based
on data from a lighting control system installed in a Polish
city. The system controls over 4400 smart LED lamps and
has 90 smart three-phase energy meters installed in control
cabinets. Data from the meters is read at a 60-second interval
and is transferred to a central database. Each record contains
each phase’s meter ID, timestamp, phase voltages, current
values, active and apparent powers, and power factors. The
database has recorded over 90 million records from June
2020 to December 2022. Fig. 5 shows an example of records
for one of the meters. The representative database is available
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FIGURE 5. Example records of a smart energy meter.

FIGURE 6. Example visualizations of power measurement data for ZP1, ZP2, . . . ZP9.

[28] and contains all the data for the calculations referred to
in this article.

A 15-minute sampling period was used for the simula-
tion, as this is the standard period for determining energy
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consumption profiles for utility installations. Downsampling
was used by calculating the average value over the period.

Simulations were performed on nine datasets labeled ZP1,
ZP2, . . .ZP9. These data are from differentmeters for different
seasons and contain varying values of power measurement
amplitudes as they measure different circuits. Fig. 6 visual-
izes excerpts from these datasets..

All algorithmswere implemented in Python version 3.10.5.
The following libraries were used: pandas 1.3.5, NumPy
1.21.5, statsmodels 0.13.1, scikit-learn 1.0.2, TensorFlow
2.9.1, Keras 2.9.0. The calculations were carried out on a
computer with an Intel® Core™ i7-7700HQ 2.8GHz proces-
sor equipped with 16GB RAM.

IV. ANALYSIS OF REGULAR DATA WITHOUT ANOMALIES
Since it was assumed that the autoencoder would be used for
anomaly detection, it is important to answer how the con-
structed model reconstructs ‘‘correct’’ signals, i.e., without
anomalies. The input data of the autoencoder are sequences
of a fixed length corresponding to the periodicity of the signal
under analysis. In the case of power measurements, the period
equals 24 hours, with a sampling period of 15 minutes, giving
96 samples per sequence. A sequence of this length is gener-
ated in each step of the autoencoder operation. A measure
of MAE - Mean Absolute Error (eq. 1), calculated for each
pair of input and output sequences, is used to assess the
correspondence of the reconstructed signal with the input
signal:

MAE =
1
n

∑n

t=1
|yt − yPt | (1)

An example of the course of MAE values for training data
is shown in Fig. 7.

FIGURE 7. Example waveform of MAE value for autoencoder.

The input data undergoes min-max normalization before
being processed by the AE algorithm to compareMAE values
for different input data sets. The anomaly detection algorithm
determines the maximum MAE value in the training period,
which is the reference threshold for the MAE in the test
period. It is assumed that the greater the consistency of the
reconstructed signal, the greater the possibility of detecting
anomalies because the detection threshold will be relatively
low.

The simulation aims to detect the relationship between the
autoencoder model configuration, the training period length,

and the ability to reconstruct the input signal. An indica-
tor was used: maximum MAE value - MAEmax to evaluate
the reconstruction ability. This indicator’s lowest possible
value is expected for training and test data. However, these
indicators are insufficient to assess the algorithm’s potential.
Since the detection threshold is the MAEmax value for the
training data, theMAEmax value for the test data should be as
close to it as possible. Therefore, an additional MR indicator
calculated as the absolute value of the difference between the
number 1 and the ratio of the MAEmax for the test period to
the MAEmax for the training period is introduced (eq. 2):

MR =

∣∣∣∣ Test MAEmaxTrain MAEmax
− 1

∣∣∣∣ (2)

The MR value for regular signals, without anomalies,
is expected to be close to 0.

For simulations based on the LSTM model, the way of
calculating the MR index must differ because, in its case,
a prediction of one value is made in one step for a given input
sequence. Therefore, for LSTM, the measure for assessing
the quality of reconstruction is the absolute error, denoted as
AE (Absolute Error) (eq. 3):

AE t = |yt − yPt | (3)

An example of the course of AE values for training data is
shown in Fig. 8.

FIGURE 8. Example of AE value waveform for LSTM network.

For the LSTMmodel, the average values for a given period,
or MAE, are used to calculate MR (eq. 4)

MR =

∣∣∣∣ Test MAETrain MAE
− 1

∣∣∣∣ (4)

An enumeration defined through Algorithm 1 was per-
formed for each model.

An ‘‘early stopping’’ training method was used to train
the models to avoid overtraining (overfitting). An MAE was
adopted to monitor model performance, a validation dataset
corresponding to 24 hours of measurements, a minimum
index change of 0.0001, a number of epochs with no index
change of 50, and a maximum number of epochs of 500. The
remaining parameters are listed in Table 1.
The simulation results were then grouped for different

lengths of the training period and different data sets, and the
MR index was calculated. The average values of the MR
index averaged over all data sets according to the length of
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Algorithm 1 Calculate MAEmax

for train_period in set(3d..7d):
for data zp in set (ZP1, ZP2, . . .ZP9):

• create model
• train model
• make a prediction for train data
• calculate Train MAE for prediction
• make predictions for test data
• calculate MAE test for prediction
• calculate Train MAEmax, Test MAEmaxand MR

TABLE 1. Autoencoder hyperparameters.

the training period are shown in Table 2 for autoencoder
models and Table 3 for LSTM models. All tables starting
from Table 2 are included in the Appendix. For AE models,
the smallest value, i.e., the most favorable, was achieved by
the simulation for the AEL2U32 model. For a training period
of three days, simulations for spliced models achieved worse
rates. For LSTM models, the lowest value was achieved by
the simulation for the LST4U32 model and a training period
equal to seven days. The indices of LSTM models are worse
than those of AE models using LSTM. However, the latter is
better than the indices for the AE weave and LSTM models.

Fig. 9 compares the average value of the MR index for
selected models for those for which the average value of MR
is the lowest.

FIGURE 9. Comparison of the average value of the MR index for selected
models.

Table 4 shows the standard deviation of the MR index for
AE models and Table 5 for LSTM models. The simulation
reached the smallest standard deviation value for the L2U32

FIGURE 10. Comparison of the average value of the MR index for
selected models.

FIGURE 11. Comparison of True Negative Rate (TNR) values for selected
models for Cutoff = 1.1 MAEmax.

model and the 3-day period. Fig. 10 shows a comparison of
the standard deviation of the MR index for selected models.

Small values of the standard deviation of the MR index
indicate that a given model correctly reconstructs data corre-
sponding to situations without anomalies for all data pledges.
According to the above results, theAEL2U32model achieved
both the smallest mean value of theMR index and the smallest
standard deviation. Furthermore, the standard deviation for
AE models using LSTM is lower than that of the spline AE
models and LSTM models. It means AE models with LSTM
are the most resistant to the concept drift phenomenon.

Confusion Matrix calculus was also used to assess the
quality of the models. To be able to use binary classification,
it is necessary to determine the threshold value. The natural
choice is the MAEmax value for the training period; calcula-
tions were performed for a threshold 5% and 10% larger than
the Train MAEmax. Error matrices were determined for all
model/training period combinations for such thresholds.

Since regular signals without anomalies are analyzed at
this stage, True Positive (TP) and False Negative (FN) val-
ues will always be zero. Therefore, the F1-score cannot be
determined, but the True Negative Rate (TNR), also known
as specificity, can be calculated. The calculated rates for
different models and training periods are included in Table 6.

The calculated values indicate that none of themodels clas-
sifies without error for a threshold equal to Train MAEmax.
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In contrast, for a threshold greater than 10%, several AE
models with LSTM can classify the data without error. Again,
the AEL2U32 model shows the best signal reconstruction
properties. Fig. 11 compares TNR values for selected models
for Cutoff threshold = 1.1 MAEmax.

V. ANALYSIS OF DATA WITH ANOMALIES
The next step in verifying the effect of AE configuration
on the performance of the detection algorithm is to conduct
a test in which the reconstruction error for signals with
anomalies is calculated. Since the detection algorithm must
distinguish between correct and disturbed signals, a time
series of measurements containing an anomaly is divided into
three consecutive episodes. The first is the training period,
the second is the episode without abnormality (T1), and the
third is the episode with anomaly (T2), as shown in Fig. 12.
Analogously, the calculations for data sets without anomaly
ZP1, ZP2, . . .ZP9, MAEmax and MR indicators for the T1
period are calculated. In addition, the AR index (eq. 5), which
represents the amplitude of the anomaly, is calculated:

AR =
T2MAEmax
T1MAEmax

(5)

Calculations were performed for six sets of measurements
containing anomalies labeled ZPA, ZPB, . . .ZPF. Fig. 13
visualizes excerpts from these datasets.

FIGURE 12. The principle of splitting a time series of measurements
containing an anomaly.

FIGURE 13. Example data with power measurements for ZPA, ZPB, . . . ZPF.

ZPA, ZPB, ZPC, ZPD sets include abnormalities for control
without reduction, ZPE, ZPF sets for control with reduction:

• ZPA - switching on the lamps during the day
• ZPB – no lamps on at night
• ZPC – some of the lamps do not work – there was a
decrease in power consumption

• ZPD – switching on a group of lamps during the day or
energy theft

• ZPE – switching off the reduction schedule
• ZPF - some of the lamps do not work - there has been a
decrease in power consumption

A calculation defined by Algorithm 2 was performed for each
model.

Algorithm 2 Calculate MAEmax for Train, T1, T2
for train_period in set (3d..7d):

for data zp in set (ZPA, ZPB, . . .ZPF):
• create model
• train model
• make a prediction for train data
• calculate Train MAE for prediction
• make a prediction for test period 1
• calculate T1 MAE for prediction
• make a prediction for test period 2
• calculate T2 MAE for prediction
• Calculate Train MAEmax, T1 MAEmax, MR, AR

The simulation results were grouped for the data sets,
and the average value of MR and AR were calculated. The
average values of the MR index are shown in Table 7 for the
autoencoder models and in Table 8 for the LSTM models.
Again, MR indices are significantly worse for LSTMmodels
than AE models. This time, the AE weave models achieved
comparable values to the AE LSTM models. Fig. 14 shows a
comparison of the average value of the MR index for the T1
period for selected models.

FIGURE 14. Comparison of the average value of the MR index for the T1
period for selected models.

The average values of the AR index are shown in Table 9
for autoencoder models and Table 10 for LSTMmodels. This
time, the indices for LSTM models are better than those
for AE models - the higher the AR value, the better. It is
worth noting that the worst AR indicator was achieved by the
AEL2U32 model, which outperformed the other models in
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FIGURE 15. Comparison of the average value of the AR index for selected
models.

FIGURE 16. Course of MAE values during simulation for the AEL2U32
model and a training period equal to three days.

terms of other indicators. For all types of anomalies, the value
of the AR index is sufficient for correct detection. Fig.15
compares the average value of the AR index for selected
models.

Example waveforms of MAE values during simulation for
AE LSTMmodels are shown in Fig. 16 and Fig. 17. Example
waveforms of AE values during simulation for LSTMmodels
are shown in Fig. 18.
Analogous to regular data analysis, error matrix calculus

assessed the models’ quality, and the same threshold values
were used. This time we have a full set of values since the
T1 period corresponds to a negative value and the T2 period
corresponds to a positive value. If the signal in period T1 is
below the threshold, it is a True Negative case, if above it is a
False Positive case. If the signal in the period T2 is below the
threshold, then it is False Negative, if above, then it is True
Positive. Based on this relationship, F1-score values can be
determined. The calculated indices for different models and
training periods are included in Table 11. The calculated val-
ues show that for a threshold equal to Train MAEmax none of
the models achieve F1-score values equal to 1. In contrast, for
a threshold greater than 10%, several AE models with LSTM

FIGURE 17. Course of MAE values during simulation for the AEC9U64
model and a training period equal to 3 days.

FIGURE 18. The course of AE values during simulation for the LST2U32
model and a training period equal to four days.

FIGURE 19. Comparison of F1-score values for selected models for
Cutoff = 1.1 ∗ MAEmax.

can achieve F1-score values equal to 1. Again, the AEL2U32
model shows the best signal reconstruction properties.

Additionally, the Area Under the Curve (AUC) and
Mean Average Precision (MAP) were calculated for the
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TABLE 2. The mean values of the autoencoder MR index depend on the training period’s length. The seven smallest values are shown in bold, and the
seven most significant values are in italics.

TABLE 3. Mean values of the MR index for LSTM according to the length of the training period. The seven smallest values are shown in bold, and the
seven largest values are in italics.

TABLE 4. The standard deviation of the MR index for the autoencoder depends on the training period length. The seven smallest values are shown in
bold, and the seven most significant values are in italics.

Autoencoder models. The results are included in Table 12.
The advantage of models based on LSTM is again
confirmed.

Based on the above results, it can be concluded that the
best results in terms of anomaly detection were achieved
by algorithms based on autoencoder with an LSTM net-
work. Firstly, these algorithms achieved the best F1-score
value and the best TNR index. Secondly, they reached the

lowest MR values. Thirdly, they require the shortest training
periods.

VI. CONCLUSION
The novelty of the article is the use of a deep learning
method using an Autoencoder model to detect anomalies in
road lighting systems by analyzing data from smart energy
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TABLE 5. The standard deviation of the MR index for LSTM depends on the length of the training period. The seven smallest values are in bold, and the
seven most significant ones are in italics.

TABLE 6. True Negative Rate (TNR) values for different models and training periods. Values equal to 1.0, indicating error-free classification, are shown in
bold, and values equal to 0.89, corresponding to one misclassification, are shown in italics.

TABLE 7. Mean values of the MR index for the T1 period for autoencoder models. The seven smallest values are in bold, and the seven most significant
ones are in italics.
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TABLE 8. Mean values of the MR index for the T1 period for LSTM models. The seven smallest values are shown in bold, and the seven largest values are
in italics.

TABLE 9. Average values of the AR index for AE models. The seven most significant values are highlighted in bold, and the seven smallest values are in
italics.

TABLE 10. Average values of the AR index for LSTM models. The seven most significant values are highlighted in bold, and the seven smallest in italics.

meters. Based on the Autoencoder method, it is possible to
construct an algorithm that correctly detects anomalies in
lighting systems’ power measurements. Furthermore, it is
possible to build the model so that the algorithm works
correctly for the entire data recording period, regardless
of the season. The training period of the model can be
equal to three days, which means that the algorithm is
ready to detect anomalies after this time. Simulations also

showed the advantage of the autoencoder model over LSTM
models.

Based on the results obtained so far, the authors plan to use
other methods, such as transformer networks and clustering
methods based on FCM. Further development of experi-
mental research is planned, the expected result of which is
automatic supervision of the operation of lighting systems
carried out by artificial intelligence.
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TABLE 11. F1-score values for different models and training periods. Values equal to 1.0, indicating error-free classification, are highlighted in bold, while
values equal to 0.92, corresponding to one misclassification in italics.

TABLE 12. Area Under the Curve (AUC) and mean average precision (MAP) for autoencoder models for different training periods.

APPENDIX
DETAILED RESULTS OF EXPERIMENTS
See Tables 2–12.
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