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Abstract—The paper presents a new approach to detection

of apnea/hypopnea events, in the presence of artifacts and
breathing irregularities, from a single channel airflow record.
The proposed algorithm, based on a robust envelope detector,
identifies segments of signal affected by a high amplitude mod-
ulation corresponding to apnea/hypopnea events. It is shown
that a robust airflow envelope - free of breathing artifacts -
improves effectiveness of the diagnostic process and allows one
to localize the beginning and the end of each episode more
accurately. The performance of the proposed approach, evaluated
on 15 overnight polysomnographic recordings, was assessed using
diagnostic measures such as accuracy, sensitivity specificity and
Cohen’s coefficient of agreement; the achieved levels were equal
to 96%, 91%, 96% and 0.85, respectively. The results suggest
that the algorithm may be implemented successfully in portable
monitoring devices, as well as in software-packages used in sleep
laboratories for automated evaluation of sleep apnea/hypopnea
syndrome.

Index Terms—Sleep apnea and hypopnea, breathing artifacts,
median filters, envelope detector

I. I NTRODUCTION

SLEEP apnea/hypopnea syndrome (SAHS) is a sleep-
breathing disorder characterized by repetitive episodes of

complete obstruction (sleep apnea event) or partial obstruction
(hypopnea event) of the upper airway, often resulting in
a blood oxygen desaturation and arousals leading to sleep
fragmentation. The usual daytime manifestation is excessive
sleepiness, fatigue, and poor concentration, which can escalate
to traffic accidents, depression, and memory loss. The major
risk factors for the disorder include obesity, male gender,
and age [1]. Untreated SAHS may lead to ischemic heart
disease, cardiovascular disfunction, and stroke [2]. SAHS is
a noticeable problem of social and health life, affecting3%
of children [3], 2% of female adults and4% of male adults
worldwide [4]. In fact, still up to80% of cases of moderate or
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of Gdańsk, Gdańsk, Poland (e-mail: kmr@amg.gda.pl).

severe SAHS have gone undiagnosed despite adequate access
to health care [5], [6].

Currently, in sleep laboratories, there are carried out
overnight polysomnographic studies (PSG) aimed at early
detection and assessment of the severity of SAHS in patients.
PSG study is considered as the “gold standard” method for
SAHS diagnosis [7]. It involves recording and studying si-
multaneously many signals such as electrocardiogram (ECG),
nasal airflow (NAF) and blood oxygen saturation (SaO2). To
reach the final conclusion, the recorded signals are analysed by
a physician experienced in the field of pulmonology. The final
diagnosis is based on calculation of the apnea/hypopnea index
(AHI) which reflects the number of sleep apnea/hypopnea
(SAH) events per hour of sleep. It is assumed that accurate
and reliable identification of SAH events is critical for case
identification and for quantifying disease severity classified as:
mild when 5 ≤ AHI < 15, moderate when15 ≤AHI < 30,
and severe when AHI≥ 30 (events per hour of sleep) [7], [8].
Currently the clinical routine is based on manual correction
of the results obtained by automated analysis, which is an
extremely tedious and time consuming task [8]. Unfortunately,
the drawbacks of the full PSG study, such as high cost, a long
list of patients waiting to be tested, and a feeling of discomfort
due to a large number of sensors placed on the patient’s body
during the overnight test, suggest the need for developing
alternative methods of diagnosis, based on information from
selected channels of PSG, which could be implemented in
portable monitoring devices for evaluation of SAHS [1].

Numerous methods exist, based on the evaluation of various
signals originating from PSG, for detection of SAH events.
This includes methods based on analysis of an ECG signal
[9], [10], [11], [12], a SaO2 signal [13], [14], or a combination
of the two [15]. Both signals mentioned above provide only
supportive evidence of SAH events and do not allow one to
localize precisely their beginning and end. It often happens
that the primary evidence (significant reduction in NAF signal)
is not observed. In the case of a SaO2 signal, the supportive
evidence, in the form of a blood oxygen desaturation, is de-
layed in time in relation to the moments of occurrence of SAH
events. Additionally, it is highly dependent on many factors,
such as calibration of the measuring device, physiological
conditions of the patient, presence of artifacts, etc. [8]. In the
recent years several studies have focused on detection of SAH
events based exclusively on the analysis of the airflow signal
[16], [17], [18], [19], [20]. Almost all of these studies are
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based on a “black box” approach and use such techniques as
artificial neural networks [16], spectral analysis [17], feature
selection [18] or support vector machines [19], [20].

The main contribution of this paper is demonstration that
SAH events can be effectively identified, in the presence of
artifacts and breathing irregularities, based on analysisof a
robust airflow envelope.

II. B REATHING ARTIFACTS

The standard morphological criteria, given by the American
Academy of Sleep Medicine (AASM) [1], describe SAH
events as a significant reduction of airflow amplitude lasting
at least10 seconds. The reduction of airflow amplitude is ob-
served in relation to the level of breathing amplitude preceding
and succeeding the respiratory event, further called baseline
value. Two thresholds of airflow reduction,50% and 90%,
were accepted to represent partial and complete obstruction of
the upper airway, respectively. The baseline was not defined
clearly in an analytical way. Often pulmonology specialists
adopt for the baseline the value the local maximum peak,
or the average value of peaks from the last100 seconds
[1]. In the presence of abnormally large peaks, further called
artifacts, none of these recommendations is appropriate for
baseline value tracking. Irregular breathing artifacts are usually
associated either with the patient’s motion during sleep - see
Fig. 1A (rapid body movements, changing of sleep position),
or with a sudden opening of the upper airway succeeding a
sleep apnea event - see Fig. 1B. Such a rtifacts in airflow
measurements can lead to incorrect identification of SAH
events by automated sleep scoring methods, which in turn may
result in incorrect diagnosis of the SAHS syndrome. For this
reason, the physician localizes, based on visual inspection,
signal segments corrupted by artifacts and manually marks
them as the ones that should be ignored during automated sleep
scoring. This is a very time-consuming process, and a subjec-
tive judgment is required to complete the job. Unsatisfactory
quality of automated analysis based on NAF signal is often
caused by problems with adaptive tracking of the baseline
value, with respect to which SAH events are identified. Due to
the presence of artifacts, the correct morphological description
of the baseline value is not a trivial task [8], [21]. In [22] the
authors propose to track the baseline value in adaptive way,
based on an exponentially weighted average of past peaks.
To eliminate impact of large positive and negative peaks, only
peaks that remain within40% of the current baseline value are
considered. This approach seems to work well until a sudden
change of breathing rhythm appears, leading to problems with
fast updating of the baseline value. The approach proposed in
[23] is based on airflow signal modeling. The model is used
to reconstruct fragments corrupted by artifacts.

III. E NVELOPE DETECTION

During a routine analysis physician can easily track the
“true” signal envelope using visual inspection - even in the
presence of artifacts. Such an envelope corresponds to a
smooth curve (without ripples) that matches, in a way that is
robust to breathing artifacts, the main peaks of the waveform,
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Fig. 1: Breathing artifacts : A - rapid body movements and
changing of sleep position, B - sudden opening of the upper
airway succeeding a sleep apnea/hypopnea event. Artifactsare
marked with arrows.

and follows closely sudden variations in signal amplitude.If
a partial or complete reduction of airflow takes place, then
SAH events take the form of characteristic “valleys” visible
in the signal envelope. A physician identifies and classifies
these valleys as hypopnea or sleep apnea events, based on the
standard morphological criteria and his/her own experience. In
the proposed approach we try to reproduce such a procedure.

Envelope detection has numerous applications in the field of
signal processing and communications [24], one of which is
demodulation of amplitude-modulated (AM) signals governed
by

s(t) = A[1 + βm(t)] cosωct (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimension-
less) discrete time,m(t) ≥ 0 denotes the baseband message,
ωc denotes carrier (angular) frequency,A denotes the carrier
amplitude andβ > 0 is the so-called amplitude sensitivity of
the modulator. Whenm(t) is a lowpass signal with bandwidth
W much smaller than the carrier frequencyωc, the amplitude
envelope of the signals(t) is defined as

e(t) = A[1 + βm(t)] ≥ 0. (2)

Envelope can be “extracted” from the AM signal using devices
known as envelope detectors. The two most frequently used
envelope detectors that will be briefly described below are
those based on the square-law (full rectification) principle, and
on the Hilbert transform, respectively. Due to irregularities in
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the breathing rhythm, the airflow signal only approximately
fits the AM model (1) which adversely affects performance of
the classical envelope detectors. The situation becomes even
more complicated in the presence of breathing artifacts. We
will show that both problems indicated above can be taken care
of if the classical detection schemes are suitably modified.

A. Square-law envelope detector

The flowchart of the square-law detector [24] is shown in
Fig. 2. Whens(t) is an AM signal governed by (1), the scaled

Fig. 2: The square-law envelope detector.

output of the squaring device can be written down as a sum
of two components

f(t) = A2[1 + βm(t)]2 +A2[1 + βm(t)]2 cos 2ωct. (3)

and half is shifted down towards DC. The first term on
the right-hand side of (3) is a lowpass signal with the cutoff
frequency2W , and the second one is a bandpass signal with
spectrum confined to the frequency bands(−2ωc − 2W, 2-
wc+2W ) and(2ωc−2W, 2ωc+2W ), centered around±2ωc.
Hence, when the conditionωc > 2W is met, the lowpass
component off(t) can be extracted using a lowpass FIR filter
L(ω) with cutoff frequency2W

h(t) = L[f(t)] =
∑k

i=−k
lif(t− i) ∼= A2[1 + βm(t)]2 (4)

where li = l−i, i = −k, . . . , k, denote impulse response
coefficients of the filter. The estimated value of the envelope
can be obtained from

ê(t) =
√
h(t) (5)

B. Envelope detector based on the Hilbert transform

The second classical method of envelope detection, based
on the Hilbert transform [24], is depicted in Fig. 3. The
Hilbert transform of an analog real-valued finite energy signal
x(tc),−∞ < tc < ∞, is defined as [24]

sH(tc) = H[s(tc)] =

∫ +∞

−∞

s(τ)dτ

π(tc − τ)
(6)

wheretc denotes the continuous-time variable. Envelope de-
tection involves creation of the complex-valued analytic signal,
defined as

y(tc) = s(tc) + jsH(tc). (7)

The analytic counterpart of a discrete-time signals(t) can
be evaluated either directly - using the FFT-based frequency-
domain approach [25], or indirectly - by computing an “ana-
lytic” signal sH(t) (using the discrete-time FIR approximation
of the Hilbert transform) and combining it withs(t):

y(t) = s(t) + jsH(t). (8)

Fig. 3: Envelope detector based on the Hilbert transform.
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Fig. 4: The output of the Hilbert-transform-based envelope
detector prior to lowpass filtering (thick line): A) normal
breathing in the presence of incidental artifacts, B) sleepapnea
patterns. Note the presence of high-frequency fluctuations
called ripples. Thin lines show the airflow (input) signal.

Since Hilbert transform shifts the phase of all sinusoidal
components by−π/2, for the “ideal” AM signal (1), one
obtainssH(t) ∼= A[1 + βm(t)] sinωct which means that the
envelope ofs(t) can be obtained by evaluating the magnitude
of the analytic signal

f(t) = |y(t)| =
√
s2(t) + s2

H
(t) ∼= A[1 + βm(t)]. (9)

For AM-like signals, such as speech signals or biomedical
signals, the envelope extracted in this way suffers from high-
frequency fluctuations, called ripples [27] - see Fig. 4. Ripples
can be removed by passing the signalf(t) through a lowpass
filter, leading to

ê(t) = L[f(t)]. (10)

C. Modification in the envelope detection procedures

The estimation of the airflow envelope obtained using
approach based on the square-law or on the Hilbert transform
suffers from envelope distortions caused by artifacts which
are only partially eliminated at the stage of lowpass filtering.
The envelope distortions of short duration and of relatively
high amplitude may seriously affect the estimated baseline

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4

values by setting them at too high levels. This may lead to a
large number of false-positive decisions, some of which cause
erroneous distinction between hypopnea of sleep apnea events.
The second problem with analysis based on the classical
envelope detection results, is related to the filter-induced time-
shift effects, at the beginning and at the end of each apnea
episode, namely, in an i increased number of true-negative
decisions. Since the sleep apnea event should last at least10
seconds, wrong localization of its endpoints may result in an
erroneous event classification.

To eliminate both drawbacks mentioned above, a cascade
made up of a standard median (SM) filter and a recursive
median (RM) filter is used instead of the linear lowpass FIR
filter L(ω) in the two envelope detection methods depicted in
Figs. 2 and 3.

Fig. 5: A cascade made up of standard and recursive median
filters.

Median filtering is a popular method of noise removal in
applications involving signal and image processing. This non-
linear technique has proven to be a good alternative to linear
filtering as it can effectively suppress impulsive noise while
preserving the edge information [28].

The output of the SM filterg(t) is the median value of the
input data inside the window centered at the pointt, and is
given by

g(t) = med{f(t−m), . . . , f(t), . . . , f(t+m)} (11)

whereM = 2m + 1 denotes the window size andmed{·}
denotes the central value of the ordered sequence of samples.
To effectively reduce the influence of artifacts on the airflow
envelope, while preserving the sharp envelope “edges” at the
beginning and at the end of each apnea episode, the SM
window size should be properly selected. If the window size
is too small, not all artifacts are suppressed. If the window
size is too large, the blurring effect can be observed, similarly
as in the case of image processing applications. Therefore the
window size should be at least two times larger than the length
of the segments affected by artifacts, but smaller than the
distance between two neighboring SAH events. Based on the
observation that artifacts are usually confined to one breathing
cycle, whereas the breathing frequency changes from0.18 Hz
to 0.4 Hz, we suggest that the SM window should cover12
seconds of the airflow signal.

The RM filter, used to process the median-prefiltred signal
samplesg(t), is given by

h(t) = med{h(t− n), . . . , h(t− 1), g(t), . . . , g(t+ n)} (12)

whereN = 2n + 1 denotes the window size. The RM filter
is more sensitive to window size than the SM filter. If the
window is too wide, it can excessively smooth out the signal
leading to deformation of the envelope. It is proposed to set
N approximately toM/2. According to our experiments, the
proposed cascade of two median filters yields better results

than those obtained when only one of the filters is applied.
The proposed modification in the airflow envelope detection
procedures allows one to obtain robust envelopes based on
the square-law or on the Hilbert transform, further denotedas
RESL and REHT, respectively.

Figs. 6-9 illustrate robustness of the proposed modified
envelope detectors in two practically important cases.

Figs. 6 and 7 demonstrate insensitivity of RESL and
REHT envelopes to breathing artifacts – unlike the classical
ESL/EHT envelopes, which are affected by airflow outliers,
the RESL/REHT envelopes are robust to short-lived breathing
artifacts. This allows one to keep the baseline (which is set
to the local envelope maximum) at a level corresponding to
regular, i.e., undisturbed breathing.

Figs. 8 and 9 demonstrate another advantage of nonlinear
filtering – preservation of sharp envelope “edges”. When linear
lowpass filter is used in lieu of the proposed cascade of non-
linear filters, the corresponding envelopes slowly decay/rise at
the beginning/end of each reduced-airflow episode. Since the
length of such an episode is an important diagnostic factor
(see Section 4), its underestimation can result in overlooking
or misclasification of SAH events. Median filters do not
introduce time shifts mentioned above. Additionally, the recur-
sive median filter is very efficient in smoothing out (without
blurring envelope edges) some local signal fluctuations that
can be observed at the output of a standard median filter
[29]. As a result, the envelope “valleys” corresponding to SAH
events usually have only one local minimum. This very much
simplifies SAH identification as SAH episodes can be easily
localized between the two successive local maxima.

Remark 1: Note that median windows centered at instantst
andt+1 overlap. Therefore, since evaluation ofg(t) given by
(11) has already sorted most of the samples that are required
for evaluation ofg(t+1), the computation can be made much
more efficient. Using the indexable skip list technique [30]the
computational complexity of a median filter can be reduced
from O(M2) comparisons to onlyO(logM) comparisons
per time update [31]. The same technique can be used for
realization of a fast recursive median filter.

Remark 2: Similarly as in the case of classical envelope
detectors, the computational load of the proposed methods can
be further reduced by downsampling the signalf(t) prior to
nonlinear filtration. To avoid aliasing effects, prior to down-
sampling the signalf(t) should be passed through a linear
lowpass filter with appropriately chosen cutoff frequency.

IV. I DENTIFICATION OF SAH EVENTS

Once the airflow envelope has been obtained, identification
of SAH events is easy: they can be localized (if present)
between the succeeding local maxima of the robust envelope.
Each time a new local maximum appears, the baseline value is
updated and set to the value of this local maximum. Consider
a sequence of samples{ê(t1), . . . , ê(tn)} corresponding to a
segment of robust envelope, whereê(t1) and ê(tn) represent
two subsequent local maxima. The baseline value is set to
ê(t1) and two thresholds are computed, corresponding to50%
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TABLE I: Quantitative comparison of scores provided by an expert with the results yielded by two variants of the proposed
method: Approach I based on the square-law, and Approach II based on the Hilbert transform. The scores correspond to the
number of detected apnea/hypopnea events (SAH), only apneaevents (Apnea) and only hypopnea events (Hypopnea). The AHI
index reflects the number of sleep apnea/hypopnea events perone hour of sleep. The number of artifacts present in airflow
recordings, based on subjective scoring of abnormally large peaks, ranged from13 to 210 per recording.

Expert Approach I Approach II
Patient Artifacts SAH Apnea Hypopnea AHI SAH Apnea Hypopnea AHI SAH Apnea Hypopnea AHI

1 20 33 5 28 4.41 36 3 33 4.81 34 2 32 4.54
2 70 36 2 34 4.81 45 2 43 6.01 49 2 47 6.55
3 13 46 13 33 6.15 45 9 36 6.01 53 11 42 7.08
4 70 50 5 45 6.68 53 1 52 7.08 58 1 57 7.75
5 78 106 17 89 14.16 127 8 119 16.97 130 8 122 17.37
6 17 111 28 83 14.83 107 17 90 14.30 113 16 97 15.10
7 59 126 75 51 16.84 136 67 69 18.17 142 70 72 18.98
8 36 167 126 41 22.32 147 100 47 19.64 147 100 47 19.64
9 76 169 19 150 22.58 168 13 155 22.45 178 15 163 23.79
10 64 216 133 83 28.86 222 23 199 29.67 201 20 181 26.86
11 55 217 170 47 29.00 229 167 62 30.60 231 165 66 30.87
12 210 241 74 167 32.20 247 22 225 33.01 241 27 214 32.20
13 69 290 196 94 38.75 295 179 116 39.42 295 184 111 39.42
14 206 311 247 64 41.56 312 197 115 41.69 330 203 127 44.10
15 91 315 177 138 42.09 314 154 160 41.96 301 154 147 40.22

overall 1134 2434 1287 1147 2483 962 1521 2503 978 1525

TABLE II: Event-by-event analysis. Comparison of scores obtained for two variants of the proposed method: Approach I based
on the square-law, and Approach II based on the Hilbert transform. The scores that are higher than or equal to those yielded
by the competing approach are shown in boldface. Equal scores are marked with asterisks.

Approach I Approach II
Patient SAH Apnea Hypopnea Misclass. False SAH Apnea Hypopnea Misclass. False

det. (%) det. (%) det. (%) det. det. (%) det. (%) det. (%) det.
1 84.85 40.00⋆ 82.14 3 8 75.76 40.00⋆ 75.00 2 9
2 97.22⋆ 50.00⋆ 94.12⋆ 2⋆ 10 97.22⋆ 50.00⋆ 94.12⋆ 2⋆ 14
3 93.48 69.23 93.94 3⋆ 2 91.30 76.92 87.88 3⋆ 11
4 88.00 20.00⋆ 86.67 4⋆ 9 78.00 20.00⋆ 75.56 4⋆ 19
5 93.40 23.53⋆ 88.76 16⋆ 27 89.62 23.53⋆ 84.27 16⋆ 34
6 89.19 57.14 86.75 11 8 88.29 53.57 85.54 12 16
7 98.41 89.33 98.04 7 13 96.83 90.67 90.20 8 21
8 91.62 87.30⋆ 95.12 4⋆ 4 90.42 87.30⋆ 90.24 4⋆ 6
9 96.45 68.42 96.00 6 5 93.49 78.95 92.67 4 20
10 91.67 17.29 90.36 100 24 82.87 15.04 63.86 106 22
11 99.54 95.29 93.62 10⋆ 12 97.70 94.71 87.23 10⋆ 18
12 95.44 28.38 93.41 53 17 89.63 33.78 85.03 49 25
13 93.79 88.78⋆ 84.04 19 25 91.72 88.78⋆ 75.53 21 32
14 95.82 78.54 90.63 46⋆ 15 96.14 80.57 84.38 46⋆ 32
15 95.56 87.01 92.75 19 16 90.79 84.18 81.88 24 18

overall 93.63 60.02 91.09 20.20 13.00 89.99 61.20 83.56 20.73 19.80

and10% of the baseline value for hypopnea and apnea events,
respectively. The following decisions are made

ds(ti) =

{
1 if ê(ti) ≤

1

2
ê(t1)

0 otherwise

db(ti) =

{
1 if ê(ti) ≤

1

10
ê(t1)

0 otherwise

where ds(t) and db(t) denote sequences of binary values
indicating which samples in the analysed segment can be
classified as hypopneic/apneic activity. If the segment includes
less than10 seconds of continuous hypopneic/apneic activity,
it is classified as normal breathing. Otherwise hypopnea or
apnea is detected. When both types overlap, only the sleep
apnea episode is scored – see Fig. 10.

V. EXPERIMENTAL RESULTS

The polysomnograms of15 sleep apnea patients,9 males
and6 females [age:53± 7 years (mean±standard deviation),
duration of each study:449 minutes] were used to validate the
proposed method. The analyzed sleep studies were drawn from
the database of the Medical University of Gdańsk, Gdańsk,
Poland. In all studies the airflow signal was recorded with
the sampling frequency of 20 Hz. Respiratory events were
detected based on analysis of the airflow signal and scored
using the criteria proposed by AASM [1]. Hypopnea was
defined as an over50% reduction in airflow from the baseline
value, lasting for more than10 seconds, and associated with
a 3% desaturation or an arousal. Sleep apnea was defined
as the absence of airflow for more than10 seconds. The
clinical routine was based on manual correction of the results
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TABLE III: Epoch-by-epoch analysis. Comparison of scores obtained for two variants of the proposed method: Approach
I based on the square-law, and Approach II based on the Hilbert transform. Four quality measures were used to asses the
performance of the proposed method: accuracy (Acc), sensitivity (Sens), specificity (Spec) and Cohen’s coefficient of agreement
(κ). The scores that are better than or equal to those yielded bythe competing approach are shown in boldface. Equal scores
are marked with asterisks. Evaluation was based on analysisof 30-second airflow epochs classified as positive, if at least 5
seconds of the epoch was affected by hypopneic/apneic activity. For each examined patient the number of epochs was equal
to 899. TP: true positive, FN: false negative, TN: true negative, FP: false positive.

Approach I Approach II
Patient TP FN TN FP Acc Sens Spec κ TP FN TN FP Acc Sens Spec κ

(%) (%) (%) (%) (%) (%)
1 33 8 846 12 97.78 80.49 98.60 0.76 31 10 843 15 97.22 75.61 98.25 0,70
2 49 3 828 19 97.55 94.23⋆ 97.76 0.80 49 3 820 27 96.66 94.23⋆ 96.81 0,75
3 51 5 836 7 98.67 91.07 99.17 0.89 48 8 826 17 97.22 85.71 97.98 0.78
4 50 7 827 15 97.55 87.72 98.22 0.81 45 12 817 25 95.88 78.95 97.03 0.69
5 136 19 708 36 93.88 87.74 95.16 0.79 131 24 697 47 92.10 84.52 93.68 0.74
6 127 23 735 14 95.88 84.67⋆ 98.13 0.85 127 23 723 26 94.55 84.67⋆ 96.53 0.81
7 175 9 676 39 94.66 95.11 94.55 0.85 173 11 669 46 93.66 94.02 93.57 0.82
8 239 19 630 11 96.66 92.64 98.28 0.92 236 22 628 13 96.11 91.47 97.97 0.90
9 181 17 693 8 97.22 91.41 98.86 0.92 178 20 677 24 95.11 89.90 96.58 0.86
10 196 17 657 29 94.80 92.02 95.77 0.86 180 33 656 30 92.99 84.51 95.63 0.81
11 325 18 536 20 95.77 94.75 96.40 0.91 320 23 528 28 94.33 93.29 94.96 0.88
12 296 20 548 35 93.88 93.67 94.00 0.87 281 35 537 46 90.99 88.92 92.11 0.80
13 347 28 489 35 92.99 92.53 93.32 0.86 340 35 485 39 91.77 90.67 92.56 0.83
14 311 12 555 21 96.33 96.28 96.35 0.92 306 17 538 38 93.88 94.74 93.40 0.87
15 428 38 393 40 91.32 91.85 90.76 0.83 409 57 390 43 88.88 87.77 90.07 0.78

overall 2944 243 9957 341 95.67 91.08 96.36 0.85 2854 333 9834 464 94.09 87.93 95.14 0.80

obtained by automated analysis performed by a commercial
PSG software (RemLogic). The common mistakes of the auto-
mated analysis are: overlooked episodes, false detections, and
misclassification between hypopnea and sleep apnea events.
In all studies2434 SAH events were detected:1287 apneas
and 1147 hypopneas. The apnea/hypopnea index (AHI) for
the examined patients ranged from 4.41 to 42.09. The total
number of artifacts present in airflow recordings – the result
of subjective scoring of abnormally large peaks – was 1134,
ranging from13 to 210 per recording.

The 127-tap FIR filter approximating the Hilbert transform
was designed using the Parks-McClellan algorithm. The ana-
lytic signal was computed by adding the appropriately time-
shifted real signal to its imaginary counterpart generatedby
the Hilbert filter. To reduce computational complexity, prior
to median filtering the signalf(t) was passed through a
lowpass FIR filter with a cutoff frequency of1 Hz, and then
downsampled by a factor ofd = 6. After decimation, the SM
window size was set toM = 51 and the RM window size
was set toN = 21.

Table I compares the results of automated detection of SAH
events with decisions made by an expert. Patients were ordered
according to their apnea/hypopnea index (AHI). All decisions
were divided into four categories: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).
Four quality measures were used to asses the performance
of the detectors: accuracy, sensitivity, specificity and Cohen’s
coefficient of agreement (agreement beyond that expected by
chance, usually referred to as kappa statistic) – the correspond-

ing expressions are

Accuracy =
TP + TN

TP + FN + TN+ FP
= A

Sensitivity =
TP

TP + FN

Specificity =
TN

TN+ FP

Agreement =
A− B

1− B
= κ

where

B =
(TP + TN)(TP + FN) + (FP + TN)(FN + FP)

TP + FN + TN+ FP

Tables II and III show the comparison of two variants of
the proposed method: Approach I based on the square-law,
and Approach II based on the Hilbert transform.

Table II shows results of the event-by-event analysis. Note
that while detection rates of SAH events reach high levels
(average detection rate = 93.6%, minimum detection rate =
84.9%), classification of apnea and hypopnea episodes is less
successful. In particular, for 4 patients (#4, #5, #10 and
#12) the apnea detection rate is lower than30%. This means
that some further work is needed to develop tools capable of
distinguishing both types of events in a more reliable way.

Table III shows results of the epoch-by-epoch examination.
Evaluation was based on analysis of 30-second airflow epochs
classified as positive, if at least 5 seconds of the epoch was
affected by hypopneic/apneic activity. For each patient the
number of epochs was equal to 899. The obtained results
clearly indicate superiority of the square-law-based approach.
Note that the Cohen’s coefficient of agreementκ evaluated for
the robust square-law detector takes pretty large values – for
12 patients it holds thatκ ∈ [0.81, 1], which corresponds to
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Fig. 6: Performance of the classical square-law envelope
detector (A) and its robust version (C) in the presence of
breathing artifacts. Middle figure (B) shows the intermediate
detection results observed at the output of the standard median
filter. Thick line – envelope, thin line – airflow signal.

the highest qualitative level of agreement strength, interpreted
as “almost perfect agreement” [32] or “very good agreement”
[33], and for the remaining 3 patientsκ ∈ [0.61, 0.80], which is
regarded as “substantial agreement” [32] or “good agreement”
[33].

Bland-Altman plots comparing AHI scores provided by an
expert with those resulting from the automated analysis are
shown in Fig. 11 (for Approach I) and Fig. 12 (for Approach
II). This is a popular method to compare two scoring tech-
niques. In this graphical method the differences between the
two techniques are plotted against their averages. Horizontal
lines are drawn at the mean difference, and at the 95% limits
of agreement, which are defined as the mean difference±1.96
times the standard deviation of the differences. Bland-Altman
plots allow one to investigate the existence of any systematic
difference (fixed bias) between the scores, and to identify
possible outliers. According to the plots shown in Figs. 11
and 12, the proposed methods are nearly unbiased – mean
biases are equal to−0.4367 and−0.6153 event/hour of sleep
for Approach I and Approach II, respectively. The differences
remain close to the bias line, even for an increasing AHI index.
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Fig. 7: Performance of the classical Hilbert transform envelope
detector (A) and its robust version (C) in the presence of
breathing artifacts. Middle figure (B) shows the intermediate
detection results observed at the output of the standard median
filter. Thick line – envelope, thin line – airflow signal.

Finally, Table IV shows the results of comparison of 3
approaches to SAH events detection, based on different ways
of baseline value tracking: the approach based on the expo-
nentially weighted average of past peaks (EWAPP) [22], the
approach adopted in a commercial PSG software (RemLogic),
and the proposed approach based on RESL. In this experiment
no differentiation between apnea and hypopnea event was
made. Evaluation was based on analysis of 30-second airflow
epochs classified as SAH events or normal breathing. The
epoch was classified as SAH event if at least 5 seconds of
the epoch was affected by apneic/hypopneic activity. The total
number of epochs for 15 patients was 13485. The total number
of events detected by the expert for 15 patients was 2434. The
results of the test show clearly superiority of the proposed
method.

Remark:When comparing results of automated detection of
SAH events with those provided by an expert, one should
remember that the latter ones do not necessarily present a
100% correct score. Reports on intrascorer and interscorer
reliability for scoring respiratory events were summarized in
[8]. Reliability increases when an expert is guided by an
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Fig. 8: Performance of the classical square-law envelope
detector (A) and its robust version (C) in the presence of
sleep apnea/hypopnea events. Middle figure (B) shows the
intermediate detection results observed at the output of the
standard median filter. Thick line – envelope, thin line –
airflow signal.

TABLE IV: Results of comparison of 3 approaches to SAH
events detection, based on different ways of baseline value
tracking: the approach based on the exponentially weighted
average of past peaks (EWAPP), the approach adopted in
a commercial PSG software (RemLogic), and the proposed
approach based on RESL. The best scores are shown in
boldface.

Approach to Correct False Acc Sens Spec κ

SAH det. det.[%] det.[%] [%] [%] [%]
EWAPP 81.53 14.63 90.83 81.24 94.10 0.65

RemLogic 67.40 7.13 90.13 67.70 97.80 0.67
RESL 93.63 6.82 95.67 91.08 96.36 0.85

automatic detection tool [22]. One of important conclusions
of this study is that the proposed methods seem to provide
better guidance than the currently available ones.

VI. CONCLUSION

The widely used classical envelope detection methods are
not robust to artifacts present in airflow measurements. The
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Fig. 9: Performance of the classical Hilbert transform envelope
detector (A) and its robust version (C) in the presence of
sleep apnea/hypopnea events. Middle figure (B) shows the
intermediate detection results observed at the output of the
standard median filter. Thick line – envelope, thin line –
airflow signal.
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Fig. 10: Identification of SAH events based on the RESL
envelope.

proposed approach is a simple modification of the existing
schemes, obtained by replacing the linear lowpass output
filter with a cascade of two nonlinear filters - a standard
median filter and a recursive median filter. Unlike the methods
described in the literature the proposed algorithms do not need
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Fig. 11: Bland-Altman plot comparing AHI scores provided
by an expert with those resulting from the automated analysis
using Approach I (differences between the scores against their
averages). Horizontal lines show the mean difference and the
95% limits of agreement (SD = standard deviation).
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Fig. 12: Bland-Altman plot comparing AHI scores provided
by an expert with those resulting from the automated analysis
using Approach II (differences between the scores against their
averages). Horizontal lines show the mean difference and the
95% limits of agreement (SD = standard deviation).

initial training or optimization.
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[14] D. Álvarez, R. Hornero, J.V. Marcos, and F. Del Campo, “Multivariate
analysis of blood oxygen saturation recordings in obstructive sleep apnea
diagnosis,”IEEE Trans. Biomed. Eng., vol. 57, pp. 2816–2824, 2010.

[15] B. Xie and H. Minn, “Real-time sleep apnea detection by classifier com-
bination,” IEEE Transactions on Information Technology in Biomedicine,
vol. 16, pp. 469–477, 2012.
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the detection of apnea and hypopnea events in respiration signals,”IEEE
Trans. Biomed. Eng., vol. 49, pp. 936–942, 2002.

[17] H. Nakano, T. Tanigawa, T. Furukawa, and S. Nishima, “Automatic
detection of sleep-disordered breathing from a single-channel airflow
record,” Eur. Respir. J., vol. 29, pp. 728–736, 2007.

[18] S.I. Rathnayake, I.A. Wood, U.R. Abeyratne, and C. Hukins, “Nonlin-
ear features for single-channel diagnosis of sleep-disordered breathing
diseases,”IEEE Trans. Biomed. Eng., vol. 57, pp. 1973–1981, 2010.

[19] B. Koley, “Automated detection of apnea and hypopnea events,” in
Proceedings Thrid International Conference on Emerging Applications
of Information Technology. IEEE, pp. 85–88, Kolkata, India, 2012.

[20] B. Koley, and D. Dey, “Adaptive Classification System for Real-Time
Detection of Apnea and Hypopnea Events,” inProceedings Point-of-
Care Healthcare Technologies Conference.IEEE, pp. 44–45, Bangalore,
India, 2013.
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