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ABSTRACT 

The purpose of this dissertation is to develop an automatic song mixing system that is capable 

of automatically mixing a song with good quality in any music genre. This work recalls first the 

audio signal processing methods used in audio mixing, and it describes selected methods for 

automatic audio mixing. Then, a novel architecture built based on one-dimensional Wave-U-Net 

autoencoders is proposed for automatic music mixing. Models are trained on a custom-made 

database. Mixes created using the proposed system are compared with amateur, state-of-the-

art software and professional mixes prepared by audio engineers. The achieved results prove 

that mixes created automatically by Wave-U-Net can objectively be evaluated as highly as 

mixes created professionally. This is also confirmed by the statistical analysis of the results of 

the conducted listening tests. The results show a strong correlation between the experience of 

the listeners in mixing and the likelihood of a higher rating of the Wave-U-Net mix and the 

professional mix than the amateur mix or the mix prepared using state-of-the-art software. 

These results are also confirmed by the results of the similarity matrix-based analysis. 

 

Keywords: automatic audio mixing, music information retrieval, autoencoders, Wave-U-Net, 

subjective tests, statistical analysis, similarity matrices, chromagram 

 

Field of science and technology in accordance with OECD requirements: Information 

and Communication Technology  
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STRESZCZENIE 

Celem pracy jest stworzenie systemu do automatycznego miksu utworów, który jest w stanie w 

sposób automatyczny zmiksować utwór z dobrą jakością w dowolnym gatunku muzycznym. W 

pracy w pierwszej kolejności przywołano metody przetwarzania sygnałów fonicznych używane 

w procesie miksowania dźwięku oraz opisano wybrane metody automatycznego miksowania 

dźwięku. Zaproponowano nowatorską architekturę zbudowaną z jednowymiarowych 

autoenkoderów Wave-U-Net do automatycznego tworzenia miksów muzycznych. Modele 

zostały wytrenowane na specjalnie przygotowanej bazie danych. Miksy stworzone za pomocą 

proponowanego systemu porównano z miksami amatorskimi, stworzonymi przy pomocy 

aktualnych metod znanych z literatury oraz profesjonalnymi, wykonanymi przez inżynierów 

dźwieku. Osiągnięte wyniki dowodzą, że miksy tworzone automatycznie przez sieć Wave-U-Net 

mogą być obiektywnie oceniane tak samo wysoko jak miksy stworzone profesjonalnie. 

Potwierdza to również analiza statystyczna wyników przeprowadzonych testów odsłuchowych. 

Osiągnięte wyniki wskazują na silną korelację między doświadczeniem słuchaczy w miksowaniu 

a prawdopodobieństwem wyższej oceny miksu Wave-U-Net i miksu profesjonalnego niż miksu 

amatorskiego czy przygotowanego z wykorzystaniem  uznanego oprogramowania. Wyniki te 

zostały również potwierdzone za pomocą analizy wykorzystującej macierze podobieństwa.  

 

 

Słowa kluczowe: automatyczny miks sygnałów fonicznych, automatyczne przetwarzanie 

muzyki, autoenkodery, Wave-U-Net, testy odsłuchowe, analiza statystyczna, macierze 

podobieństwa, chromagram  

Dziedzina nauki i techniki, zgodnie z wymogami OECD: Informatyka techniczna i 

telekomunikacja 
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STRESZCZENIE ROZSZERZONE W J. POLSKIM 

Proces produkcji utworu muzycznego może być podzielony na następujące etapy: 

kompozycja, nagranie, edycja, miks oraz mastering. Wzrastająca potrzeba automatyzacji 

poszczególnych kroków procesu produkcji muzycznej zainspirowała tę pracę, która skupia się 

na fazie miksowania utworu muzycznego. Definicyjnie miks można określić jako proces obróbki 

pojedynczych ścieżek dźwiękowych prowadzący do połączenia nagrania wielośladowego w 

jeden, stereofoniczny plik muzyczny. Wybór tego właśnie etapu w badaniach został 

podyktowany tym, że miksowanie jest istotnym etapem produkcji muzycznej i prawdopodobnie 

najważniejszym krokiem w zapewnieniu tego, że bez względu na sposób, w jaki muzyka została 

nagrana, będzie ona oddziaływać z odpowiednią estetyką i przekazywać artystyczną 

wypowiedź zgodną z intencją muzyka. Jest to etap zarówno techniczny, jak i kreatywny. 

Ponadto ten właśnie etap jest obecnie najczęściej poddawany próbom automatyzacji.   

W rozprawie − w pierwszej kolejności − dokonano przeglądu modułów przetwarzania 

sygnału używanych podczas miksowania dźwięku z naciskiem na procesy związane z 

techniczną stroną miksowania. Opisano wybrane, znane metody automatycznego miksowania 

dźwięku.  

Celem pracy jest stworzenie systemu do automatycznego miksu utworów, który 

otrzymując na wejściu nagrane i wyedytowane ścieżki, jest w stanie w sposób automatyczny 

(bez ingerencji użytkownika) zmiksować utwór z dobrą jakością w dowolnym gatunku 

muzycznym. Aby sformalizować ten cel, zdefiniowane zostały następujące tezy, które następnie 

zostały udowodnione w dalszej części rozprawy: 

1. Możliwe jest miksowanie utworu muzycznego składającego się z wielu ścieżek 

z użyciem jednowymiarowej adaptacji autoenkodera Wave-U-Net, które może być 

obiektywnie oceniane jako porównywalne jakościowo do miksu stworzonego przez 

profesjonalnego inżyniera dźwięku 

2. Miksy utworów uzyskane przy pomocy zaproponowanego systemu można 

subiektywnie ocenić jako lepsze jakościowo niż miksy amatorskie i miksy wykonane 

metodami znanymi ze stanu wiedzy (ang. state-of-the-art), jak również porównywalne z 

miksami przygotowanymi przez profesjonalnego inżyniera miksu. 

W pracy zaproponowano nowatorską architekturę zbudowaną z jednowymiarowych 

autoenkoderów Wave-U-Net. System złożony jest z pięciu modeli. Wszystkie modele zostały 

wytrenowane osobno, a następnie połączone w jeden system. Modele różnią się liczbą wejść i 

wyjść. System imituje sposób, w jaki miksy są tworzone przez inżyniera dźwięku, tzn. 

pojedyncze ścieżki są miksowane razem do grupy instrumentów (np. ścieżki wokali do grupy 

wokali itd.), a następnie grupy te są miksowane ze sobą, tworząc końcowy efekt, co pokazano 

na rys. 1. Modele zostały wytrenowane na specjalnie przygotowanej bazie danych. Do znanej 

bazy MUSDB18-HQ [89] dograno pięć autorskich utworów i zmiksowano je na potrzeby 

niniejszej rozprawy.  
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Rysunek. 1. Schemat blokowy zaproponowanego system automatycznego miksu 

Aby sprawdzić słuszność postawionych tez badawczych, przeprowadzono szereg 

eksperymentów −zarówno obiektywnych, jak i subiektywnych. Miksy stworzone za pomocą 

proponowanego systemu porównano z miksami amatorskimi − takimi, które zostały stworzone 

przy pomocy metod i oprogramowania zgodnych ze stanem wiedzy (ang. state-of-the-art.) [44] 

oraz przez profesjonalnych inżynierów dźwięku. Pierwsza z tez dotyczy obiektywnych cech 

otrzymanych miksów. Opracowany system powinien automatycznie miksować ścieżki 

wejściowe w taki sposób, aby miks uzyskany na wyjściu był obiektywnie jakościowo lepszy niż 

znane metody/oprogramowanie state-of-the-art i porównywalny (lub nie do odróżnienia od) 

miksu stworzonego przez profesjonalnego inżyniera miksu. W rozprawie udowodniono, że 

możliwe jest automatyczne miksowanie ścieżek wejściowych dostarczonych przez użytkownika, 

z wykorzystaniem wcześniej wytrenowanych modeli, w taki sposób, aby efekt końcowy był 

obiektywnie bardzo zbliżony do miksów przygotowanych przez profesjonalnego inżyniera miksu. 

Podczas prowadzenia badań poddano obiektywnej analizie próbki sygnałów 

muzycznych, które nie zostały znormalizowane, tj. zbadano przebiegi poziomu takie jak: poziom 

średni głośności (ang. RMS level), zintegrowaną głośność (ang. Integrated Loudness), zakres 

głośności (ang. Loudness Range) i poziom szczytowy (ang. True Peak level) oraz wyznaczono 

wartości niskopoziomowych parametrów, m.in. deskryptorów MPEG-7 [133] (Odd-to-Even 

Harmonic Ratio, RMS-Energy Envelope i Harmonic Energy). Na podstawie uzyskanych 

wyników przeprowadzono analizę statystyczną i porównano uzyskane wyniki z parametrami 

wyznaczonymi dla porfesjonalnycy miksów. Uzyskane wyniki analizy statystycznej potwierdzają 

tezę nr 1, tj.: „Możliwe jest miksowanie utworu muzycznego składającego się z wielu 

ścieżek z użyciem jednowymiarowej adaptacji autoenkodera Wave-U-Net, które może być 

obiektywnie oceniane jako porównywalne jakościowo do miksu stworzonego przez 

profesjonalnego inżyniera dźwięku”. 

W celu udowodnienia drugiej tezy przeprowadzono testy odsłuchowe na 

znormalizowanych próbkach miksów, w których słuchacze oceniali każdą próbkę w wielu 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

11 

kategoriach oceny jakości dźwięku: balans (ang. balance), przejrzystość (ang. clarity), 

panoramowanie (ang. panning), przestrzeń (ang. space) i dynamika (ang. dynamics). Wyniki 

testów subiektywnych poddano analizie statystycznej.  

Dodatkowo przeprowadzono analizę porównawczą wyników oceny obiektywnej i 

subiektywnej, bazującą na macierzach podobieństwa, obrazującą graficznie podobieństwo w 

parach obiektów, przedstawionych w formie chromagramów. Przeprowadzone analizy stanowią 

autorską metodologię oceny przygotowanych miksów. 

 

 Uzyskane wyniki potwierdzają tezę nr 2, tj.: „Miksy utworów uzyskane przy pomocy 

zaproponowanego systemu można subiektywnie ocenić jako lepsze jakościowo niż 

miksy amatorskie i miksy wykonane metodami znanymi ze stanu wiedzy (ang. state-of-

the-art), jak również porównywalne z miksami przygotowanymi przez profesjonalnego 

inżyniera miksu”. 

 

W niniejszej rozprawie można wyróżnić oryginalne dokonania autora: 

• Zaproponowano automatyczną metodę miksowania sygnałów fonicznych przy 

użyciu autoenkoderów Wave-U-Net. 

• Przygotowano niestandardową bazę danych na potrzeby wytrenowania modeli. 

• Zaproponowano autorską metodologię oceny przygotowanych miksów, której 

elementami są analizy obiektywne, testy subiektywne oraz korelacje pomiędzy 

wynikami tych ocen. 

• Zaproponowano szereg obiektywnych parametrów i testów, które pozwoliły 

obiektywnie ocenić jakość otrzymanych miksów. 

• Przygotowano test odsłuchowy, który pozwolił przetestować wiele charakterystyk 

otrzymanych miksów. 

• Przeprowadzono liczne eksperymenty w formie testów subiektywnych, w których 

słuchacze oceniali jakość otrzymanych miksów. 

• Zaproponowano metodę porównania przygotowanych miksów za pomocą graficznej 

reprezentacji, tj. macierzy podobieństwa, co pozwoliło na dodatkową weryfikację 

wyników oceny jakości obiektywnej i subiektywnej.  

• Zbadano korelację wyników obiektywnych i subiektywnych.  

 

Dalsze kierunki badań 

W planach rozwoju proponowanej metody przewiduje się uwzględnienie w 

proponowanym systemie dodatkowego modułu, jakim jest integracja modułu automatycznej 

klasyfikacji instrumentów na wejściu systemu. W ten sposób użytkownik nie musiałby 

przypisywać odpowiednich ścieżek muzycznych do odpowiednich wejść w systemie. W obecnej 

formie, aby system działał poprawnie, użytkownik musi wskazać ścieżki basowe do modelu 

basu, ścieżki perkusyjne do modelu perkusji, itp. Automatyczna klasyfikacja instrumentów jest 

możliwa i poprawiłaby wydajność systemu. Takie próby zostały przeprowadzone przez autora 
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rozprawy na wstępnym etapie badań [7][57]. Poprawiłoby to również wrażenia użytkownika i 

łatwość użytkowania dla początkujących użytkowników, którzy nie są profesjonalnymi 

inżynierami dźwięku. 

Zaproponowany przez autora system można by dodatkowo rozbudować, wprowadzając 

automatyczny moduł wykrywania gatunku muzycznego utworu. Może być zaimplementowany 

na wejściu systemu (podczas predykcji), jak i na wyjściu (podczas treningu). Takie rozwiązanie 

przyniosłoby dodatkowy zysk podczas uczenia modeli, które są później wykorzystywane do 

predykcji (miksu). System mógłby pozyskiwać informacje o gatunku wejściowym podczas 

uczenia bezpośrednio z bazy danych, dzięki czemu modele uczyłyby się miksowania utworów w 

danym gatunku. Podczas predykcji automatyczna klasyfikacja gatunkowa pozwoliłaby na lepsze 

miksowanie utworów w różnych gatunkach, ponieważ modele byłyby trenowane w analogiczny 

sposób. Co więcej, możliwe byłoby miksowanie tych samych zestawów utworów w różnych 

gatunkach muzycznych. Interesującym rozwiązaniem byłaby możliwość jednoczesnego 

miksowania utworu w wielu różnych gatunkach, gdzie użytkownik mógłby wybrać preferowany 

miks lub łączenia gatunków (np. 60% Rock i 40% Electronica). Obecnie modele są trenowane 

na bazie danych składającej się z czterech gatunków muzycznych – Pop, Alternative, Rock, 

Electronica. Kolejnym proponowanym kierunkiem dalszych prac badawczo-rozwojowych jest 

dodatkowy moduł umożliwiający edycję poszczególnych utworów. Taki moduł pozwalałby na 

automatyczną synchronizację utworów ze sobą (np. w wielościeżkowych nagraniach perkusji) 

oraz automatyczne usuwanie (lub zmniejszanie głośności) niepożądanych dźwięków (takich jak 

oddech wokalisty czy przypadkowe uderzenia mikrofonu pomiędzy wartościowym sygnałem). 

Taki moduł powinien zostać zaimplementowany na wejściu systemu, aby wszystkie ścieżki 

można było edytować przed miksowaniem. Obecnie użytkownik musi ręcznie synchronizować 

wszystkie utwory i edytować niepożądane lub przypadkowe dźwięki. 

Szczególnie interesującym kierunkiem badawczym, będącym zakresem odrębnym od 

badań prowadzonych na potrzeby niniejszej rozprawy, jest automatyczne rozpoznawanie rytmu 

i tempa. Znajomość tempa danego utworu w jednostkach uderzeń na minutę (ang. beats per 

minute) jest kluczowa przy korzystaniu z efektów takich jak pogłos czy echo (ang. delay). Jeśli 

pogłos nałożony na ścieżkę jest zbyt długi, może wystąpić efekt maskowania. Znajomość rytmu 

i tempa utworu może również pozwolić na ustawienie idealnego tempa echa. Synchronizowanie 

efektu echa z tempem utworu to bardzo powszechna procedura stosowana przez inżynierów 

miksu. Na przykład, wiedząc, że tempo utworu wynosi 120 BPM, mikser jest w stanie ustawić 

tempo odtwarzania kolejnych odbić echa jako ćwierćnut. Większość popularnych wtyczek 

programowych, które oferują ten efekt, pozwala użytkownikowi wybrać opcję „1/4” lub w 

przypadku konieczności podania wartości w milisekundach użytkownik może ją obliczyć (w 

podanym przykładzie będzie to 500 ms). 

Automatyzacja procesu miksowania sygnałów fonicznych może być szczególnie 

przydatna w obszarze produkcji gier komputerowych czy tworzenia tzw. sygnatury muzycznej 

firm czy sieci sklepowych (ang. audio/music branding).  
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ADC – Analog-to-digital converter 

AES  – Audio Engineering Society 

ANN – Artificial Neural Network 
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ATR – Analog Tape Recorder 

BPM – Beats Per Minute 

BP – Bandpass 

BR – Bandreject 

CR – Compressor Ratio 

CS – Compressor Slope 

CT – Compressor Threshold 

DAC – Digital to Analog Converter 

DAW – Digital Audio Workstation 

DFT – Discrete Fourier Transform 

DI – Direct Input 

EQ – Equalization 

ER – Expander Ratio 

ES – Expander Slope 

ET – Expander Threshold 

FIR – Finite Impulse Response 

GUI – Graphical User Interface 

HC – Highcut 

HE – Harmonic Envelope 

HP – Highpass 

IIR – Infinite Impulse Response 

LC – Lowcut 

LP – Lowpass 

LSI – Large-scale integrated 

LT – Limiter Threshold 

LU – Loudness Units 

LUFS – Loudness Units relative to Full Scale 

MIDI – Musical Instrument Digital Interface 

MIR – Music Information Retrieval 

MUSHRA – Multiple Stimuli with Hidden Reference and Anchor 

NT – Noise Gate Threshold 

OEHR – Odd to Even Harmonic Ratio 

RMS – Root Mean Square 

RMSE – Root Mean Square Error 
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RMSEE – Root Mean Square Energy Envelope 

RT60 – Reverb Time 

RT – Release Time 

SNR – Signal-to-Noise Ratio 

SFX – Sound effects 

SSIM – Structural Similarity Index 

SSM – Self-Similarity Matrix 

VIF – Visual Information Fidelity 

VST – Virtual Studio Technology 
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1. INTRODUCTION 

The realm of modern music and sound production is complex and diverse. To achieve a 

single end product – music that reaches the world – it takes effort, immense commitment, 

money, and the combined creative talents of all kinds of experts. The music world consists of 

artists, engineers, producers, managers, executives, manufacturers, and marketing strategists. 

All of whom are experts in their fields, such as music, recording, acoustics, production, 

electronics, law, media, marketing, sales, and graphics. They work together to capture a spark 

of creativity and transform it into a product that can be marketable. What drives these teams of 

people, and what has driven them throughout the entire history of recorded sound, are changes 

in the industry, the cultural tastes, the art of music, and the ever-present changes and 

challenges in production technology. 

The process of a musical piece production can be divided into the following steps: 

composition, recording, editing (sometimes done just after recording or during the mixing stage), 

mixing, and mastering (Fig. 1.1). The composition step can take on many forms. It can be 

creating a song in MIDI (Musical Instrument Digital Interface) in any DAW (Digital Audio 

Workstation), writing down the composition on a five-line staff, or just having a music piece in 

the songwriter’s head (Fig. 1.2). The recording step can also vary. Nowadays, it rarely happens 

to rent a big studio with an engineer and a producer. More commonly, the artists record their 

songs track by track in a home studio. Regardless of how a song is recorded, the result is a 

recorded song where each instrument is given a separate mono track and, in some cases, 

multichannel. An example of a multichannel recording setup is shown in Fig. 1.3. After an artist 

decides to record a musical piece or song, the sound engineer uses the correct microphones, 

records the multitrack material, and edits it. The mixer’s role is to set up proper proportions 

between the elements and adapt their properties (i.e., time and frequency-based properties) 

[135]. A more than adequate mix can emphasize the artistic character of a song or even define 

the music genre [17][20][46]. Mixing techniques have existed ever since people learned to 

record music. Mixing was first introduced as physically adjusting the instrument and microphone 

setup. When a multitrack recording became possible, the mixing process was performed using 

analog hardware and − later − digital tools. 

 

 

Composition Recording Mixing Mastering

 

Fig. 1.1. Process of a musical piece production 
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Fig. 1.2. Various types of composing a song: a) writing the guitar part as a tablature, b) composing using 

MIDI, c) writing down notes on a five-line staff 

 

 

Fig. 1.3. Example of a multitrack recording setup 

 

After recording, assembling, and editing all tracks of a given project, the tracks should 

then be mixed into the final media form. The mixing process can be done in several ways: 

• Routing analog tape recorder (ATR) tracks through an analog console. 

• Routing Digital Audio Workstation (DAW) tracks to an analog console, mixing in 

the analog domain. 

• Mixing DAW tracks within the software mixer (“in-the-box” mixing). 

Nowadays, fully analog studios are very rare. Analog equipment is expensive, requires 

special care and effort to upkeep, and restoring a session to mix is complex and requires the 

work of multiple people. However, the so-called analog sound is what every mixing engineer is 

looking for, regardless of how they work. The second mentioned mixing approach is hybrid 

mixing, where songs from the DAW are routed to an analog mixing console or where single 

tracks are routed into outboard hardware, e.g., compressor, equalizer, or reverb. This approach 

is precisely in-between in the cost/effect category. The engineer does not have to buy 
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expensive tapes or analog mixing boards – instead, a few channel strips will suffice. The least 

expensive and the easiest method of fully mixing a song is the fully digital approach, called in-

the-box. Many renowned engineers, for example, Andrew Scheps, entirely changed their 

approach to mixing to digital [2][86]. The in-the-box way of mixing has various advantages, such 

as being relatively inexpensive, the fact that there are a lot of plugins that emulate the analog 

equipment more and more faithfully and being able to go back to a project with one click of the 

mouse. 

Regardless of the approach chosen, mixing is used to shape the character, tone, and 

intention of the production in relation to: 

• Relative level. 

• Spatial processing or panning (placement of the sound within the stereo or 

surround field). 

• Equalization (altering the relative frequency balance of a track). 

• Dynamics processing (adjusting the dynamic range of a single track, a group, or 

an output bus to optimize the levels or allow it to fit better within a mix). 

• Effects processing (adding delay-, pitch- or reverb-related effects to a mix to 

alter or augment the piece in an attractive, natural, or unnatural way). 

Capturing music and turning it into a product used to be far less accessible in the early 

decades of music production. It required visiting a commercial recording studio equipped 

expensively and hiring an expertly skilled team. Another option appeared after the large-scale 

integrated (LSI) circuit was introduced and then mass-produced. It became possible for 

musicians, producers, and engineers to create and record music at home or any other facility of 

their choosing. This technology achievement originates from the idea and possibility of 

constructing a personal audio production studio that is affordable and easier to master by 

almost anybody, while professional engineers are constantly under pressure to produce high-

quality mixes quickly and at a low cost [85]. 

The human way of creating “a good mix” is always superior to computer-based artificial 

intelligence. Still, there are areas where much faster, more intelligent, and more powerful 

algorithms are needed and can be implemented [97], e.g., game development or music 

branding may be mentioned here. 

Aims of the study 

The growing need for automation of every step during music production inspired this 

work, which focuses on the mixing stage of the process. Therefore, the primary aim of the 

presented dissertation is to propose a framework for automatic music mixing (see Fig. 1.4).  

As a result of the doctoral dissertation, the following theses are expected to be proven: 

1. It is possible to mix music consisting of separate raw recordings using a one-

dimensional adaptation of the Wave-U-Net autoencoder that can objectively 

be evaluated similarly to a professional mix. 

2. The prepared mixes may subjectively be evaluated as better ones than 

recordings created by an amateur engineer or mixes produced using state-of-
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the-art methods and can be comparable to mixes produced by a professional 

mixer. 
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Fig. 1.4. Stages of analysis executed in the course of the dissertation 

 

In Fig. 1.5, the organization of the dissertation work is shown, in which all chapters 

summarizing their content are introduced. The theoretical background of the work is provided in 

the following two chapters (Chapters 2 and 3). It includes signal processing methods, 

technology applied to audio mixing, and selected machine learning methods applied to audio 

processing. Chapters 4 and 5 illustrate the system architecture and information about the key 

experiment, where proprietary engineered models are introduced and all mixes are prepared. 
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The experimental results and their objective, subjective and comparative analyses are 

presented in Chapter 6. Finally, Chapter 7 provides conclusions, summarizes the main findings, 

and discusses further research perspectives. 

Chapter 1

Introduction

Chapter 3

Selected methods applied to automatic audio mixing

Traditional 
methods

State-of-the-art 
methods

Deep Learning 
approach

Chapter 2

Signal processing in audio mixing

Preprocessing Effects Postprocessing

Chapter 4

Automatic audio mixing based on Wave-U-Net autoencoder

System 
assumptions

Data preparation
Training and 

validation

Chapter 5

Preparation of audio mixes

Mix preparation Postprocessing

Chapter 7

Conclusions and Future Work

Chapter 6

Evaluation of audio mixes

Test 
methodology

Objective and 
subjective 
evaluation

Discussion

E
X

P
E

R
IM

E
N

T
S

B
A

C
K

G
R

O
U
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D

 

Fig. 1.5. Organization of the dissertation. Chapters are presented along with their content 
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2. SIGNAL PROCESSING IN AUDIO MIXING – AN OUTLINE 

 In this chapter, elements of audio signal manipulation are to be presented shortly. The 

methods shown are directly connected to the audio mixing task. However, basics such as signal 

sampling are not described here. In contrast, the most important signal operations related to 

sound manipulation are highlighted. 

Audio signal processing is a subfield of signal processing that is concerned with the 

electronic manipulation of audio signals. Processing methods and application areas include 

storage, data compression, music information retrieval [50][82][103][141], speech processing, 

localization, acoustic detection [55], music transcription [112], noise cancellation, acoustic 

fingerprinting, sound recognition [54], synthesis [25], and enhancement (e.g., equalization, 

filtering, level compression, echo and reverberation removal or addition, etc.), and, of course, 

music mixing [92] and mastering. 

There are several definitions of audio mixing. It seems that the best suited was the 

definition proposed by Ramirez and Reiss in [92], which says: “Audio mixing essentially tries 

to solve the problem of unmasking by manipulating the dynamics, spatialization, timbre 

or pitch of multitrack recordings” [92]. 

This definition combines all of the mixer’s essential tasks into one problem – 

unmasking. One can look at the mixer’s job to do just that, but the reality is more complicated. 

There are multiple tools to achieve the desired effect. In the subsequent sections, the author of 

this dissertation focuses on signal processing devices, applications, and techniques that can be 

divided into the following areas: 

• Amplitude level processing – in terms of dynamic range processing and 

spatialization (subsections 2.1, 2.2, 2.4, and 2.6); 

• Spectral content of sound – in terms of equalization and timbre quality 

(subsection 2.3); 

• Time-based effects – augmentation or re-creation of room ambiance, delay, 

time or pitch alterations, and other effects – referring to timbre quality 

(subsection 2.5). 

As already mentioned, one of the main phenomena, such as masking occurring in the 

mixing of multitrack recordings, should be brought here, even though this does not constitute 

the main subject of this dissertation directly [61][138]. However, this issue will be discussed in 

Chapter 3. 

2.1. Pre-processing and level adjustment 

Even the best-recorded music source requires some pre-processing [14]. It could be 

achieved by adequately preparing the tracks for mixing, bringing them to the same frequency 

response and bit depth or initial level setting (gain staging). When mixing using analog 

equipment, gain staging is an important step because of how analog gear operates. 

Traditionally, this is done by an assistant mixer or the mix engineer themselves. 
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Based on the ITU-R BS.1770-2 standard [42], the loudness (level) of a single channel 

track may be represented by RMS level (2.1) and peak level (2.2): 

 𝐿𝑟𝑚𝑠 =  √
1

𝑁
∑ |𝑥(𝑛)|2𝑁

𝑛=1  (2.1) 

 𝐿𝑝𝑒𝑎𝑘 = max (𝑥) (2.2) 

where 𝑥 is the amplitude vector of a mono track. For a stereo track 𝑥 = [𝑥𝐿 𝑥𝑅], these 

equations become:  

 𝐿𝑟𝑚𝑠 =  
√

1

𝑁
∑ |𝑥𝐿(𝑛)|2𝑁

𝑛=1  + √
1

𝑁
∑ |𝑥𝑅(𝑛)|2𝑁

𝑛=1

2
 (2.3) 

 𝐿𝑝𝑒𝑎𝑘 = max (max(𝑥𝐿) , max(𝑥𝑅)) (2.4) 

 

Additionally, for more precise level measurement, a simple hysteresis gate can be 

applied (Fig. 2.1) to a signal that determines which part of the signal is active and calculates the 

level purely on those snippets (Fig. 2.2): 

 𝑎(𝑛) =  {

0,                  𝑖𝑓 𝑎(𝑛 − 1) = 1 𝑎𝑛𝑑 𝑥̃(𝑛) ≤  𝑇1 

1,                  𝑖𝑓 𝑎(𝑛 − 1) = 0 𝑎𝑛𝑑 𝑥̃(𝑛) >  𝑇2

𝑎(𝑛 − 1),                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.5) 

0

1

a(n)

level(dB)
T1 T2

 

Fig. 2.1. Hysteresis gate  

 

Fig. 2.2. Highlighted audio regions are active 

where 𝑎 is the binary vector that indicates the activity of the track, 𝑥̃ is the audio track 

smoothed version, 𝑇1 is the level threshold when audio is active, 𝑇2 is the threshold when audio 

is inactive, and 𝑇1  ≤  𝑇2. 𝑥 is downmixed (summed) to mono and divided by two for stereo 

tracks. 
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2.2. Spatial processing 

The distribution of an audio signal into a new sound field (stereo or multi-channel) 

determined by a panning control setting is known as panning. In a standard recording console, 

there is a panning control, known as a taper or pan law, for each incoming source channel. On-

screen virtual knobs and sliders replace a panning potentiometer in an audio mixing software. 

This is to determine how much of a source signal is sent to the left and right channels.  

Pan law is a principle in recording and mixing [29]. It states that, provided a perfect 

response in the loudspeaker system is present and the room is acoustically perfect, any signal 

of equal phase and amplitude played in both channels of a stereo system will increase in 

loudness up to 6.02 dBSPL. The acoustic summing of a room and system can often be less 

than perfect, so as the mono signal is panned from center to hard left or right, the specific 

relative loudness level will increase from -3 to 0 dB without any interference to the signal. The 

pan law prevents this from happening. There are many different pan law rules, however, the 3 

dB pan law rule is the most commonly used in DAWs (Fig. 2.3) [29].  

 

Fig. 2.3. 3 dB Equal Power Pan [29] 

2.3. Equalization 

An audio equalizer is a circuit, plug-in, or device that controls the timbral or harmonic 

content of a recorded sound. Equalization (EQ) can be defined as a process of amplifying or 

suppressing different frequency components within an electronic signal. In the digital domain, it 

is usually implemented with the use of filters. A digital signal can be described as a set of 

varying partials with frequency and amplitude differences. A selection of partials is to be 

performed by the filter to modify their amplitude to reject, retain or emphasize selected 

frequencies. Different filter types are classified as follows (see Fig. 2.4) [150]: 

• Low-pass (LP) filter when low frequencies up to the particular cut-off frequency 𝑓𝑐 are 

selected and transmitted, whereas frequencies above 𝑓𝑐 are suppressed. A resonance 
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could also occur around 𝑓𝑐. High-cut (HC) and low-pass filtering may be treated as two 

interchangeable terms. 

• High-pass (HP) filter when high frequencies (higher than 𝑓𝑐) are selected, whereas  

frequencies below 𝑓𝑐 are suppressed. A probable resonance may occur around 𝑓𝑐. Low-

cut (LC) filtering is a synonym for high-pass filtering. 

• Band-pass (BP) filter when frequencies between a lower cut-off (𝑓𝑐𝑙) and a higher cut-off 

(𝑓𝑐ℎ) are picked and transmitted; those below 𝑓𝑐𝑙 and higher than 𝑓𝑐ℎ are suppressed. 

• Band-reject (BR) filter when frequencies between a lower cut-off (𝑓𝑐𝑙) and a higher cut-

off (𝑓𝑐ℎ) are suppressed. Frequencies below 𝑓𝑐𝑙 and higher than 𝑓𝑐ℎ are passed. 

• All-pass when all frequencies are transmitted, but the phase of the input signal is 

altered. 

 

 

Fig. 2.4. Response characteristics of the selected filter types: a) low-pass, b) high-pass, c) band-pass, d) 
band-reject, e) all-pass [150] 

A filter can be designed in a number of different ways. However, the canonical filter is 

the easiest to build, as shown by the difference equations (Eqs. (2.6) and (2.7)) [150]: 

 𝑥𝑛(𝑛) = 𝑥(𝑛) − 𝑎1𝑥ℎ(𝑛 − 1) − 𝑎2𝑥ℎ(𝑛 − 2) (2.6) 

 𝑦(𝑛) = 𝑏0𝑥ℎ(𝑛) + 𝑏1𝑥ℎ(𝑛 − 1) + 𝑏2𝑥ℎ(𝑛 − 2) (2.7) 

which leads to the transfer function: 
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 𝐻(𝑧) =  
𝑏0+𝑏1𝑧−1+ 𝑏2𝑧−2

1+𝑎1𝑧−1 + 𝑎2𝑧−2  (2.8) 

When 𝑎2 =  𝑏2 =  0, the filter is reduced to the first order. These types of filters can be 

implemented as a low-cut, high-cut, or all-pass based on the coefficients contained in Table 2.1, 

where 𝐾 depends on the cut-off frequency 𝑓𝑐 by: 

 𝐾 = tan (
𝜋𝑓𝑐

𝑓𝑠
)                                                      (2.9) 

When a phase shift of −90° is reached, the coefficient 𝐾 controls 𝑓𝑐  the all-pass. 

 

Table 2.1. Coefficients for first-order filters 

 𝑏0 𝑏1 𝑎1 

Low-pass 𝐾/(𝐾 + 1) 𝐾/(𝐾 + 1) (𝐾 − 1)(𝐾 + 1) 

High-pass 1/(𝐾 + 1) −1(𝐾 + 1) (𝐾 − 1)(𝐾 + 1) 

All-pass (𝐾 − 1)(𝐾 + 1) 1 (𝐾 − 1)(𝐾 + 1) 

 

Table 2.2 contains the second order filter coefficients. Also,  the Q factor is defined, 

which  determines the behavior for different filter types [150], i.e.: 

• For low-pass and high-pass, the height of the resonance is controlled. The filter is 

maximally flat up to the cut-off frequency for the value of 𝑄   equals 
1

√2
. For lower 𝑄, 

higher pass-band attenuation occurs; for higher 𝑄, frequencies around 𝑓𝑐 are amplified. 

• For band-pass and band-reject Q factor is related to the bandwidth 𝑓𝑏 by 𝑄 =  
𝑓𝑐

𝑓𝑏
. 

• For all-pass 𝑄 factor controls the bandwidth and depends on the locations where the 

± 90° phase shift at 𝑓𝑐 appears in relation to the −180° phase shift. 

 

Table 2.2. Coefficients for second order filters 

 𝑏0 𝑏1 𝑏2 𝑎1 𝑎2 

Low-pass 
𝐾2𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝐾2𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

𝐾2𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 

𝐾2𝑄 − 𝐾 + 𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

High-pass 
𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 −

2𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 

𝐾2𝑄 − 𝐾 + 𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

Band-pass 
𝐾

𝐾2𝑄 + 𝐾 + 𝑄
 0 −

𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 

𝐾2𝑄 − 𝐾 + 𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

Band-reject 
𝑄(1 + 𝐾2)

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 

𝑄(1 + 𝐾2)

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 

𝐾2𝑄 − 𝐾 + 𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

All-pass 
𝐾2𝑄 − 𝐾 + 𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 1 

2𝑄(𝐾2 − 1)

𝐾2𝑄 + 𝐾 + 𝑄
 

𝐾2𝑄 − 𝐾 + 𝑄

𝐾2𝑄 + 𝐾 + 𝑄
 

 

Depending on the desired effect, EQ may be applied to a single instrument (channel), to 

a group, or even to a master bus (output) of a DAW. Equalizers may be constructed fully analog 

or made digitally as VST (Virtual Studio Technology) plugins. 
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2.4. Dynamic range control 

Dynamics processing is executed by amplifying devices where the level of the input 

signal automatically controls gain. The processing is formed on an envelope follower (an 

amplitude/level detection scheme), a static curve which, from the result of the amplitude/level 

detection scheme, derives a gain factor, a smoothing filter that prevents gain changes that are 

too abrupt, and a multiplier that weights the input signal (Fig.  2.5) [150]. The input signal can be 

(optionally) delayed, compensating for the delay in the side chain (lower path in Fig. 2.5). The 

gain factor is conventionally derived from the input signal. To control the gain factor of the input 

signal, the side chain path can also be connected to another signal. 

Level detector

Delay

x(n) y(n)

Static curve Smoothing filter

X

g(n)

 

Fig. 2.5. Block diagram of a dynamic range controller [150] 

The most dynamic range controllers have the following parameters that can be set up: 

• Input gain: controls how much signal will be processed. 

• Threshold: controls at which level signal will be affected. 

• Output gain: controls “how much” of the signal is to be sent to the output of the 

processor. 

• Slope ratio: controls the ratio of the input to output gain. 

• Attack: controls how fast (usually in milliseconds) signal is to be processed after 

reaching the threshold level. 

• Release: controls how slow (usually in milliseconds) signal level comes back to its 

original value after being processed. 

Dynamic range control tools consist of: 

• Limiters. 

• Compressors and expanders. 

• Noise gates. 

• De-essers. 

2.4.1. Limiter 

The function of a limiter is to provide control over the highest peaks in the signal. In the 

process, it should change the dynamics of the signal as little as possible. This is accomplished 

by implementing a characteristic curve with an infinite ratio 𝑅 =  ∞ above LT (a limiter threshold) 

(Equation (2.10)). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

30 

 𝐺 =  {
0 𝑑𝐵             𝑖𝑓 𝑋 < 𝐿𝑇
𝐿𝑇 − 𝑋                   𝑒𝑙𝑠𝑒

                                                (2.10) 

Consequently, the output level 𝑌 = 𝑋 + 𝐺 (where 𝑋 is the input signal and 𝐺 is gain) 

should not exceed the limiter threshold (LT). Lowering the peaks can boost the overall signal. 

Limiting can be performed on single instrument signals, as well as the final mixes of 

multichannel applications. A limiter utilizes the peak level measurement and should react quickly 

when the input signal exceeds the LT. Parameters typical for a limiter are attack time: 𝑡𝐴𝑇 =

0.02 … 10 𝑚𝑠 and release time 𝑡𝑅𝑇  =  1 … 5000 𝑚𝑠, for both the smoothing filter and the peak 

measurement. An implementation, such as in Fig. 2.6, may perform the computation of gain in 

linear values by: 

 𝑔(𝑛) = min (1,
𝑙𝑡

𝑥𝑃𝐸𝐴𝐾(𝑛)
)                                             (2.11) 

 

PEAK
AT/RT

Delay

x(n) y(n)

min AT/RT

X

1

lt
—
( )

 

Fig. 2.6. Block diagram of a limiter [150] 

where 𝑙𝑡 = 10
𝐿𝑇

20  is the threshold measured on the linear scale. 

2.4.2. Compressor and expander 

In contrast to a limiter, which purpose is to eliminate any dynamics above a threshold by 

keeping the output level constant, a compressor only reduces the dynamics and compresses 

the dynamic range. The dynamics, reduced by a compressor, can be utilized to increase the 

overall level, boosting the loudness while staying within the allowed amplitude range. The 

opposite of a compressor is an expander. The expander increases the dynamics by mapping 

the input’s small-level changes to the output signal at larger levels. The expander, when applied 

to low-level signals, produces a lively sound characteristic. The corresponding ratios (ER, CR) 

and slopes (ES, CR) of the characteristic curve are as follows: 0 < 𝐸𝑅 < 1 and 𝐸𝑆 < 0 for the 

expander and 𝐶𝑅 > 1 and 0 < 𝐶𝑆 < 1 for the compressor. 

Typically, RMS level detectors are employed by expanders and compressors with an 

averaging time in the range 𝑡 = 5 … 130 𝑚𝑠 and a smoothing filter with 𝑡𝐴𝑇 = 0.1 … 2600 𝑚𝑠 and 

𝑡𝑅𝑇 = 1 … 5000 𝑚𝑠. Combining an expander for low signal levels with a compressor for high 

signal levels leads to the gain computation: 
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 𝐺 =  {

𝐶𝑆(𝐶𝑇 − 𝑋)                     𝑖𝑓 𝑋 > 𝐶𝑇
0 𝑑𝑏                     𝑖𝑓 𝐸𝑇 ≤ 𝑋 ≤ 𝐶𝑇

𝐸𝑆(𝐸𝑇 − 𝑋)                    𝑖𝑓 𝑋 < 𝐸𝑇
                                        (2.12) 

 = min (0, 𝐶𝑆(𝐶𝑇 − 𝑋), 𝐸𝑆(𝐸𝑇 − 𝑋))                                           (2.13) 

 

CT (compressor threshold) denotes the threshold above which the compressor affects 

the signal. ET (expander threshold) represents the threshold below which the expander affects 

the signal [150]. The resulting combined system is depicted in Fig. 2.7.  

Delay

x(n) y(n)

X

+RMS lin/log minX log/lin AT/RT

CT CS
0

+ X

ET ES

-

-
Fig. 2.7. Block diagram of a compressor/expander [150] 

Gain can also be calculated without the use of logarithmic values by: 

 𝑔(𝑛) = min (1, (
𝑥𝑅𝑀𝑆(𝑛)

𝑐𝑡2 )
−

𝐶𝑆

2
, (

𝑥𝑅𝑀𝑆(𝑛)

𝑒𝑡2 )
−

𝐸𝑆

2
)                                  (2.14) 

where the square root of the RMS is taken to the powers by halving the respecting 

slopes. This approach requires exponentiation and makes the conversion to and from the 

logarithmic domain unnecessary. 

Compressors are usually applied to reduce the amplitude variations above a set 

threshold. However, in particular circumstances, e.g., for acoustic guitar or percussion 

instruments, high-amplitude transients should be left unaffected, while the weaker parts of the 

signal should be enhanced. Parallel compression is recommended for such applications. A 

parallel compression means adding a heavily compressed version of the signal to the 

unaffected signal. Typically, the softer parts of the sound are heavily compressed using a low 

threshold, a short attack time, and a high ratio. Then, the compressed region is amplified and 

mixed with the original signal. The sound acquired, as a result, retains the original sound’s 

transparency because the transients are unaffected. The above kind of processing can be 

referred to as side-chain compression or New-York compression [13][41][43][47]. 

2.4.3. Multiband compressor 

Compression might be required only on a specific frequency band; this depends on the 

spectral content of the sound to process. The multiband compressor has been developed for 
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when several frequency bands of the spectrum must be processed individually. The input signal 

is split into several bands, typically three to five, by a filter bank. Then, the bands are individually 

processed. From a band-limited version of the input signal, the side-chain signal of each 

compressor is derived. Usually, the filter bank is both the same for the side-chain and the input 

signal. The side-chain is sometimes implemented as an independent processing unit. This helps 

to set up intricate relations, in which the content of the input signal in a limited frequency band 

conditions the compression in another frequency band. 

Multiband dynamics processors can be used in mastering (the process is described in 

detail in Chapter 2.7). No direct correction of the individual musical parts is possible when the 

mix is completed and the music is available as a stereo track. If each musical part or instrument 

occupies mainly a particular frequency band, minor corrections are still possible if they are 

band-limited. 

A significant advantage of multiband compression is the ability to limit the unwanted 

side-effects of compression, e.g., distortions or tonal balance alteration, to a given frequency 

band. In individual frequency bands, the reduction of the ratio of peak to RMS amplitude can be 

implemented more effectively than at the full audio bandwidth, which allows the increase of the 

track's overall loudness. When presented with two musical works, a casual listener often prefers 

the louder one. Considering this, a higher average levels trend has developed. However, 

moderation is necessary since loudness can induce degradation of quality in both the audio and 

musical quality [47][62]. 

2.4.4. Noise gate 

A noise gate can be considered an extreme expander with a slope of −∞, resulting in 

the complete muting of signals below the chosen noise gate threshold (NT). The noise gate is 

used to gate out noise by setting the threshold just above the background noise level so that the 

gate opens only when the desired signal with a level above the threshold is present. When 

recording a drum set, a specific application is found. A different decay time occurs for each 

element of a standard drum set. When not damped manually, their sounds mix. The result is not 

distinguishable. However, every sound can be faded out automatically after the sound’s attack 

part, when each element is processed by a noise gate. The result is an overall cleaner sound. 

The noise gate functional units are shown in Fig. 2.8. 

PEAK

Delay

x(n) y(n)

AT/RT

X

0

1

nt  

Fig. 2.8. Block diagram of a noise gate [150] 
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A peak measurement is usually the deciding factor for activating the noise gate. This 

leads to fade in/fade out of the gain factor 𝑔(𝑛) with an appropriate attack (AT) and release (RT) 

times. There are further refinements possible. A hold time has to be implemented to avoid a 

stuttering effect (when the input signal is close to the threshold) [5]. 

2.4.5. De-esser 

A de-esser is a signal processing device typically used to process speech and vocals. It 

consists of a bandpass filter typically between 2 and 6 kHz (the main range of a human voice.) 

The bandpass filter detects the level of the signal in this frequency band. If a certain threshold is 

exceeded, the gain factor is applied to the same frequency as the peak/notch filter is tuned to, 

as shown in Fig. 2.9. Applying de-essers to speech or vocal signals helps avoid high-frequency 

sibilance. 

Band pass
Level Detection

Peak/Notch
Filter

Gain factor

x(n) y(n)

 

Fig. 2.9. Block diagram of a de-esser [150]  

High-pass and shelving filters are used with good results as an alternative to the 

bandpass/notch filters. The threshold should depend on the overall level of the signal (a relative 

threshold) to make the de-esser more effective against input level changes [78]. A de-esser is 

essentially a one-band compressor within a specific frequency range, typically used to turn 

down the harsh sibilance in vocal performance. 

2.5. Time-based effects 

An important category of effects that one can use to augment or alter an audio signal 

revolves around delaying signal and replicating sound over time. These effects are time-based 

and add a perceived depth to signals or change the perception of the dimensional space of the 

recorded audio signal. Although a range of time-based effects can be applied during the mixing 

session, the main area of focus of this work will be the use of: 

• Time-delay. 

• Reverberation (reverb). 
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2.5.1. Time-Delay 

FIR comb filter 

A Finite Impulse Response (FIR) comb filter (Fig. 2.10) is a structure that simulates a 

single delay of the input signal by a given time duration. The effect can only be audible after the 

processed and input signals are combined, with the input signal present in the output signal first 

(as a reference). There are two tuning parameters included in this effect: 𝜏 – the amount of time 

delay and the relative amplitude of the delayed signal to the reference signal. 

x(n) y(n)

z-M

+

X

g

 

Fig. 2.10. Block diagram of an FIR comb filter [150] 

The difference equation and the transfer function are given by: 

 𝑦(𝑛) = 𝑥(𝑛) + 𝑔𝑥(𝑛 − 𝑀) (2.15) 

 with 𝑀 =  
𝜏

𝑓𝑠
 (2.16) 

 𝐻(𝑧) = 1 + 𝑔𝑧−𝑀 (2.17) 

In the above filter, the direct signal and the delayed version make up the time response. 

This type of time-domain behavior creates unique frequency-domain patterns. For negative 

values of 𝑔, frequencies that are multiples of 1/𝜏 are attenuated by the filter, while the 

frequencies in-between are amplified. The opposite happens for the positive 𝑔 values – the filter 

amplifies the frequencies that are multiples of 1/𝜏 and the frequencies in-between are 

attenuated. The transfer function of this type of filter shows a series of spikes. The gain may 

vary between 1 +  𝑔 and 1 –  𝑔 [81]. 

Similarly, as with acoustical delays, the Finite Impulse Response comb filter has an 

effect on the time and frequency domains. Depending on the range set for the time delay, the 

human ear is more sensitive to either one of the aspects. For larger 𝜏 values, an echo distinct 

from the direct signal can be heard. The relative closeness of the frequencies that the comb 

amplifies causes the spectral effect to be barely identifiable. The time events can no longer be 

segregated by the human ear for smaller 𝜏 values, but the spectral effect of the comb can be 

noticed. 

IIR comb filter 

The Infinite Impulse Response (IIR) comb filter (Fig. 2.11) produces an endless series 

of responses 𝑦(𝑛) to an input 𝑥(𝑛). The input signal circulates in a delay line and with each 

circulation, the signal is attenuated by 𝑔. The line is fed back to the input. In many cases, it may 

be crucial for the input signal to be scaled by 𝑐 to compensate for the structure-produced high 

amplification. 
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x(n) y(n)

z-M

+

X

g

X

c

 

Fig. 2.11. Block diagram of an IIR comb filter [150] 

The difference equation and the transfer function are given by: 

 𝑦(𝑛) = 𝑐𝑥(𝑛) + 𝑔𝑦(𝑛 − 𝑀) (2.18) 

 with 𝑀 =  
𝜏

𝑓𝑠
 (2.19) 

 𝐻(𝑧) = 𝑐/(1 − 𝑔𝑧−𝑀) (2.20) 

The response time of this filter is infinite due to the feedback loop. Following each time 

delay 𝜏, a copy of the input signal with a 𝑔𝑝 amplitude will come out, where 𝑝 notes the number 

of cycles the signal has cycled through the delay line. The signal does not grow, meaning that 

|𝑔| ≤ 1 is the stability condition. The gain varies between 1/(1 − 𝑔)  and 1/(1 + 𝑔). The 

frequencies affected by the IIR or FIR comb filters are similar. However, in the IIR comb filter, 

the gain grows very high, and as |𝑔| comes closer to 1, the frequency peaks get narrower. 

2.5.2. Reverb 

The first efforts to create electronic devices that could simulate the effects of sound 

propagation in enclosed spaces were taken up in the second half of the twentieth century. 

Although many pioneers of artificial reverberation have impacted the field throughout the years, 

the most important work has been done by Manfred Schroeder, who operated at the Bell 

Laboratories in the early sixties [104-108]. The most groundbreaking innovations from 

Schroeder were recursive comb filters and delay-based all-pass filters introduced as 

computational structures, which are suitable for simulating complex patterns of echoes in an 

inexpensive way. The all-pass filter based on the recursive delay line has the form: 

 𝑦(𝑛) =  −𝑔𝑥(𝑛) + 𝑥(𝑛 − 𝑚) + 𝑔𝑦(𝑛 − 𝑚) (2.21) 

where m is the length of the delay in samples. Presented in Fig. 2.12 is the filter 

structure where 𝐴(𝑧) is most often replaced by the delay line. 
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A(z)

x(n) y(n)

X

XX

X

-g

g

 

Fig. 2.12. The all-pass filter structure [150] 

The filter shown above (Fig. 2.12) allows obtaining a flat frequency response and a 

dense impulse response. This structure is, to this day, utilized in almost every artificial 

reverberator as a standard component [75]. All-pass filters are often assumed not to introduce 

coloration to the input sound. This assumption can be true from a perceptual point of view only 

when the delay line is about 50 ms [152]. Otherwise, the incoming signal’s timbre is affected in a 

significant way and the time-domain effects become more relevant. 

The single-input single-output all-pass filter was generalized to a multi-input multi-output 

structure, where an order-N unitary network replaced the delay line of m samples by Michael 

Gerzon [32]. Parallel connections of delay lines or all-pass filters and orthogonal matrices are 

examples of trivial unitary networks. The generalization increases the impulse response’s 

complexity without any appreciable coloration being introduced in the frequency. Gerzon’s 

generalization suggests that all-pass filters can be nested within all-pass structures. This 

telescopic embedding is realizable with at least one delay element in the block 𝐴(𝑧) of Fig. 2.16 

and is equivalent to lattice all-pass structures [30]. 

During the process of professional audio production, natural reverb is a vital tool. A 

correctly recreated natural acoustic space adds depth and authenticity to digitally recorded 

sources. In cases when the recorded instrument (group of instruments) is placed in a room with 

small reverberation, the artificial reverb expands the space. Reverb consists of many very 

closely spaced reflections from all surfaces of the room. The larger the room, the longer the 

reverb time (RT60). One can listen to only the reverb and figure out the size, density, and nature 

of a given space. In general, a room impulse response (reverb) can be separated into three 

parts (Fig. 2.13): 

• Direct signal. 

• Early reflections. 
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• Reverberation. 

A
m

p
lit

u
de

Time

Direct signal

Early reflections

Reverberation

 

Fig. 2.13. Components of a room impulse response 

A direct signal is a signal which travels directly from the source to the listener through 

the shortest line. The first few signals (except for the direct signal) that reach the listener right 

after reflecting are called early reflections. The reflecting surfaces are usually the floor, the 

ceiling, or a particular surface (depending on the circumstances). In general, those reflections 

allow people to categorize spaces in the context of size or depth subconsciously. The last set of 

reflections is usually the longest, and it is what creates the reverberation characteristic of a 

room. This set consists of all possible reflections from all surfaces in all possible angles from the 

source to the listener in the entire room (space). Those reflections are spaced so densely that 

humans cannot identify singular reflections. This leads to the brain recognizing the reflections as 

a one, slowly fading signal. 

Changing the settings of parameters allows a digital reverb to be used to simulate 

various acoustic spaces. Some popular reverb categories are:  

• Hall simulates concert hall acoustics; often a dispersed and rich setting with a longer 

reverb time (RT60). 

• Chamber is used to simulate live echo chamber acoustics. Chamber effect settings 

often simulate the bright reflectivity of surfaces such as cement or tile. 

• Room settings aim to simulate the distinctive acoustics of mid- to large-sized rooms. 

These settings are most appropriate to use for an intimate solo instrument or to achieve 

sound of a chamber atmosphere. 

• Live is used for live stage performance simulation. The Live settings differ, but in most 

cases, they simulate long early-delay reflections. 

• Spring is a simulation of the spring reverb effect. 

• Plate effects simulate metallic plate reverb devices and are characterized by their bright 

diffuse; mostly used for vocal tracks and percussive instruments. 
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• Reverse effects are achieved by reversing the envelope of the decay trail. The gradual 

level increase of decay ends with a quick cut-off at the end trail. 

• Gate effect cuts off a reverb signal’s decay trail and is used to emphasize drums and 

percussion instruments. 

2.6. Audio normalization 

Filters are expected to affect the signal frequency content primarily, as they are, more 

often than not, designed in the frequency domain. The modification of the signal’s loudness 

level is a side effect that should not be overlooked. While the desired effect might be achieved 

by the filter, the sound may become too strong or too weak for the result to be useful. As an 

example, an input signal (pink noise), its spectrogram and initial level (top), and the same signal 

with a high pass filter (1000 Hz, 6db/octave, q=1), its spectrogram and final level (bottom) are 

presented in Fig. 2.14. Without normalization, did not only the frequency domain change but 

also the output level of the signal (showing a 5.40 dB RMS difference). 

 

Fig. 2.14. Pink noise with the RMS level (top) and filtered pink noise with the RMS level (bottom) 

Normalization is the method of compensating for these variations in amplitude and is 

performed by scaling the filter: 

 𝐿𝑝 = (
1

2𝜋
∫ |𝐻(𝑒𝑗𝜔)𝑑𝜔|𝑝𝜋

−𝜋
)

1

𝑝 = 1 (2.22) 

where typically 𝐿2 or 𝐿∞ = 𝑚𝑎𝑥(|𝐻(𝑒𝑗𝜔|) are used [150]. The 𝐿2 norm is accurate for 

broadband signals and is employed so that the signal’s loudness is normalized. To avoid the 

filter overloading and to normalize the maximum of the frequency response, 𝐿∞ is used. 

Whether the normalization scheme is suitable or not can be determined if the filter is accepted 

by musicians. The filter can be rejected because of its difficulty in operating when the 

normalization is wrong. 

Several effective implementation schemes are proposed in [24], where the 

normalization of the state variable filter has been studied. In practice, the first-order lowpass 

filter which processes the input signal performs normalization if the 𝑓𝑐 frequency and amplitude 

correction in √ϛ can be normalized in ϛ (Fig. 2.15). This normalization scheme makes it possible 

to operate the filter with damping factors as low as 10-4 while the filter gain reaches 

approximately 74 dB at 𝑓𝑐. 
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Fig. 2.15. 𝐿2-normalization in 𝑓𝑐 and ϛ for the state variable filter 

To set a desired level of the recording amplitude, a gain can be applied to the audio 

signal, which is an alternative perspective of audio normalization. To enable the Signal-to-Noise 

Ratio (SNR) and the relative dynamics to stay the same as they were before the operation, the 

same amount of gain is applied to the entire recording. This is a process that can be performed 

in any DAW. The two types of audio normalization are peak and loudness normalization. 

In peak normalization, the gain is set based on the highest PCM sample value. The 

difference between the abovementioned value and the normalization level (usually 0 dBFS) is 

calculated and applied to the whole signal. The 0 dBFS level is the most common level as it is 

the loudest level allowed in a digital system without introducing extra distortion to the signal 

[129]. The apparent loudness of the content is not accounted for by peak normalization alone, 

as it searches only for the highest level. Therefore, peak normalization is used to change the 

volume so that, during the mastering process of a digital recording, it ensures the available 

dynamic range for optimal use. However, a loudness advantage over material that is non-peak 

normalized can be achieved when peak normalization is combined with limiting/compression. 

The so-called loudness war was the side effect of excessive use of limiting and peak 

normalization. 

Another type of normalization is based on calculating the loudness level where the 

output level is set to the target level of mean amplitude. The mean can be a regular 

measurement of the average power in the signal, as it is in the case of the RMS level, or it can 

be a measurement of the human-perceived loudness, such as EBU R128 [129]. For example, 

the reference level for the platform YouTube is -14 LUFS, so if the input signal is analyzed and 

its level is -10 LUFS, YouTube’s algorithm lowers the level by 4 dB. Loudness normalization 

was created to combat the everchanging loudness level of recordings played consecutively. It is 

not a major issue when one CD album of a given artist is being listened to, but it increases in 

importance when listening to a playlist on, for example, a platform like Spotify. Without such 

normalization, one song in the playlist could be much quieter than the rest, which would require 

the user to change the playback level multiple times [47]. Depending on the dynamic scope of a 
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song and the target level, the normalization result can cause the peaks in a recording to go over 

a 0 dBFS scale (in the digital world). Software that offers such normalization usually has the 

option to use a compressor or limiter to avoid clipping. In this case, SNR and the dynamic scope 

in a song would change. 

2.7. Mastering 

Although mastering and mixing are separate processes, it is worthy of mention. 

Mastering is the last step of the music production process and means preparing audio files to be 

recorded on a compact disc, a vinyl record, or any other medium. The mastering process can be 

conducted on a single song and on a full album. Good mastering should make a song sound 

much better than it did before the process. When mastering a full album, the main goal is to 

produce a uniform, cohesive and full sound throughout all the recordings. Mastering is 

performed on a previously mixed file, which means that the mastering engineer does not have 

direct access to the individual channels (instruments) of the song. 

When analog devices are used, a mastering engineer transforms the material from the 

tape to a vinyl record mold. The engineer’s tasks involve matching the sound of the audio 

material to the physical capabilities of the medium, usually by applying appropriate corrections. 

Mastering processes are conducted in rooms with better acoustic properties than the rooms 

used for mixing. 

The process of mastering includes: 

• Equalization. 

• Dynamic range control. 

• Noise reduction. 

• Setting the width of the stereo base. 

• Sample rate conversion. 

• Adding ISRC codes. 

• Dithering. 
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3. SELECTED METHODS APPLIED TO AUTOMATIC MIXING APPROACH – 

RELATED WORK 

In the following Sections, methods of audio mixing automatization are presented. The 

methods are divided into traditional, knowledge-based, technology-based, and deep learning 

approaches. 

The Merriam-Webster dictionary defines “automatic” as “largely or wholly involuntary.” 

[67]. In the automatic mixing approach, the author will describe techniques and methods that 

help achieve the end result without or with the least possible amount of user interference. 

3.1. Traditional approach to automatic audio mixing 

Traditional methods of automatic mixing regard mainly the easier tasks, such as setting 

the maximum level of the microphone in a live situation in a way that does not allow for the 

feedback of the system or distortion of the speakers. The more manageable tasks which the 

methods can perform are also automatic mixing of audio elements in cases where it is not the 

most important aspect (for example, in video games) or even in audio/music branding (for 

instance, in stores) where the songs are automatically mixed together one after the other. In the 

last case, the mixing happens not in the context of multiple tracks in one song but rather in 

entire songs where the previous song is smoothly mixed with the next one. 

Back in 2008, Gonzalez and Reiss proposed automatic level normalization of a system 

that changed linearly based on a mathematical model [34]. The proposed normalization 

technique worked in real-time, but unfortunately, the final level was always set at maximum 

before the feedback threshold; thus, it was only usable in live situations. 

Kolasinski [51] proposed a framework that used the Euclidean distance between 

modified Spectral Histograms to calculate the distance between a mix and a target sound and 

applied a genetic optimization algorithm to figure out the best coefficients for that mix. The 

system, however,  resulted in good quality for only four different tracks in the mix. 

Next, Gonzalez et al. [36] developed a method that aimed to achieve optimal mixing 

levels by optimizing the ratios between the loudness of each individual input channel and the 

overall loudness contained in a stereo mix. This method lacked taking into account 

psychoacoustic bases of loudness; moreover, subjective tests were not performed. Later in 

2012, Mansbridge et al. [65], based on previous findings, developed an autonomous multitrack 

fader control. Mixing levels were determined using the EBU R-128 loudness measure. 

In 2009, Terell et al. [130] developed a framework used to optimize the monitor mix 

(level-wise) experienced by each musician. This approach was purely live-situation related; 

thus, it contains a lot of extra variables such as room dependence, in-air level, the response of 

the speakers, etc. Terell continued his work [131] by introducing mixing in different locations 

within the performance stage, and the algorithm used was proven to perform better than the 

brute-force approach. 

Scott et al. [110-111] proposed a model for determining the relative gain levels of each 

track. Still, in reality, “each track” was a stem built from individual tracks, e.g., drums were 
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treated as one track, but in fact, drums are often recorded with at least four microphones, thus 

four different tracks. Authors trained their system to predict the time-varying parameters that 

produce a perceptually coherent mixture of unknown source content using minimal prior 

information. The results were promising, so naturally, machine-learning-based systems were 

gaining popularity. 

Ward et al.  [140] proposed multitrack (stems) recording mixing based on the concept 

that all instrument loudness should be equal. The idea was rather elementary and involved 

dividing each track into frames (15-25 seconds long) and finding desired gains on each track to 

achieve overall loudness. 

Another level-matching solution introduced by Terrel et al. [132] treated the mixing 

problem as a numerical optimization dilemma. The authors found that the optimization-theory 

approach offers several advantages over the human process, but they did not achieve satisfying 

results. The masking issue was mentioned, but it was not fully resolved. 

Wichern et al.  [143] proposed three different automatic level-based mixing algorithms. 

The first one was based on a simple energy-based loudness model, the second one used a 

psychoacoustical model, and the third one incorporated masking effects into a psychoacoustical 

model. The authors conducted MUSHRA subjective listening tests, and − surprisingly − listeners 

preferred the simple energy-based loudness model. However, it was discussed that listening 

conditions were not ideal, and other processing steps were omitted. 

Wilson et al.  [144] presented a more abstract approach by allowing the efficient 

generation of random mixes. The genetic algorithm was used; it learned how to set inter-

channels volume ratios from the expertise of the user. This approach, however, needed an 

expert/experts and a lot of training. 

Gonzalez et al.  [35] presented a simple cross-adaptive method for averaging 

perceptual loudness on all frequencies amongst a multitrack recording. Five first-order filters 

with a flat frequency response were used in the system. A set of eight-channel live recordings, 

as well as the white noise, were used for testing. Results − produced using a five-band spectral 

decomposition implementation − indicated that the Fourier-based spectral decomposition, 

together with a corresponding Fourier-based equalizer, could dramatically improve results. No 

subjective tests were conducted. 

Ma et al. [63] introduced a new approach for automatically equalizing an audio signal 

towards a target frequency spectrum. Equalization (eq) curves were extracted and used as a 

reference for spectral balance. Matching spectral distribution of an input signal to the target 

curve was based on the Yule-Walker algorithm. The objective evaluation showed that the 

algorithm was capable of matching the eq curve to the target, but the experiment lacked 

subjective evaluation. 

Hafezi [37] implemented an autonomous multitrack equalization system for reducing 

masking in multitrack audio that works both offline and in real-time. The system was tested both 

subjectively and objectively, and the results showed slight changes in the amount of masking. 

The authors prepared four different models (two offline and two online) presented to the 
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listeners. The so-called “Offline Semi” and “Real-time Unconstrained” models achieved poor 

results, and subjective evaluation did not confirm the reduction of masking. However, the other 

two models achieved not only better results than RAW (anchor) material but also better than the 

“Amateur” mix. The authors admitted that the implementations left a lot of room for 

improvement, but this experiment showed a clear path for the future, that is – toward the 

unmasking problem. 

While in the mixing area, the topic of automatic equalization is very broad, it is easier to 

look from the perspective of a mastering engineer; i.e., one source instead of many is easier to 

deal with. Mimilakis et al.  [70] introduced a novel method of fundamental frequency tracking. 

The pitch tracking subsystem was presented as follows: a copy of an unmastered audio material 

was summed up into mono, then low- and high-pass filters were applied, as well as envelope 

processing; finally, pitch estimates were found using frequency demodulation based on a third-

order phase-lock loop. The same equalization filters were used on both channels. The authors 

performed a series of subjective and objective tests where the enhanced audio material was 

preferred within the range of 79%. 

All of the above experiments and methods were designed to solve a level-, eq- or 

reverb-matching problem during either live or offline mixing situations. None of the above 

algorithms were matched with the genre or mood of the desired mix, e.g., different levels should 

be set differently for a specific genre. All “separate” tracks used were, in fact, combined stems 

of individual instruments. Almost all of them were based on either simple loudness comparison 

between channels or incorporated psychoacoustical elements into it. 

3.2. Knowledge-based audio mixing 

Knowledge-based audio mixing can be described as a kind of departure from the 

standard automation methods described in the previous Chapter. Many of those methods use 

much larger databases that are applied for training the models. The methods themselves are 

utilized to change multiple parameters (e.g., level, panning, and equalization) at the same time. 

The most commonly used databases are Open Multitrack Testbed [18] and MUSDB-18 [89]. 

The methods cited below use expert knowledge during training or creating a specific model or 

application. 

Chourdakis et al. [15] proposed an adaptive digital audio effect (artificial reverb) that 

learns from the user in a supervised way. The publication listed the features of the audio files, 

and these features were spatially reduced for training purposes. Additionally, the user should 

provide examples of reverb parameters for the database to train. Next, a group of classifiers 

was trained and compared using 10-fold cross-validation to compare the success ratios and 

MSE (Mean Square Error). The Open Multitrack database was used for training the model. In 

addition, this research was presented in work by Chourdakis et al. [16], where a new design of 

the same effect was proposed. The new design is controlled directly by the desired 

reverberation characteristics. The learning was also conducted in a supervised way, and the 

same database was used. The trained models are able to replicate a “characterized” reverb 
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from one track to another. The models were evaluated using the F1-score-based classifier, 

mean squared errors (MSE), and multi-stimulus listening tests. 

Ramirez et al. [91] proposed analyzing low-level features to mix individual audio tracks 

to stems automatically. For this purpose, 1812 features were extracted from guitar, bass, vocal, 

and keys tracks. Random forest classifiers were used to find the features that were most 

distorted by the mixing process. On this basis, the authors trained various multi-output 

regression models. Next, the number of features that could be used for such a transformation 

was reduced. Mapping the selected audio features described the characteristics of changes 

taking place in individual tracks after mixing them into stems. The authors did not conduct 

subjective tests supporting this research hypothesis. 

Wilson et al. [145] presented an innovative method of “mix-space,” i.e., a parameter 

space that contains all possible mixes that use a finite set of tools and parametric methods of 

creating artificial mixes (in this space.) In their work, mixes that only took into account level, 

panorama, and equalization changes were used. The authors applied statistical methods such 

as Monte Carlo and the population-based optimization method to investigate the accuracy of 

tempo-estimation algorithms and examined the distribution of spectral centroid values in all 

mixes. 

Everardo in [26] utilized Answer Set Programming (ASP) to make an audio mix. A kind 

of dictionary was created with rules for audio engineers to follow, proposed by professional 

music producers and audio engineers. As a result of using the complete dictionary, the program 

was capable of returning a mixed file or output − a kind of a mix plan in human-readable format, 

which should be used as a starting point. During subjective testing, the listeners were asked a 

few basic questions, such as whether all the instruments used in the mix were audible? 

Unfortunately, there was no comparison made between these mixes and professional mixes, 

neither subjectively nor objectively. 

Moffat et al. [74] developed a web-based tool that utilized a logical constraint solver to 

apply real-time rules to audio tracks. The system uses OWL (Web Ontology Language) 

reasoning inference on sets of mixing rules to determine which subset should be handled. The 

Rule Interchange Format (RIF) was proposed for presenting the rules. It was required that such 

mix rules could be transferred between different systems (and shared online). Rules can be 

created by an expert, learned from existing datasets, or a mixture of both. 

Ronan et al. [99] proposed a multitrack masking metric derived from the MPEG 

psychoacoustic model. Various sound processing techniques were examined to manipulate the 

frequency and the dynamics of the signal in order to reduce masking based on the proposed 

metric. The authors examined whether automatic mixing with the use of subgroups is beneficial 

to the perceived quality and clarity of the mix. The results suggested that using subgrouping 

during automatic mixing improved the perceived mix clarity and quality. Also, the results 

indicated that the proposed masking metric (during automatic mixing) could be used to reduce 

inter-channel masking. 
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All of the above experiments used expert knowledge during training or the automatic 

mixing process. Few of them have been tested by conducting extensive objective and subjective 

tests. However, the abovementioned research proves that the bottom-up approach to automatic 

mixing (the tracks are mixed to stems, and the stems to the finished mix) is correct and provides 

good results during the automated mixing task. To properly train the aforementioned models, 

feature sets are used, either calculated or collected from existing databases. 

3.3. Technology-based automatic audio mixing 

The productization of technology and giving it user-friendly interfaces influence the 

growth of technology and allow for more advanced automatic sound manipulation. Plugins 

available on the market are digital audio processors that can not only be the digital equivalents 

(simulations) of analog devices but also can exceed traditional boundaries. One plugin can act 

as a substitute for a few ones or even a few dozens of analog devices. Moreover, modern 

plugins are actively helping the user and executing tasks that would be unachievable otherwise. 

The first group of advanced plugins consists of plugins that are capable to auto-equalize 

sound (called matchEQ or autoEQ). In matchEQ, a reference is needed to produce a set of 

appropriate filters as the output so that the plugins can match the frequency response of the 

input file to the reference as closely as possible. The user can provide the reference (in plugins 

such as Izotope Ozone 9 Equalizer [45] or FabFilter Pro Q3 [27]) or choose from available 

presets supplied by the software creator. Another approach to auto-equalizing sound, autoEQ, 

is the automatic creation of equalization presets. The user inputs any audio signal into the 

plugin, and the plugin creates a custom preset while analyzing the spectral content of the signal. 

The preset allows the output audio to sound better (for example, the signal is corrected for tonal 

imbalances or devoided of any undesired resonance effects) or have the mood of the sound 

resembling some previously prepared styles (e.g., normal, speech, aggressive, etc.). Examples 

of plugins that can perform this task are Izotope Neutron Pro [44], Sonible smart EQ+ [119], 

Soundtheory Gullfoss [123], or oeksound Soothe 2 [79]. 

Another group of plugins is capable of performing the task of compression. Usually, the 

compression process consists of two steps: learn and apply. First, the user provides any audio 

signal as the input to the plugin. Next, the plugin, while “listening” to the signal, automatically 

adapts its settings to create an automatic preset for the given audio signal. In most cases, the 

user is able to choose the style in which the compression would be applied (applying the so-

called profile), for example: standard, drums, kick, snare, bass, guitar, keys, vocal female, and 

vocal male. Some plugins have additional capabilities. For example, the Sonible smart:comp 

[120] plugin offers spectral compression, which acts as an intelligent ultra-high-resolution 

multiband compressor that dynamically smooths out tonal imbalances. When active, 

smart:comp applies compression only where its built-in artificial intelligence thinks it is needed. 

Other plugins with additional capabilities offer to adapt the compression level to the music genre 

and automatic classification of instruments. The plugins provide not only the basic compression 

algorithms but also multiband compression, noise gate, de-essing, or even limiting. 
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The following step during the mixing process is commonly creating the sound of 

individual tracks by using saturation or transient shapers. The Neutron Pro [44] plugin can, in an 

automatic way, adjust its settings based on an excerpt of a signal provided by the user (in two 

analogous steps: learn and apply). Saturation (this block in the plugin is called exciter) consists 

of three “colors” (full, defined, clean) and four types of saturation (tube, warm, tape, and retro). 

On the other hand, some plugins offer transient shapers – an extremely effective tool when 

producing music. One of the primary uses for these plugins is applying them to drum and 

percussion elements. The transient shapers can be useful, for example, when trying to make 

drums cut through a mix and stand out by increasing the attack. Decreasing the attack, 

however, can reduce the start of the transient, helping the applied sound blend into the 

background. The sustain or release section in these plugins can give a more sustained volume 

to the end of the sound or, conversely, shorten the sound making it “snappier.” 

Izotope plugins can simultaneously classify instruments and, based on that (and a short 

fragment of the signal input by the user), create a custom preset that consists of multiple 

elements. In Table 3.1, there are companies presented that produce plugins. This is shown 

along with the functionalities they offer – more precisely, the elements that can be mixed 

automatically. 

Table 3.1. List of companies producing plugins that allow for automatic mixing with a breakdown of their 

capabilities 

 
Auto-detect 

instruments 
Balance Equalization 

Dynamic 

range control 
Saturation 

Transient 

shaping 

Izotope [44-45] X X X X X X 

FabFilter [27]  X X    

Sonible [119-120]   X X   

Soundtheory [123]   X    

Oeksound [79]   X    

 

Although plugin producers do not publicly disclose any information on exactly how their 

plugins work, with the most recent state-of-the-art knowledge, one can assume with great 

probability that all methods of automatic preset creation − based only on the audio signal 

provided by the user − are made by appropriate training of models on a vast database and 

consequently utilize those models to create new presets. The current state-of-the-art methods 

that use Deep Learning are presented in the following Chapter along with an explanation of how 

the models used later, e.g., in the abovementioned plugins, are created. 

3.4. Deep Learning approach 

An Artificial Neural Network (ANN) works to imitate the human brain in virtual reality. 

The definition of an artificial neural network describes it as a group of elements – simple 

neurons that process input data. The communication between individual neurons happens in 

parallel. Each neuron has its own weight [38][52][127]. 
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An artificial neuron consists of (𝑥1 − 𝑥𝑛) inputs, which correspond to synapses in a 

biological neuron model. The main goal of an input is to collect data and transfer it to the kernel 

of the neuron, where the signal is subjected to (𝑤0 − 𝑤𝑛) weighing. Next, the signal is 

processed by the activation function (𝑓(𝑒)), where the processing of input information into 

output information happens according to the used mathematic formula. The most commonly 

used function is the sigmoidal function, which is presented in Eq. (3.1) [40]. 

 𝜎(𝑥) =  
1

1+𝑒−𝑥 (3.1) 

The simplest ANN model consists of one neuron. In practice, however, such a 

construction is not used due to the low entropy of such a model [40]. Thus, neurons are 

connected into multidimensional networks, which amplify their ability to process data. The 

number of layers and neurons is virtually unlimited. However, performance can be an issue 

when building large neural networks. The human brain consists of approximately 100 billion 

neurons. Such a size of a neural network is impossible to achieve in practice, and the 

development in this field suggests that it will not be achieved any time soon. There are reports 

suggesting that the currently conducted research aims to replicate the brain of a mouse in a 

digital form [128]. 

Neural networks can be divided into: 

• Feedforward networks, where information passes smoothly from one end of the network 

to the other [114][139][151]. 

• Recurrent networks, where information can return into previous layers [21][87][95]. 

• Unsupervised networks, where the network functions without the supervision of its 

results [109][117]. 

• Supervised networks, where a dedicated block exists to control the way the network 

functions and the quality of the results [8][146][149]. 

Similar to other decisive algorithms, a key step that impacts the method’s success (i.e., 

high precision of the results) is the training step [148]. In artificial neural networks, the learning 

process consists of assigning weights for neurons and inputs used in the network. In the case of 

supervised networks, there is a block called a “critic,” which determines parametrically if an 

improvement of the classification effectiveness occurred. For better results, it is necessary to 

provide extensive training datasets for the network’s input. Training a model on very large 

databases (e.g., 100 000 images) is called deep learning [40][77][128]. Recently, research of 

this type has risen in popularity thanks to increased resources for training and the constant 

growth of computing power. A significant disadvantage of such solutions is the length of the 

model training process, which can take multiple weeks for large testing datasets. The use of 

extensive training bases prevents overtraining, which is harmful to ANN. 

As De Man stated in his work [19], the problem of mixing is multidimensional. Engineers 

must decide whether the source is too loud or too quiet, the frequency range is set correctly, the 

panning of an instrument complements the whole mix, the reverb is fixed correctly, etc. This 

said, the various types of processing cannot be done separately; instead, this challenge should 

be to set an all-in-one task. Isolating one problem will lead to another unresolved issue. 
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According to new research [6], [15], [16], [69], [71], and deep learning [144] is gaining such 

popularity, and its unmatched ability to connect the puzzle pieces can be a way to determine 

whether artificial intelligence is capable of mixing a song in a fully automated way. 

Reiss et al. proposed a deep learning solution for the task of equalization [98]. 

Previously known automatic equalization systems (matchEQ task) required the implementation 

of the creation logic and types of filters. Additionally, the previous methods were limited by the 

need to apply filter banks in the system. The authors proposed a new end-to-end architecture 

based on Convolutional Neural Networks. Thus, the creator of the network does not need to 

know the transfer function to perform equalization matching. The network learns by itself how to 

process the audio signal to bring its frequency response to a given target. The authors 

presented the effectiveness of the network during the equalization matching operation for 

shelving, peaking, lowpass and highpass IIR, and FIR filters. Therefore, they trained four 

models (one for each EQ task) via supervised and unsupervised learning procedures. The 

trained models achieved loss values < 0.333 for all EQ tasks. The proposed models consisted 

of adaptive front-end, latent-space Deep Neural Network, and synthesis back-end. 

Moffat et al. in [73] proposed a pure machine-learning approach to level (gain) mixing of 

audio drum tracks. The authors noted that there were many approaches to automatically mixing 

the levels of individual tracks, however, the machine learning approach was missing. The 

authors’ hypothesis was that the lack of such research was caused by the lack of available data 

that are needed to train the models. The authors used the random forest approach to conduct 

multiple outputs predictions. These outputs are the levels of values that need to be applied to a 

given individual track to achieve the desired mix. Finally, the authors compared their results with 

pre-existing algorithms and “man-made” mixes. Objective and subjective tests have shown that 

with the proper database, it is possible to train a model that could produce mixes comparable to 

those made by humans. 

The previous solutions were characterized by approaching one problem related to 

mixing (matchEQ in [98], level in [73]). Steinmetz et al. [125] proposed for the first time to 

perform automatic multitrack mixing, which involved more than setting the levels. The authors 

trained a model that produces human-readable mixing parameters, which enable the user to 

adjust them later manually. The proposed Differentiable Mixing Console (DMC) was trained on a 

limited and unstructured dataset, and the entire solution was capable of implementing real-world 

mixes. During the mixing process, the network had at its disposal such parameters as gain, 

polarity inversion (if needed), 5-band equalizer, compressor, reverb, level fader, and panning 

knob. The entire system was made of pre-trained subnetworks, weight sharing, and 

sum/difference stereo loss function. During the evaluation, it was found that the solution worked 

very well when performing tasks of mixing drums to a stem, while when mixing whole songs, 

DMC performed better than the considered baselines. 

Ramirez et al. in [94] proposed an end-to-end Deep Neural Network based on the 

Wave-U-Net autoencoder to perform automatic mixing of drums. The authors used a network 

that was originally intended for audio separation. The ENST drum dataset [33], which is divided 
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into two groups (“dry” and “wet”), was used to train the models. The first of the groups includes 

only the level and panorama changes. In the second group, additional effects such as 

equalization, compression, reverb, and dynamic range control (during the mastering process) 

were used. Therefore, the authors trained two models (“dry” and “wet” respectively), which were 

then tested subjectively. They concluded the work by proving that the mixes generated by their 

model are indistinguishable from mixes prepared professionally by a human, at the same time 

being much better than the previous state-of-the-art methods. Using this architecture appeared 

to be the most beneficial in the task of automatic audio mixing. 

The current state-of-the-art methods enabled the author of this dissertation to choose 

the system architecture for fully automatic mixing of audio files, i.e., Wave-U-Net one-

dimensional autoencoder. An additional advantage of the chosen architecture is the provided 

wave-input and wave-output approach, making it a more user-friendly solution. Based on this 

architecture, a system was designed, which is described in Chapter 4. Moreover, experiments 

were conducted using the system, which were further described in Chapters 5 and 6. 

 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

50 

4. AUTOMATIC AUDIO MIXING BASED ON WAVE-U-NET AUTOENCODER 

4.1. System assumptions 

Experiments are structured in a three-fold setup (see Fig. 4.1). It consists of designing 

and building the system (this will be described in Chapter 4.1). Then, preparation of separate 

tracks of recordings to be mixed and processed automatically is to be described in Chapter 4.2 

(based on a custom database). Then, all models are trained and validated based on a deep 

learning algorithm with details contained in Chapter 4.3. 
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Fig. 4.1. Stages of analysis executed in Chapter 4 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

51 

The design assumptions of the system were defined with particular consideration for 

three aspects. First, it was assumed that, based on the created system, the mixing of a song 

without any human interaction could be done. The system shall mix the song automatically, and 

the user inputs only the recorded signals in an appropriate format. The system shall not be a 

mixing assistant nor have parameters that could be accessed or adjustable by the user (it 

should act as a black box). Second, it was assumed that the system would be independent of 

the music genre. The user can input tracks from any genre of music and be given a finished mix 

as the output. Third, it was assumed that, inside the system, a bottom-up approach to mixing 

would be used – tracks from a given group of instruments will be mixed together into stems, and 

then the stems will be mixed into the final mix. Bottom-up mixing involves building a mix from 

the ground up, from single channels to buses, and then the final mix. Such an approach is 

considered more traditional [49]. After carefully studying various structures and utilizing the 

knowledge acquired from state-of-the-art articles (details contained in Chapter 3), it was decided 

to use a one-dimensional Wave-U-Net autoencoder architecture. The same architecture was 

used by Ramirez et al. [94] to mix drum recordings. Followed by subjective testing, it was 

proven that the mixes generated by their trained model were undistinguishable from human-

made mixes. 

4.1.1. System requirements 

Listed below are the most critical requirements in the context of creating a system in a 

way that allows mixing a song by the user, who is not necessarily a professional, i.e., a person 

who has no previous experience in mixing. It was assumed that in the scope of performing 

functions directly related to the mixing of audio material, the user’s involvement should be 

minimal, and the user shall have no influence on the operations of the system. Allowed is the 

possibility for interactions not directly related to mixing, for example, uploading audio signals to 

the system, to be performed using a keyboard and a mouse. It was assumed that the system 

should automatically export the finished mix to an output directory preselected by the user. 

In the current state of the system, there is no possibility for it to perform on every 

computer or in a cloud/website. Listed below are the system requirements for performing the 

models training and the mix predictions (mixing). Although, in theory, the user does not have to 

train the models from scratch, a possibility to do so was assumed. It was also assumed that 

during the training process, the system would be supported by a CUDA®-enabled graphics 

card. In Table 4.1, the software system requirements are presented, and in Table 4.2, the 

hardware system requirements are shown. 

Table 4.1. Software system requirements 

Python 3.7 or later  

pip 19 or later 

Ubuntu 16.04 or later 

macOS 10.12.6 (Sierra) or later (64-bit) 

Windows 7 or later (64-bit) 
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Microsoft Visual C++ Redistributable for Visual 

Studio 
2015, 2017 and 2019 

NVIDIA® GPU drivers  450.80.02 or later 

CUDA® Toolkit N/A 

cuDNN SDK  8.1.0 or later 

Table 4.2. Hardware system requirements 

NVIDIA® GPU card with CUDA® architectures 3.5, 5.0, 6.0, 7.0, 7.5, 8.0 or later 

CPU with AVX Intel* Sandy Bridge processors, Q1 2011 

Sandy Bridge E processors, Q4 2011 

Ivy Bridge processors, Q1 2012 

Ivy Bridge E processors, Q3 2013 

Haswell processors, Q2 2013 

Haswell E processors, Q3 2014 

Broadwell processors, Q4 2014 

Skylake processors, Q3 2015 

Broadwell E processors, Q2 2016 

Kaby Lake processors, Q3 2016(ULV 

mobile)/Q1 2017(desktop/mobile) 

Skylake-X processors, Q2 2017 

Coffee Lake processors, Q4 2017 

Cannon Lake processors, Q2 2018 

Whiskey Lake processors, Q3 2018 

Cascade Lake processors, Q4 2018 

Ice Lake processors, Q3 2019 

Comet Lake processors (only Core and Xeon 

branded), Q3 2019 

Tiger Lake (Core, Pentium and Celeron 

branded) processors, Q3 2020 

Rocket Lake processors, Q1 2021 

Alder Lake processors, 2021 

Gracemont processors, 2021 

CPU with AVX AMD Jaguar-based processors and later 

Puma-based processors and later 

Bulldozer-based processors, Q4 2011 

Piledriver-based processors, Q4 2012 

Steamroller-based processors, Q1 2014 

Excavator-based processors and later, 2015 

Zen-based processors, Q1 2017 

Zen+-based processors, Q2 2018 

Zen 2-based processors, Q3 2019 
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Zen 3 processors, Q4 2020 

*Not all CPUs from the listed families support AVX. Generally, CPUs with the commercial 

denomination Core i3/i5/i7/i9 support them, whereas Pentium and Celeron CPUs do not.  

4.1.2. Components and architecture of the system 

The entire system consists of five models. All models used in this dissertation were 

trained separately and connected to one system. The models differ by the number of inputs and 

outputs (mono/stereo). The system was created from variants of Wave-U-Net networks, 

suggested in [94][126]. Each individual model utilizes raw (unprocessed) audio input and output 

with connection to a series of downsampling and upsampling blocks that contain 1D convolution 

layers. The models also include resampling operations which allow the calculation of features 

used in the prediction process. A block diagram of the system is presented in Fig. 4.2. 

 

Fig. 4.2. Block diagram of an automatic audio mixing system 
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The Drum-to-stem, Bass-to-stem, Vocal-to-stem, and Other-to-stem can accept, 

respectively, up to 10, 4, 4, and 8 mono inputs (provided by the user) and one stereo output. 

The Stem-to-mix model has a stereo input and output. To achieve this effect, the code of the 

models was rewritten in a way that adjusts the number of inputs and outputs for each given 

task. In other words, each model accepts N inputs, and the adjustment of inputs is implemented 

as follows: if the user provides fewer inputs (than N), then the missing inputs will be 

automatically generated and they will contain no signal (only zeros), which will not affect the mix 

in any way. The described process was also a part of the training to ensure that each model will 

be able to create a proper mix in case of silence in inputs. This approach also gives extra 

robustness to the system – even if the user passes empty inputs, the model will not be 

destabilized. As already mentioned, the system works on a principle of a „black box” for the 

user. The user first provides recorded and synchronized tracks (that have the same length) as 

the input and receives a finished mix as the output. Therefore, there are no additional 

preprocessing blocks in the architecture. Also, it is assumed that the user provides signals with 

a sampling frequency of 44.1 kHz for the input material. 

A single model is constructed from 10 layers for the training of the model to be more 

effective. A block diagram of a singular model is presented in Fig 4.3 (every model has an 

identical structure.) 
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Fig. 4.3. Block diagram of the adapted Wave-U-Net network for automatic mixing K stems using L layers 
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The downsampling blocks perform one-dimensional convolutions of 𝐹𝑐 ·  𝑖 filters 

(kernel) of 𝑓𝑑 = 15 size with the 𝑖 layer is in the range of [1; 𝐿], where 𝐹𝑐 corresponds to the 

number of initial filters (number of convolutions in topology) and is equal to 24. The 

convolutional filter decreases the size of data, and samples become convoluted so effectively 

there are fewer samples. Convolution uses information from each sample. The goal of the 

decimate operation is to halve the time resolution. Before decimation, the feature map is 

concentrated with the cropped output of the respective downsampling block by the upsampling 

blocks. The upsampling blocks are performed with a factor of two by utilizing linear interpolation. 

These processes are followed by a one-dimensional convolution of 𝐹𝑐 ·  𝑖 filters of 𝑓𝑢 = 5 size, 

where 𝑖 is within the [𝐿; 1] range. All strides are of unit value and all of the convolutions are 

along the time dimension with no implicit padding. To ensure the outputs were between +1 and 

−1 at the time of the test, the outputs were clipped accordingly. LeakyReLU activation function 

was used, which accelerates the convergence of the training process in the classical framework 

of deep learning. 

4.2. Data preparation for models training 

To properly train an individual model, an adequate database is needed. The data should 

be structured, appropriately differing, and large enough. Databases for tasks in the speech 

domain, such as speech denoising or speech arrival direction detection, are commonly used. 

There are, however, very few databases that can be used for mixing purposes. Thus, based on 

MUSDB18-HQ [89], the best database available, a new database was built by the author, 

supplemented with individual tracks (from the Cambridge database), and expanded by 

additional songs prepared by the author. The database had to be prepared in a particular way to 

be helpful in model training and validation. The preparation process is described in this Chapter. 

In the case of using machine learning or neural networks (NN), the pre-processing step 

may play a crucial role because, depending on the utilized network’s topology and the type of 

problem that needs to be solved, the input may vary. The architecture may require input in the 

form of, for example, files no longer than 30 seconds, one or multichannel, a specific sampling 

frequency, or a spectrogram. Pre-processing may be performed in several ways: manually (by 

trimming audio files in any DAW and exporting them in specific sampling frequency and bit 

depth) or automatically (by scripting a series of tasks by using tools like, e.g., SoX [124], Matlab 

[66], or Python [88]). In this case, the preprocessing involved bringing all the input signals into 

the same sampling frequency of 44.1 kHz and a bit depth of 16 bits. 

The MUSDB18-HQ database [89] and five songs recorded by the author were used to 

train the network. This database consists of 150 songs (approximately 10 hours in total) from 

various genres. 100 songs were used as a training set, 50 as a testing set. Drum, bass, vocals, 

and other instrument stems and finished mixes can be found in the database (Fig. 4.4). The 

database consists of songs from the Cambridge database [72], which means that, in order to 

acquire individual tracks, they had to be taken from the Cambridge database to be matched 

appropriately. 
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Fig. 4.4. MUSDB18-HQ database structure [89] 

As already mentioned, five songs recorded and mixed exclusively by the author were 

added to the training database. All five songs were recorded in the Auditorium of the 

Electronics, Telecommunication and Informatics Faculty at the Gdansk University of Technology 

and in a home studio. The songs consist of drums, bass, guitars, and vocals, and their genre 

can be classified as rock. The drums were recorded using the multitrack technique listed in 

Table 4.3. Eleven microphones were used: two for the bass drum (Audix d6 and AKG d112 

mkll), two for the snare drum (both being Shure sm57), two for toms (Audix d4 and Audix d6), 

one for hi-hat (AKG C414), one for the ride (AKG C414), two overheads (Audix SCX-25A) and a 

room mic (Cascade Fat Head II). The configuration is presented in Fig. 4.5. 

Table 4.3. Drum set recording session input list. Particular parts of the set are listed along with used 

microphones 

Instrument Instrument notes Mic 
Stereo 
configuration 

Notes (e.g., polar 
pattern, placing) 

Kick in 

Pearl Export kit, Joey 
Jordison Signature 
Snare, Zildjian custom 
cymbals 

Audix d6 mono 
Cardioid; 
Apogee interface 

Kick out AKG d112 mkII mono 
Cardioid; 
Apogee interface 

Snare top Shure sm57 mono 
Cardioid; 
Apogee interface 

Snare bottom Shure sm57 mono 
Cardioid; 
Apogee interface, 
inverted phase 

Tom high Audix d4 mono 
Cardioid; 
Apogee interface 

Tom low Audix d6 mono 
Cardioid; 
Apogee interface 

Hi-hat AKG C414 mono 
Cardioid; 
Apogee interface 

Ride AKG C414 mono 
Cardioid; 
Apogee interface 

OH Audix SCX25-A XY 

Cardioid; 
Apogee interface, 
Looptrooter 
monster 
compressor 

Room 
Cascade Fat 
Head II 

mono 

Ribbon; 
Apogee interface, 
Placed in the 
middle of the room 
to catch the sound 
of the room 
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Fig. 4.5. Drum set recording setup 

The auditorium used for recording was built for lectures only, so the RT60 is 

approximately 0.6-0.8 s, which is very low in such a vast space (approximately 1150 m3). The 

optimal area of the room was found for the drum set, and portable absorbers were used to 

cancel out the ringing caused by the auditorium piano strings from a piano placed there. All mic 

placements were standard, but the overhead microphones were placed high. 

The guitars (Fender Telecaster as the electric guitar and Schecter Diamond Series as 

the bass guitar) were connected to the Native Instruments Komplete Audio 6 interface through 

the DI box, and the tone was set by using VST amplifiers. All recordings were made in a home 

studio. 

All backing vocals, as well as the main vocal, were recorded in the home studio through 

the abovementioned interface. Due to a suboptimal acoustic situation, it was decided that a 

Shure SM7b microphone should be used. To compensate for the lack of preamplifiers, which 

caused problems of setting the appropriate level of the input signal while recording the backing 

vocals (more subtle than the main vocal), virtual preamplifiers in the DAW were used. All vocals 

were edited from multiple takes so that before mixing, there were only two tracks of the main 

vocal (the bridge of the song was on a separate track) and two backing vocals tracks (mostly 

doubles). 

After recording, editing, and mixing, all channels were exported as separate tracks. This 

also concerned drums, bass, vocal, and other stems, as well as the full non-mastered mix. 
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Due to the nature of the system’s architecture, it was decided to use a fixed number of 

inputs and outputs for each model. The number of inputs and outputs for the models is 

presented in Table 4.4. In cases where the number of signals was bigger than the assumed 

number of inputs, a premix was conducted. The premixing process consisted only of adding the 

signals together – there was no change applied to their loudness level and loudness in relation 

to each other, and no effects (such as eq, compression or reverb) were added. In cases where 

there were too few original signals (for example, there were only two signals for bass), empty 

tracks were created to meet the set requirement of the input number. 

Table 4.4. Models and number of inputs and outputs 

Model Inputs Outputs 

Drum-to-stem 10 (mono) 1 (stereo) 

Bass-to-stem 4 (mono) 1 (stereo) 

Vocal-to-stem 4 (mono) 1 (stereo) 

Other-to-stem 8 (mono) 1 (stereo) 

Stem-to-mix 4 (stereo) 1 (stereo) 

 

4.3. Models training and validation 

As was mentioned above, the system consists of five models. Each model was trained 

separately and then connected to create the system. The training was performed using the L2 

distance as training loss, as previous observations of neural models have shown that using this 

distance helps achieve better results [90][93].  The optimizer used was Adam, with a learning 

rate of 0.0001, decay rates 𝛽1  =  0.9 and 𝛽2  =  0.999. Also, early stopping patience of 20 

epochs was used, and a finetuning step followed. The initial learning rate was 10-4 and the 

batch size was 16. A model with the lowest loss for the validation subset was selected. The test 

loss function of Stem-to-mix model training is presented in Fig. 4.6. 

 

Fig. 4.6. Test loss function of Stem-to-mix model training 

The models were trained on a computer, supported by an NVidia GeForce 1080 

graphics card. Training an individual model took approximately two days. 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

60 

5. PREPARATION OF AUDIO MIXES FOR EVALUATION 

 The primary purpose of training the models was to acquire finished mixes from input 

files. After creating the network and training the models (detailed in Chapter 4), the main 

experiment was designed and performed according to Fig. 5.1.  
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Fig. 5.1. Stages of analysis executed in Chapter 5 

In order to perform the experiment, first, the finished mixes were acquired, and the 

experiment was divided into two parts: objective and subjective. All stages of the testing process 

are shown in Fig. 5.2. The methods of creating all testing samples are detailed in this Chapter, 

whereas in Chapter 6, the results of subjective and objective tests are presented. 
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Fig. 5.2. Main test arrangement 

For testing purposes, it was decided to create four different mixes of the same song: 

• A professional mix. 

• An amateur mix. 

• A mix created using state-of-the-art software. 

• A mix created by the trained models of the Wave-U-Net network. 

Clean tracks for eight songs in four music genres were chosen and acquired from the 

Cambridge database [72]. The list of the selected songs, including their genres and the number 

of tracks to be mixed, is presented in Table 5.1. 

Table 5.1. List of selected songs 

No. Artist name Name of the song Genre No. of tracks 

1 Angels in Amplifiers I’m alright Pop 13 

2 Ben Carrigan 
We’ll talk about it all 
tonight 

Alternative 51 

3 Georgia Wonder Siren Electronica 59 

4 Secretariat Over the top Rock 11 

5 Side Effects Project Sing with me Electronica 46 

6 Speak Softly Broken man Pop 17 

7 The Doppler Shift Atrophy Rock 22 

8 Tom McKenzie Directions Alternative 31 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

62 

In Table 5.1, several high-level music genres are presented. In reality, each genre 

consists of various subgenres to which the songs could belong to [72]. Nevertheless, 

categorizing song genres is not the focus of the dissertation. Four different music genres were 

chosen for experiments. Moreover, the songs include varying ensemble of instruments, 

instrumental compositions, and the number of tracks to be mixed, which introduces an 

additional degree of freedom. Detailed structures of all chosen songs are presented in Appendix 

A. 

Due to the fact that the songs belong to such vastly different genres of music and the 

models were trained (more on that subject in Chapter 4.3.) on data from various genres, the 

evaluation and testing may show interesting results. For example, all 11 tracks from a selected 

song (Secretariat – Over the top) are shown in the form of a mel spectrogram in Fig. 5.3. All 

tracks in each song differ from each other in their spectral content. 

 

Fig. 5.3. All 11 tracks from Secretariat – Over the top song in the form of a mel spectrogram 
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5.1. Professional mixes 

Known experienced audio engineers created professional mixes. Mixes of the following 

songs: Angels in Amplifiers – I’m alright, Georgia Wonder – Siren, Side Effects Project – Sing 

with me, Speak Softly – Broken man, The Doppler Shift – Atrophy, and Tom McKenzie – 

Directions were created by Mike Senior [9][10][11][12][121][122]. Mike Senior earned a Music 

Degree at Cambridge University and worked as an assistant engineer in many noted recording 

studios, such as RG Jones, West Side, Angell Sound, or By Design. Mike Senior is also the 

creator of the open Cambridge database. He collaborated with many famous artists and is the 

creator of books such as “Recording Secrets For The Small Studio” and “Mixing Secrets For 

The Small Studio.” 

The mix for the song Secretariat – Over the top was created by Brian Garten [68]. 

Garten is a known recording and mixing engineer. He collaborated with artists like Mariah 

Carey, Justin Bieber, Britney Spears, and Whitney Houston. He is a four-time nominee for a 

Grammy award and won one Grammy award for the Best Contemporary R&B Album with 

Emancipation of Mimi in 2005. 

The song Ben Carrigan – We’ll talk about it tonight was mixed by Ben Carrigan [22]. 

Carrigan is a songwriter, composer, and music producer from Dublin, Ireland. He graduated 

from a music school specializing in jazz, classical, and pop music traditions. 

The author of this dissertation did not find detailed information about how each mix was 

created (e.g., which tools were used). However, he concluded that the mixes sound highly 

professional and can be used as the “reference” (later referred to as the “Pro” mix). 

5.2. Amateur mixes 

The “Amateur” mixes were created by a person with experience in both music theory 

through their education and in practice as a musician. The person, however, did not have any 

previous experience in audio mixing, neither professional nor recreational. The mixes were 

created in a home studio using the Cubase 10.5 PRO software. The room in which the mixes 

were made was treated acoustically. The monitors used during the process were APS Klasik 

2020. The digital-to-analog converter used was Apollo Twin. 

The length of the mixing process varied for each of the songs, depending on the 

number of tracks in a given song and the song’s genre. The quickest preparation of a mix took 

approximately 2 hours, the most prolonged – 6 hours. Additionally, in general, the more familiar 

the genre was to the amateur mixer, the quicker was the process of mixing. The lack of 

experience in mixing led to a rather intuitive usage of available tools and relying on subjective 

assumptions about what a mix should sound like. The amateur was, however, free of any habits 

and mannerisms that a mixer with more experience would have and performed the process with 

no external guidance. In the “Amateur” mixes author did not exclude any tracks from the final 

mix. The process of preparing the “Amateur” mixes involved the following steps: first, the 

loudness levels of the tracks were established; afterward, the panning was set. In the final step, 

appropriate effects – equalization, reverb, and compression – were used. In Fig. 5.4, the setting 
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of levels and panning for the song Secretariat – Over the top is shown. In Table 5.2, all effects 

used on all channels are presented. 

 

Fig. 5.4. Levels and panning setting in the Amateur mix of Secretariat – Over the top song 

As presented in Fig. 5.4., some level values exceed digital 0 (03_Snare: by 2.31, 

03_Overheads: by 1.88, 04_Bass: by 0.44, 05_ElecGtr1: by 3.24, 07_ElecGtr3: by 4.63, and 

finally, 09_LeadVox: by 4.08). It is the result of a common beginner’s mistake. Amateur mixers 

tend to raise the volume of the most important elements in the mix (such as solo guitar or lead 

vocals). It is widely known that, for human beings, the louder the signal, the better it sounds 

subjectively [101][142]; thus, before the subjective testing process, the samples needed to be 

normalized in the context of loudness. Additionally, in Fig. 5.5, the waveforms of each track are 

presented to compare the values of level changes with respect to the initial level values in the 

tracks. 

 

Fig. 5.5. Waveforms of each track in the Secretariat – Over the top song 
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Table 5.2. Used effects in “Amateur” mix of Secretariat – Over the top song 

Channel name Used effects 

01_Kick Eq: FabFilter Pro-Q3 

02_Snare None 

03_Overheads 
Eq: FabFilter Pro-Q3 
Reverb: FabFilter Pro-R 

04_Bass None 

05_ElecGtr1 
Eq: FabFilter Pro-Q3 
Reverb: FabFilter Pro-R 

06_ElecGtr2 
Eq: FabFilter Pro-Q3 
Reverb: FabFilter Pro-R 

07_ElecGtr3 
Eq: FabFilter Pro-Q3 
Reverb: FabFilter Pro-R 

08_Hammond None 

09_LeadVox Reverb: FabFilter Pro-R 

10_LeadVoxDT Eq: FabFilter Pro-Q3 

11_BackingVox 
Eq: FabFilter Pro-Q3 
Compressor: Stock Cubase 
Vintage Compressor  

 

5.3. State-of-the-art technology mixes 

There are many methods of automatic level balance setting, equalization, compression, 

or even appropriate reverb matching (to recall: the particular steps were presented in Chapters 

2 and 3). Unfortunately, most of them are single solutions to a single problem. As mentioned 

before, to make a mix sound appealing, one should apply a combination of the aforementioned 

operations. To create state-of-the-art mixes, a set of Izotope plugins (details on that included in 

Chapter 3.3) from the music production bundle [44] was used. The plugins included Neutron Pro 

and Nectar Pro. Their automatic balance and automatic mix features make it possible to mix a 

song in a semi-automatic way. 

First, all recordings were imported into the Cubase 10.5 PRO software. Each track was 

imported into a separate channel. The semi-automatic processing method with the use of 

Izotope plugins can be divided into two stages: 

• Setting overall balance. 

• Creating custom presets for every channel. 

In the first stage (setting overall balance), the Relay plugin was applied to each channel. 

The plugin enables tracks containing Neutron Pro and Nectar Pro to interact with one another 

for automatic mixing processes [44]. 

Next, for the master channel, the Neutron Pro plugin was applied. The plugin has a Mix 

Assistant -> Balance feature. This feature automatically sets the loudness level of every channel 

in the song while classifying them. 

One or more channels can be chosen as the “focus” point with the help of the plugin’s 

Assistant feature. The focus point is the most critical element in the song, usually being the 

main vocal. When creating the mixes, the lead vocal was chosen as the element the plugin 
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should treat as the focus point (Fig. 5.6). Next, the song was played from start to finish following 

the program instructions. 

 

Fig. 5.6. Selection of the focus point of the song (vocal in this case) 

After the „listening” stage was completed, the plugin showed the list of tracks and, as 

mentioned before, automatically classified channels into groups of instruments (Fig. 5.7). At this 

point, the classification was checked for errors and corrected manually, followed by accepting 

the Assistant’s suggested relative instrument balance. 

 

Fig. 5.7. Results of automatic balance settings and instrument classification made by the Neutron Pro 
plugin (corrected track types marked) 
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In the second stage (creating a custom preset for every channel), the Neutron Pro 

plugin was applied to each instrumental channel. After selecting the Mix Assistant option, this 

time, the Track Enhance feature was chosen. 

The plugin gives the user the option to choose an instrument manually or to recognize it 

automatically. In this case, to avoid incorrect classification, correct instrument labels were 

assigned manually in GUI. The plugin allows selecting the style in which the preset should be 

created (warm, balanced, upfront) and the intensity (low, medium, high) with which the 

instrument should be treated. The balanced style and medium intensity were chosen for every 

track (Fig. 5.8). 

 

Fig. 5.8. Instrument, Style and Intensity selection 

It is crucial to monitor the output level after creating an automatic preset for a selected 

channel. As mentioned in Chapter 2.6, each operation may change the final loudness level. 

Therefore, meters available in the plugin were used, which show the levels at the input and 

output of the plugin. To avoid interfering with the previously set balance, an appropriate output 

level was set. 

Analogically, to channels containing vocals, the Nectar Pro plugin was applied. The 

plugin works in the same way as Neutron Pro. It is, however, suited for vocal processing. 

Similarly, as for the channels containing instruments, the Mix Assistant tool was used for the 

vocal tracks. Next, the type of vocals (singing), the intensity (medium), and the tone (balanced) 

were selected, as shown in Fig. 5.9. 
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Fig. 5.9. Selected settings of the Izotope Nectar Pro plugin on a vocal track 

Apart from the aforementioned operations, there were no additional operations 

performed. The mixes were exported in a 44.1 kHz sampling frequency and a 16-bit depth (the 

same as the source files). 

5.4. Wave-U-Net mixes 

The “Unet” mixes were created using the system presented in Chapter 4. Although in 

the final version, the system allows for mixing a song without any user intervention, the mixes 

were created manually. This means that, in the first step, the drum tracks were mixed into a 

drum stem, the bass tracks into the bass stem, the vocal tracks into the vocal stem, and the 

remaining tracks into the other stem, using appropriate models. Then, the stems were mixed 

together using an appropriate stem-to-mix model according to the assumed system architecture. 

First, individual tracks for each song were prepared and edited. An appropriate number 

of tracks that were supposed to be mixed depending on the model used was prepared 

manually. As mentioned in Chapter 4.2., the drum-to-stem model was constructed to receive 10 

mono inputs, the bass-to-stem model four mono inputs, the vocal-to-stem four mono inputs, and 

the other-to-stem eight mono inputs. If the song contained stereo files, they were separated into 

two mono files. In cases where the song contained too few tracks of a given instrument group, 

additional empty tracks were prepared. Moreover, in cases where the number of tracks of a 

given instrument group was higher than required, it was decided to pre-mix chosen elements 

manually. There was no level adjustment done between tracks, nor any effects were used (a 

regular addition of audio signal was used). The tracks which were pre-mixed were chosen so 

that the signal from individual tracks did not overlap the signal in other tracks (if possible). It is 

presented in the form of a mel spectrogram in Fig 5.10, where the first three signals were mixed, 

and a summed signal was then acquired, which is presented at the bottom. 
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Fig. 5.10. An example of pre-mixing tracks to fit the input of the other-to-stem model in the form of a mel 
spectrogram 

After acquiring the stems of a given song, a stem-to-mix model, which receives four 

stereo signals, was used, and in effect, a finished stereo mix was obtained. This procedure was 

repeated for each of the eight chosen songs. 

5.5. Postprocessing of mixes 

After obtaining all 32 mixes, the postprocessing of the acquired songs was performed. 

First, from each song, a 15-second clip was selected (duration of an excerpt according to [147]), 

which best represents the chorus or other loudest part of the song. In other words, a fragment of 

the song with the most instruments was chosen. An example of a music piece, i.e., “Secretariat 

– Over the top,” is presented in Fig. 5.11, where all tracks are displayed in the top part, whereas 

at the bottom, the finished mixes are visible. 
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Fig. 5.11. Selected part (15 s) of the Secretariat – Over the top song for the listening evaluation 

The completed mixes varied significantly in their loudness level, which is an unwanted 

characteristic in subjective testing. Therefore, in accordance with AES Technical Committee 

recommendations, the songs were normalized to a target level of -14 LUFS [96]. The 

normalization was performed in the Cubase software by setting the level of consecutive 

samples and observing the level using the Izotope Insight Pro plugin, which shows the 

Integrated LUFS level. 

Subjective tests were performed on normalized samples, whereas objective tests were 

performed on non-normalized samples. Both of the testing processes (objective and subjective) 

along with their results are presented in the following chapter. In Fig. 5.12, the spectral content 

of each of the four mixes of a chosen song (Secretariat – Over the top) is shown. This figure 

confirms the subjective assumption made during listening that the prepared mixes vary in 

spectral content. 
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Fig. 5.12. All four mixes of Secretariat – Over the top song in the form of a mel spectrogram 
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6. EVALUATION OF AUDIO MIXES 

In this Chapter, both objective evaluation and subjective test methodology are described 

(see Fig. 6.1). They constitute an overall quality assessment methodology of mixes obtained.  
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Fig. 6.1. Stages of analysis executed in Chapter 6 

First, the several descriptor values related to perceptual characteristics for each mix are 

calculated. Then,  the evaluation methodology and the results of a subjective test conducted on 

a group of experts are shown. The statistical analysis is performed, and the statistical 

significance of the achieved results is presented. The main focus is the subjective test analysis 
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because of the higher priority of this type of test over the objective test results [4][64][137]. This 

is followed by similarity matrix-based [76][113][118] analyses and discussion. 

6.1 Evaluation methodology 

6.1.1. Low-level descriptors 

There are a variety of low-level descriptors that are used in MIR (Music Information 

Retrieval) [50][82][103][141]. Many of them are contained in the MPEG-7 standard (Multimedia 

Content Description Interface). This standard is a document that describes dealing with 

multimedia data [48][59][133]. In the context of audio signals, the MPEG-7 standard 

recommends a way of saving sound files and interpreting their parameters. The basic 

information that the MPEG-7 standard recommends for the description of audio files includes 

[133]: 

• General file information (e.g., copyright, author, year); 

• File storing information (e.g., save format, coding); 

• Structural information about the spatial, time, or space-time elements of the file; 

• Low-level parameter information in the file (e.g., timbre, melody description, decibel 

level, speed/tempo); 

• Additional information – high-level functions (e.g., mood, genre); 

• Information about the user interaction with the content (e.g., user preferences – how 

long the song was listened to, how many times it was skipped); 

Described below are the parameters used in the conducted experiments. 

 

Below, several parameters − employed to compare a given and the reference mixes − 

are listed. They were chosen due to their correlation with perceptual meaning. 

RMS-Energy Envelope 

Parameters based on Root Mean Square (RMS) are used for calculating the average 

value of samples in the signal’s time-domain (more on that in Chapter 2.1). 

Three groups of RMS parameters based on the analysis of the value distribution of 

sound samples in relation to square means of the signal can be distinguished. The groups are 

the same as the RMS 𝑟1, 𝑟2, 𝑟3 levels for the analyzed frame of the signal [56]. Based on the 

exceeding of the RMS value threshold, one can specify the parameters that contain a number of 

samples that exceed specific RMS thresholds. The following parameters from the RMS group 

are developed based on smaller fragments of the signal. 

Odd-to-Even Harmonic Ratio and Harmonic Envelope 

Frequency parameters constitute an essential part of the vector of parameters (i.e., 

feature vector) built for perceptual analysis. Parameters from the frequency domain describe the 

content of an audio file due to a breakdown of individual elements of the file into frequency 

components. The primary way to do frequency analysis of audio signals is by calculating the 

spectrum of the signal. Then, spectral parameters are calculated based on the signal’s 
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spectrum estimation. Most commonly, the signal’s spectrum is obtained using Discrete Fourier 

Transform (DFT). DFT processes the real sequence of the signal, which is N-samples long, into 

an M-samples complex representation in the frequency field. Based on the calculated partials, 

the number of odd and even harmonic components is determined, which can be used to 

calculate the Odd-to-Even Harmonic Ratio. The Audio Spectrum Envelope (ASE) is used to 

calculate the Harmonic Envelope. ASE is a short-term power spectrum of 𝑃𝑥 for frequencies in 

logarithmic intervals [133]. These parameters are highly related to the perceptual evaluation of a 

music signal.  

6.1.2. Statistical analysis 

There are several statistical tests employed for checking whether differences between 

parameter values are significant. The Shapiro-Wilk test is used to test the similarity of the 

distribution of a given variable to the normal distribution. The test tests the null hypothesis, 

which states that the distribution of the given variable is close to normal. Testing the normality of 

distribution is necessary when using parametric tests, e.g., variance analysis. 

The Shapiro-Wilk test is calculated using the following formula (6.1) [115]: 

 𝑊 =  
(∑ 𝑎𝑖(𝑛)(𝑋𝑛−𝑖+1−𝑋𝑖)𝑖 )2

∑ (𝑋𝑗−𝑋̅)2𝑛
𝑗=1

 (6.1) 

where 𝑊 is the result of the Shapiro-Wilk test, 𝑎𝑖(𝑛) is a constant, 𝑗 are the subsequent 

data points in the sample, and 𝑖 are the subsequent differences between extreme data points. 

A single-factor variance analysis (one-way ANOVA) is performed to test if any individual 

factor influences the measured dependent variable. It is assumed that the factor has a form of 

groups varying only by the value of the factor. The single-factor variance analysis is treated as 

an expansion of the t-Student test. The tests are limited to testing only two groups. Variance 

analysis does not have these limitations. To compare more than two groups, instead of a triple 

use of the t-Student test, a single-factor variance analysis is performed. However, a significant 

result of an F test (variance analysis) does not provide information on which groups of the 

tested ones vary. The result informs about the existence of variation among the groups (or that 

the impact of a given factor on the dependent variable was observed.) To confirm which groups 

are characterized by statistically significant variance, “post-hoc” multiple comparisons need to 

be performed [83]. 

The Tukey-Kramer Test (Tukey’s Honest Significant Difference test) is a single-step 

multiple comparison procedure and statistical test [23]. It is a post-hoc ad based on a 

studentized distribution [23]. As mentioned above, the ANOVA test provides information on the 

overall statistical significance of the results without confirming the placement of the differences. 

The Turkey-Kramer test can be performed (after the ANOVA test results proved to be 

significant) to specify which groups' means are different when compared with each other. The 

Tukey’s Honest Significant Difference test compares each pairwise combination of means [136]. 

When simultaneously testing multiple hypotheses (a family of hypotheses), one could 

risk the increase of the 𝛼 error value, which is the main problem in the field of multiple 

comparisons. An increase of the 𝛼 error suggests that the null hypothesis is rejected too often 
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while being true (the existence of differences is indicated when in reality, there are none.) To 

prevent the increase of 𝛼, a correction (decrease) of the 𝛼 value or a correction (increase) of the 

𝑝 value of the tests can be done (Sidak correction). The Sidak correction is described by the two 

Eqs. (6.2) and (6.3) [1]: 

 𝑝(𝑆𝑖𝑑𝑎𝑘,𝑖) =  1 − (1 − 𝑝𝑖)𝑐 (6.2) 

 𝛼(𝑆𝑖𝑑𝑎𝑘,𝑖) =  1 − (1 − 𝛼𝑖)
1/𝑐 (6.3) 

 

The Pearson correlation coefficient (Pearson’s 𝑟) is used to calculate the relationship 

between quantitative variables [80]. It informs about the strength and the regression slope 

between variables. The correlation coefficients can assume values from a [−1; 1] range. The 

values indicate the strength of the relationship – the closer the value is to “0”, the weaker the 

correlation; the closer the value is to “1” or “-1”, the stronger the correlation. A value of „1” 

implies a perfect linear correlation (all data points lie on a line). 

Table 6.1. Interpretation of the correlation coefficient values 

𝑟 values (absolute) Interpretation 

0 – 0.3 
No correlation or very weak 
correlation 

0.3 – 0.5 Moderately strong correlation 

0.5 – 0.7 Strong correlation 

0.7 – 1 Very strong correlation 

6.1.3. Self-similarity matrices 

A self-similarity matrix (SSM) converts the sequence of features into 2D feature space 

by comparing its elements. An idea of comparing each element of the feature sequence with all 

other elements of the sequence and visualization by a matrix of similarity scores was borrowed 

from the music information retrieval (MIR) domain [28]. Currently, SSMs are widely used for the 

analysis and generation of music signals [58][84], as well as for performing other tasks related 

to audio signals, such as highlighting interlanguage phoneme differences [53] or motion data 

analysis in manufacturing scenarios [102]. 

The author focused on music-based features called a chromagram. The chromagram 

construction method takes into account the fact that pitch consists of two components: tone 

height and chroma [3][116]. The features represent the distribution of signal energy over chroma 

and time. The relationship between components can be defined by the following formula: 

 𝑓 =  2𝑐+ℎ (6.4) 

where 𝑐 is chroma (𝑐 ∈  [0,1]), f is frequency, and h denotes the frequency.  

The process of feature calculation was organized in a pipelined manner, i.e., the signal 

was divided into overlapping frames, and for each frame of the chroma, a vector was obtained. 

The chroma vector sums up the spectral energy into 12 bins corresponding to the 12 semitones 

within an octave. An example of the chromagram is given in Fig. 6.2, where frames are shown 

along the x-axis, chroma bins are presented along the y-axis, and the color saturation indicates 

the intensity of the sound signal. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

76 

 

Fig. 6.2. Chromagram of the Secretariat – Over the top “Unet” mix 

For the chromagram example (see Fig. 6.2), the following settings were selected: frame 

size – 2048 samples, overlap – 1025 samples.  

The starting point of an SSM construction is the feature normalization procedure. The 

feature sequence is realized by the 𝑀 × 𝑁 matrix 𝑋, where 𝑀 is the number of acoustic 

parameters and 𝑁 is the number of short-time segments. The feature normalization was 

performed by normalization of each column of the feature matrix.  

The normalized values are calculated using the following formula: 

 𝑥̂𝑛 =
𝑥𝑛−𝑥̅𝑛

𝑆𝐷
 (6.5) 

where 𝑥̅𝑛 and 𝑆𝐷 are the mean and standard deviation of non-normalized features, 

respectively, and 𝑥𝑛  =  (𝑥1𝑛 , … , 𝑥𝑁𝑛) is the 𝑛-th matrix column (𝑛 = 1, … , 𝑁). The mean and 

standard deviation are calculated as follows: 

 𝑥̅𝑛 =
1

𝑀
∑ 𝑥𝑚𝑛

𝑀
𝑚=1  (6.6) 

 𝑆𝐷 = √∑ (𝑥𝑚𝑛− 𝑥̅𝑛)𝑀
𝑛=1

𝑀−1
 (6.7) 

To calculate the values of SSM, each column of the normalized feature matrix 𝑋̂ is 

compared with each other. For this purpose, the dot product between the feature matrix and its 

transpose is calculated: 

 𝑆 =  𝑋̂𝑇𝑋̂ (6.8) 

The entries of the matrix imply the similarity scores. Each pixel in the matrix obtains a 

greyscale value corresponding to the given similarity score. The darkest color refers to the 

smallest similarity. By comparing the given scores, each short-time segment is compared with 

each other. 

6.2 Objective evaluation 

Unprocessed samples were used for the objective evaluation. This is because 

subjecting the recordings to normalization may prevent the correct identification of objective 

values for the acquired samples. 

First, the waveform statistics were calculated, such as RMS level (Fig. 6.3), Integrated 

Loudness (Fig. 6.4), Loudness Range (Fig. 6.5), and True peak level (Fig. 6.6) for all music 

excerpts.  Further on, selected low-level descriptors MPEG-7 were calculated. For this purpose, 

the timbre toolbox [134] in the MATLAB environment was used. Odd-to-even Harmonic Ratio, 

RMS-Energy Envelope, Harmonic Energy, and Noisiness were calculated for each music 

sample. As already mentioned, these descriptors were chosen because of their perceptual 
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interpretation. An example of all computed data for the “Secretariat – Over the top” sample 

resulting from the Izotope-based mixing is presented in Fig. 6.7.  All calculated descriptor values 

with corresponding graphs for other songs are included in Appendix B.  

 

Fig. 6.3. RMS level calculated for all music pieces evaluated 

 

Fig. 6.4. Integrated Loudness calculated for all music samples 
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Fig. 6.5. Loudness Range calculated for all music samples 

 

Fig. 6.6. True peak level calculated for all music samples 
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Fig. 6.7. Descriptors calculated for Secretariat – Over the top “Izotope” sample 

The RMS level-based results from Fig. 6.3 are presented in Table 6.2. The RMS level is 

a critical element that every mixing engineer should pay attention to, as it approximates the 

human perception of the loudness of sound. As seen in Table 6.2, level values differ depending 

on the recording genre and the number of instrumental tracks mixed together. Assuming the 

“Pro” mix as the reference, it can be noted that the “Unet” mix is the closest to the said 

reference. The “Amateur” and “Izotope” mixes differ noticeably from the commonly accepted 

norm of -16 to -14 dB RMS. 

Table 6.2. RMS level calculated for all objective samples 

song RMS level [dB] 

 Amateur Izotope Unet Pro 

Angels in Amplifiers - I'm Alright -16.13 -18.12 -15.80 -15.12 

Ben Carrigan - We’ll talk about it all tonight -13.16 -18.69 -15.75 -15.37 

Georgia Wonder - Siren -16.26 -20.74 -17.07 -16.22 

Secretariat - Over the top -20.15 -27.66 -18.45 -17.68 

Side Effects Project - Sing with me -16.47 -20.27 -15.62 -16.39 

Speak Softly - Broken man -16.80 -19.77 -12.44 -12.37 

The Doppler Shift - Atrophy -23.51 -22.70 -14.98 -14.46 

Tom McKenzie - Directions -23.73 -19.05 -14.17 -13.60 

Standard deviation 3.80 3.09 1.80 1.68 

Variance 14.42 9.52 3.25 2.82 

 

The Integrated Loudness-based results from Fig. 6.4 are presented in Table 6.3. This 

level was defined for audio signal normalization purposes and matched how human ears 

perceive sound. As can be concluded from the table, the level varies not only among the types 

of mixes but also between the songs. It is normal because different music genres are 
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characterized by different target levels. However, assuming the “Pro” mix as the reference, the 

“Unet” mix is the closest to the reference. The “Amateur” and “Izotope” mixes are vastly different 

from the assumed norm of -16 to -14 LUFS.  

Table 6.3. Integrated Loudness calculated for all objective samples 

song Integrated Loudness (LUFS) 

 Amateur Izotope Unet Pro 

Angels in Amplifiers - I'm Alright -17.14 -18.52 -16.80 -15.17 

Ben Carrigan - We’ll talk about it all tonight -13.13 -19.18 -17.46 -16.43 

Georgia Wonder - Siren -17.67 -20.92 -17.98 -16.63 

Secretariat - Over the top -19.77 -27.76 -19.00 -17.20 

Side Effects Project - Sing with me -17.30 -20.32 -16.83 -16.80 

Speak Softly - Broken man -18.46 -20.33 -15.08 -14.26 

The Doppler Shift - Atrophy -24.73 -23.74 -17.43 -16.39 

Tom McKenzie - Directions -24.67 -19.15 -17.04 -16.44 

Standard deviation 3.93 3.08 1.12 0.96 

Variance 15.46 9.51 1.26 0.93 

 

The Loudness Range-based results from Fig. 6.5 are presented in Table 6.4. Loudness 

Range (measured in Loudness Units) shows loudness variation over the entire song. As can be 

concluded from the table, the “Pro” mixes are characterized by the smallest deviation and 

variance. In general, it is assumed that with 𝐿𝑈 <  4, a mix is relatively static in dynamics. The 

calculations presented in the table show that the “Pro” mixes are the most static in dynamic 

range, followed by “Izotope” and “Unet” mixes. The “Amateur” mixes have the highest values of 

standard deviation and variance – their loudness widely varies in different songs and different 

music genres. 

Table 6.4. Loudness Range calculated for all objective samples 

song Loudness Range (LU) 

 Amateur Izotope Unet Pro 

Angels in Amplifiers - I'm Alright 2.45 2.71 1.50 1.51 

Ben Carrigan - We’ll talk about it all tonight 2.21 2.03 1.07 1.42 

Georgia Wonder - Siren 2.54 3.84 2.02 2.60 

Secretariat - Over the top 7.38 5.08 5.28 4.99 

Side Effects Project - Sing with me 1.30 1.11 0.84 1.43 

Speak Softly - Broken man 3.42 3.59 3.19 2.93 

The Doppler Shift - Atrophy 1.46 1.44 1.71 1.52 

Tom McKenzie - Directions 1.38 1.20 0.69 0.67 

Standard deviation 2.00 1.44 1.53 1.36 

Variance 3.99 2.08 2.34 1.84 

 

The results of True peak level from Fig. 6.6 are presented in Table 6.5. As can be 

observed, the “Pro” mixes are characterized by the lowest values of variance and standard 

deviation even though the mixes were created by several audio engineers and are closely 

followed by the “Unet” mixes. The “Amateur” mixes are not only characterized by the highest 
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variance. This is understandable as amateurs do not have much experience mixing songs in 

various music genres. Moreover, two songs, i.e., “Ben Carrigan – We’ll talk about it tonight” and 

Side “Effects Project – Sing with me,” exceed digital “zero,” which means that in those mixes, an 

unpleasant digital distortion is present. Exceeding digital “zero” in mixes is a typical mistake 

made by amateur mixers. 

Table 6.5. True peak level calculated for all objective samples 

song True peak level (dB) 

 Amateur Izotope Unet Pro 

Angels in Amplifiers - I'm Alright -2.74 -4.14 -1.82 -2.04 

Ben Carrigan - We’ll talk about it all tonight 0.02 -5.13 -1.87 -1.65 

Georgia Wonder - Siren -3.52 -7.84 -3.11 -3.01 

Secretariat - Over the top -2.16 -11.59 -3.62 -2.27 

Side Effects Project - Sing with me 0.01 -5.99 -2.13 -1.73 

Speak Softly - Broken man -6.79 -7.76 -1.56 -1.64 

The Doppler Shift - Atrophy -9.74 -10.12 -4.01 -2.95 

Tom McKenzie - Directions -11.77 -5.18 -1.49 -0.89 

Standard deviation 4.40 2.61 0.98 0.71 

Variance 19.40 6.82 0.97 0.51 

 
Descriptors such as Odd-to-Even Harmonic Ratio, RMS-Energy Envelope, and 

Harmonic Energy are given more consideration as they show both the dynamic and spectral 

content in the given audio signal. In Fig. 6.8, a variation of the RMS-Energy Envelope of the 

“Secretariat – Over the top song” − depending on the mix type − is shown. Graphs of all three 

descriptors calculated for each sample are presented in Appendix B. 

 

Fig. 6.8. Variation of the RMS-Energy Envelope depending on the mix type in the Secretariat – Over the 
top song 

For each mentioned descriptor, an analysis was performed to determine the statistical 

significance of differences between the mixes. For this purpose, one-way ANOVA series and 
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the post hoc Tukey Kramer test were executed. The level of significance in this Chapter was 

assumed to be ∝ =  0,05. 

The statistical significance calculation results of the RMS-Energy Envelope descriptor 

value differences for pairs of mixes are presented in Table 6.6. In bold font, the p-value for all 

significant differences between compared mix samples is highlighted. As can be concluded from 

the table, in the case of this descriptor, almost all pair comparisons are characterized by 

statistical significance, except the “Amateur” – “Unet” pair in the “Georgia Wonder – Siren” song 

and the “Unet” – “Pro” in the “The Doppler Shift – Atrophy” song. This means that the 

differences between the types of mixes in most cases are statistically significant. 

Table 6.6. Statistical significance calculation results of the RMS-Energy Envelope descriptor 

RMS-Energy Envelope 

Samples compared Lower confidence Estimate Upper confidence p 

Angels in Amplifiers - I'm Alright 

Amateur Izotope 0.02 0.02 0.02 0.00 

Amateur Unet -0.02 -0.02 -0.02 0.00 

Amateur Pro -0.01 -0.01 -0.01 0.00 

Izotope Unet -0.04 -0.04 -0.04 0.00 

Izotope Pro -0.03 -0.03 -0.03 0.00 

Unet Pro 0.01 0.01 0.01 0.00 

Ben Carrigan - We'll talk about it tonight 

Amateur Izotope 0.08 0.08 0.08 0.00 

Amateur Unet 0.04 0.04 0.04 0.00 

Amateur Pro 0.04 0.04 0.04 0.00 

Izotope Unet -0.04 -0.04 -0.04 0.00 

Izotope Pro -0.03 -0.03 -0.03 0.00 

Unet Pro 0.01 0.01 0.01 0.00 

Georgia Wonder - Siren 

Amateur Izotope 0.05 0.05 0.05 0.00 

Amateur Unet 0.00 0.00 0.00 0.23 

Amateur Pro 0.01 0.01 0.01 0.00 

Izotope Unet -0.05 -0.05 -0.05 0.00 

Izotope Pro -0.03 -0.03 -0.03 0.00 

Unet Pro 0.01 0.01 0.01 0.00 

Secretariat - Over the top 

Amateur Izotope 0.04 0.04 0.04 0.00 

Amateur Unet -0.03 -0.03 -0.03 0.00 

Amateur Pro -0.02 -0.02 -0.02 0.00 

Izotope Unet -0.07 -0.07 -0.07 0.00 

Izotope Pro -0.06 -0.06 -0.06 0.00 

Unet Pro 0.01 0.01 0.01 0.00 

Side Effects Project - Sing with me 

Amateur Izotope 0.04 0.04 0.04 0.00 

Amateur Unet 0.00 0.00 0.00 0.00 

Amateur Pro -0.01 -0.01 -0.01 0.00 

Izotope Unet -0.04 -0.04 -0.04 0.00 
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Izotope Pro -0.05 -0.05 -0.05 0.00 

Unet Pro -0.01 -0.01 -0.01 0.00 

Speak Softly - Broken man 

Amateur Izotope 0.03 0.03 0.03 0.00 

Amateur Unet -0.08 -0.08 -0.08 0.00 

Amateur Pro -0.08 -0.08 -0.08 0.00 

Izotope Unet -0.11 -0.11 -0.11 0.00 

Izotope Pro -0.11 -0.11 -0.11 0.00 

Unet Pro 0.00 0.00 0.00 0.00 

The Doppler Shift - Atrophy 

Amateur Izotope 0.01 0.01 0.02 0.00 

Amateur Unet -0.03 -0.03 -0.02 0.00 

Amateur Pro -0.03 -0.03 -0.02 0.00 

Izotope Unet -0.04 -0.04 -0.03 0.00 

Izotope Pro -0.04 -0.04 -0.03 0.00 

Unet Pro 0.00 0.00 0.01 1.00 

Tom McKenzie - Directions 

Amateur Izotope -0.04 -0.04 -0.04 0.00 

Amateur Unet -0.10 -0.10 -0.10 0.00 

Amateur Pro -0.09 -0.09 -0.09 0.00 

Izotope Unet -0.06 -0.06 -0.06 0.00 

Izotope Pro -0.06 -0.06 -0.06 0.00 

Unet Pro 0.01 0.01 0.01 0.00 

 

The statistical significance results of the Harmonic Energy descriptor value differences 

for pairs of mixes are presented in Table 6.7. As this table shows, in the case of the Harmonic 

Energy descriptor, most of the pair comparisons are characterized by statistical significance 

(these values are highlighted in bold) except the “Unet” – “Pro” pair in the “Ben Carrigan – We’ll 

talk about it tonight”  song, “Unet” – “Pro” pair in the “Secretariat – Over the top” song, 

“Amateur” – “Pro” and “Unet” – “Pro” pair in the “Side Effects Project – Sing with me” song, 

“Unet” – “Pro” in “Speak Softly – Broken man” and “Amateur” – “Izotope” pair in “The Doppler 

Shift – Atrophy” song. 

Table 6.7. Statistical significance calculation results of the Harmonic Energy descriptor 

Harmonic Energy 

Samples being compared Lower confidence Estimate Upper confidence p 

Angels in Amplifiers - I'm Alright 

Amateur Izotope 0.00 0.00 0.00 0.00 

Amateur Unet -0.01 0.00 0.00 0.00 

Amateur Pro 0.00 0.00 0.00 0.00 

Izotope Unet -0.01 -0.01 0.00 0.00 

Izotope Pro -0.01 0.00 0.00 0.00 

Unet Pro 0.00 0.00 0.00 0.03 

Ben Carrigan - We'll talk about it tonight 

Amateur Izotope 0.02 0.02 0.02 0.00 

Amateur Unet 0.01 0.01 0.01 0.00 
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Amateur Pro 0.01 0.01 0.01 0.00 

Izotope Unet -0.01 -0.01 -0.01 0.00 

Izotope Pro -0.01 -0.01 0.00 0.00 

Unet Pro 0.00 0.00 0.00 0.88 

Georgia Wonder - Siren 

Amateur Izotope 0.01 0.01 0.01 0.00 

Amateur Unet 0.00 0.00 0.00 0.00 

Amateur Pro 0.00 0.00 0.00 0.00 

Izotope Unet -0.01 -0.01 0.00 0.00 

Izotope Pro -0.01 0.00 0.00 0.00 

Unet Pro 0.00 0.00 0.00 0.00 

Secretariat - Over the top 

Amateur Izotope 0.00 0.00 0.00 0.00 

Amateur Unet 0.00 0.00 0.00 0.00 

Amateur Pro 0.00 0.00 0.00 0.00 

Izotope Unet -0.01 -0.01 -0.01 0.00 

Izotope Pro -0.01 -0.01 0.00 0.00 

Unet Pro 0.00 0.00 0.00 0.37 

Side Effects Project - Sing with me 

Amateur Izotope 0.00 0.01 0.01 0.00 

Amateur Unet 0.00 0.00 0.00 0.01 

Amateur Pro 0.00 0.00 0.00 0.12 

Izotope Unet -0.01 0.00 0.00 0.00 

Izotope Pro -0.01 0.00 0.00 0.00 

Unet Pro 0.00 0.00 0.00 0.80 

Speak Softly - Broken man 

Amateur Izotope 0.01 0.01 0.02 0.00 

Amateur Unet -0.03 -0.03 -0.02 0.00 

Amateur Pro -0.03 -0.03 -0.02 0.00 

Izotope Unet -0.04 -0.04 -0.03 0.00 

Izotope Pro -0.04 -0.04 -0.03 0.00 

Unet Pro 0.00 0.00 0.01 1.00 

The Doppler Shift - Atrophy 

Amateur Izotope 0.00 0.00 0.00 0.51 

Amateur Unet -0.01 -0.01 -0.01 0.00 

Amateur Pro -0.01 -0.01 -0.01 0.00 

Izotope Unet -0.01 -0.01 -0.01 0.00 

Izotope Pro -0.01 -0.01 -0.01 0.00 

Unet Pro 0.00 0.00 0.00 0.00 

Tom McKenzie - Directions 

Amateur Izotope -0.04 -0.04 -0.04 0.00 

Amateur Unet -0.10 -0.10 -0.10 0.00 

Amateur Pro -0.09 -0.09 -0.09 0.00 

Izotope Unet -0.06 -0.06 -0.06 0.00 

Izotope Pro -0.06 -0.06 -0.06 0.00 

Unet Pro 0.01 0.01 0.01 0.00 
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Results of the statistical significance calculation results of the Odd-to-Even Harmonic 

Ratio descriptor value differences for pairs of mixes are presented in Table 6.8. As shown in this 

table, in the case of the Odd-to-Even Harmonic Ratio descriptor, the differences between mixes 

are rather statistically insignificant (except for a few examples). Again, all significant differences 

are highlighted in bold.  

Table 6.8. Statistical significance calculation results of the Odd-to-Even Harmonic Ratio 

Odd-to-Even Harmonic Ratio 

Samples being compared Lower confidence Estimate Upper confidence p 

Angels in Amplifiers - I'm Alright 

Amateur Izotope -3.24 -1.10 1.03 0.55 

Amateur Unet -2.87 -0.73 1.40 0.81 

Amateur Pro -1.53 0.61 2.74 0.88 

Izotope Unet -1.77 0.37 2.50 0.97 

Izotope Pro -0.42 1.71 3.85 0.17 

Unet Pro -0.79 1.34 3.48 0.37 

Ben Carrigan - We'll talk about it tonight 

Amateur Izotope -0.41 0.23 0.88 0.78 

Amateur Unet -0.77 -0.12 0.52 0.96 

Amateur Pro -0.80 -0.16 0.48 0.92 

Izotope Unet -1.00 -0.36 0.28 0.48 

Izotope Pro -1.04 -0.39 0.25 0.39 

Unet Pro -0.68 -0.03 0.61 1.00 

Georgia Wonder - Siren 

Amateur Izotope -1.87 0.57 3.01 0.93 

Amateur Unet -2.06 0.38 2.82 0.98 

Amateur Pro -2.09 0.35 2.79 0.98 

Izotope Unet -2.63 -0.19 2.25 1.00 

Izotope Pro -2.65 -0.22 2.22 1.00 

Unet Pro -2.46 -0.02 2.41 1.00 

Secretariat - Over the top 

Amateur Izotope -8.63 -1.49 5.65 0.95 

Amateur Unet -30.58 -23.44 -16.30 0.00 

Amateur Pro -29.32 -22.18 -15.04 0.00 

Izotope Unet -29.09 -21.95 -14.81 0.00 

Izotope Pro -27.83 -20.69 -13.55 0.00 

Unet Pro -5.88 1.26 8.40 0.97 

Side Effects Project - Sing with me 

Amateur Izotope -5.50 -0.72 4.05 0.98 

Amateur Unet -6.10 -1.32 3.45 0.89 

Amateur Pro -7.78 -3.01 1.77 0.37 

Izotope Unet -5.37 -0.60 4.17 0.99 

Izotope Pro -7.05 -2.28 2.49 0.61 

Unet Pro -6.46 -1.68 3.09 0.80 

Speak Softly - Broken man 

Amateur Izotope 10.00 18.64 27.29 0.00 
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Amateur Unet 9.56 18.21 26.86 0.00 

Amateur Pro 8.49 17.13 25.78 0.00 

Izotope Unet -9.08 -0.44 8.21 1.00 

Izotope Pro -10.16 -1.51 7.14 0.97 

Unet Pro -9.72 -1.07 7.57 0.99 

The Doppler Shift - Atrophy 

Amateur Izotope -4.82 -0.93 2.97 0.93 

Amateur Unet -7.20 -3.31 0.58 0.13 

Amateur Pro -11.30 -7.41 -3.51 0.00 

Izotope Unet -6.28 -2.38 1.51 0.40 

Izotope Pro -10.37 -6.48 -2.59 0.00 

Unet Pro -7.99 -4.10 -0.21 0.03 

Tom McKenzie - Directions 

Amateur Izotope -16.20 -3.09 10.02 0.93 

Amateur Unet -9.34 3.77 16.87 0.88 

Amateur Pro -19.85 -6.74 6.36 0.55 

Izotope Unet -6.25 6.86 19.96 0.54 

Izotope Pro -16.76 -3.65 9.45 0.89 

Unet Pro -23.62 -10.51 2.60 0.17 

 

From tables 6.2-6.5, an interesting observation can be made that the professional 

mixes, although created by various people, are characterized by the smallest standard 

deviations and variances in RMS, Integrated Loudness, Loudness Range, and True peak level 

values. For the “Amateur” and “Izotope” mixes, however, the opposite is true. Professional 

mixing engineers appear to be more consistent in their mixing (in loudness and dynamic range), 

regardless of the music genre being mixed. The results for the “Unet” mixes were close to those 

for “Pro” mixes, which indicates that this type of mix resembles professional mixing the most. 

As shown in Tables 6.6-6.8, two descriptors (RMS-Energy Envelope and Harmonic 

Energy) show statistically significant differences between mixes. 

Considering all above results, it can be concluded that the “Unet” mixes are the closest 

to the “Pro” mixes and the developed system (described in chapter 4) is capable of creating a 

mix that can be objectively rated as professional or close to professional. Moreover, it can be 

concluded that the system produces mixes better than amateur mixes and better than mixes 

created by the well-known state-of-the-art method. The conclusions prove thesis no. 1, i.e., “It 

is possible to mix music consisting of separate raw recordings using a one-dimensional 

adaptation of the Wave-U-Net autoencoder that can objectively be evaluated similarly to a 

professional mix.” 

In the following Chapter 6.3, the subjective tests are described that were conducted to 

prove thesis no. 2. The comparison between the subjective and objective tests is presented in 

Chapter 6.4. 
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6.3. Subjective evaluation 

6.3.1. Listening test 

After adequate postprocessing of samples (described in Chapter 5.5), the listeners were 

asked to fill out a questionnaire and give their subjective rates for each acquired 32 samples. 

The questionnaire given to the listeners is attached in Appendix C. The rating of samples was 

conducted in line with the methodology of the rating procedure [147] using a five-point scale (1-

5). The subjective test results, including their analysis, are presented in Chapter 6.3.2. 

The listeners performed the listening test in the R1 laboratory (mixing room) at the 

Hamburg University of Applied Sciences. The room is adapted to professional listening and is 

equipped with multiple pairs of audio monitors. In this case, it was decided to use the “main 

speakers” pair, i.e., Klein+Hummel 0410. Nuendo 10 software and Audient ASP 8024 mixing 

console were used for the listening session. All effects on the console were turned off and all 

faders were set to the unity position. On the same console, the routing of individual channels to 

subgroups in the middle of the console was performed. All samples were played simultaneously 

from the DAW and the listeners could freely switch between the different mixes. The system 

calibration was set to 85db SPL and was performed with the use of the Bruel & Kjaer Precision 

732A meter. For the calibration, pink noise correlated to the listening files (i.e., normalized to the 

-14 LUFS level) was used. The chosen level may seem relatively high for a regular user, but 

due to the expert character of the testing process and to make the identification of the most 

minute details possible, the selected level was appropriate. The loudness level is also 

recommended by the Audio Engineering Society [96]. 

During the listening sessions, the expert listeners were able to switch between the 

different mixes in any order and marked their ratings in the questionnaire. The listeners were 

taking part in the sessions individually. The test was constructed in such a way that each person 

received samples in a different order – the trial was fully randomized, and there was no 

possibility for the listener to lean into a specific answer due to the testing samples’ order. Every 

listener was familiar with operating the console and was asked if they understood all questions 

included in the questionnaire. Due to the fact that the audio jargon used by professional audio 

engineers may differ in various areas of the world, the author included definitions next to each 

expression (e.g., balance). Different expressions (mix-defining characteristics to be subjectively 

rated) are presented in Appendix C. A single listening test session lasted for approximately one 

hour. The results and their statistical analysis are presented in the following Chapter. 

6.3.2. Analysis of the test results 

After the subjective tests were completed, a statistical analysis of the results was 

performed. There were 20 participants in the tests; all of them were students of the Music 

Production Class and Digital Sound Masters Program at the Hamburg University of Applied 

Sciences. Among all the subjects, 16 were men, whereas four were women. The average age of 

participants was 26.9 and the standard deviation of age equaled 4.39. All the participants 
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confirmed that they listen to music. Music genres that the participants listened to varied, but the 

most frequent responses were rock, alternative, hip-hop, and jazz. The majority of listeners 

answered that they were familiar with genres such as rock, pop, alternative, and electronica. 

85% of the listeners were musicians, and 60% were also mixing engineers. Presented in Fig. 

6.9 are the listeners’ years of experience in music mixing. 

 

Fig. 6.9. Results of the survey in which the subjects were asked how many years of experience they have 
in music mixing  

To answer the hypotheses, statistical analyses were performed using the IBM SPSS 

Statistics 25 software. The software was used to calculate the analysis of basic descriptive 

statistics, the Shapiro-Wilk test of normality, a series of one-way analyses of variance (abbr. 

one-way ANOVA) for dependent samples, and the linear correlation analysis with the use of the 

Pearson correlation coefficient (𝑟). The level of significance was assumed to be ∝ =  0,05. 

Results whose significance was at the level of 0,05 <  𝑝 <  0,1 were assumed to be statistically 

significant at the level of the statistical trend. 

To check whether the assumption about the compliance of the distributions of the 

measured quantitative variables with the normal distribution has been met, first, the analysis of 

basic descriptive statistics with the Shapiro-Wilk test was conducted. The test result was 

statistically significant for a part of the variables (in bold). This means that their distribution 

deviates from the normal curve with statistical significance. However, the skew value for all 

variables does not exceed the agreed absolute value of 2, which indicates that the distributions 

are not extremely asymmetrical to the normal curve even when the normality test result is 

statistically significant [31]. Due to the above, if the other assumptions are met, parametric tests 

are to be performed. The basic descriptive statistics, including the Shapiro-Wilk test results, are 

presented in Tables 6.9-6.18. 
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Table 6.9. Basic descriptive statistics and Shapiro-Wilk test results for the overall ratings of mixes and the 

listeners’ years of experience in mixing 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Overall rating: Amateur 2.67 2.53 0.47 1.17 1.16 2.05 3.85 0.90 0.048 

Overall rating: Izotope 2.62 2.63 0.55 0.58 1.36 1.63 4.05 0.97 0.675 

Overall rating: Unet 3.58 3.76 0.59 -1.16 0.92 2.05 4.30 0.89 0.024 

Overall rating: Pro 4.10 4.28 0.54 -0.94 0.87 2.83 5.00 0.91 0.054 

Years of experience in mixing 4.10 2.00 5.40 1.61 2.65 0.00 20.00 0.79 <0.001 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.10. Basic descriptive statistics and Shapiro-Wilk test results for the measured indicators of the 

Amateur-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Balance Amateur 2.66 2.50 0.54 0.88 0.24 1.88 3.88 0.93 0.122 

Clarity Amateur 2.64 2.69 0.54 0.26 -0.75 1.75 3.63 0.95 0.394 

Panning Amateur 2.88 2.81 0.50 0.37 -0.20 2.13 4.00 0.97 0.796 

Space Amateur 2.64 2.56 0.59 1.58 3.17 1.88 4.38 0.87 0.010 

Dynamics Amateur 2.51 2.44 0.56 0.35 0.03 1.63 3.75 0.96 0.534 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.11. Basic descriptive statistics and Shapiro-Wilk test results for the measured indicators of the 

Izotope-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Balance Izotope 2.58 2.56 0.63 0.92 2.24 1.63 4.38 0.92 0.119 

Clarity Izotope 2.76 2.81 0.69 0.12 -0.17 1.50 4.25 0.98 0.929 

Panning Izotope 2.67 2.63 0.60 0.98 1.45 1.75 4.25 0.92 0.118 

Space Izotope 2.54 2.50 0.60 -0.09 -0.07 1.38 3.75 0.98 0.890 

Dynamics Izotope 2.56 2.44 0.54 0.22 -0.24 1.50 3.63 0.98 0.927 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
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Table 6.12. Basic descriptive statistics and Shapiro-Wilk test results for the measured indicators of the 

Unet-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Balance Unet 3.46 3.69 0.79 -1.84 3.28 1.25 4.25 0.79 0.001 

Clarity Unet 3.49 3.50 0.54 -0.25 -0.76 2.50 4.38 0.97 0.677 

Panning Unet 3.71 3.94 0.66 -1.30 1.03 2.00 4.50 0.85 0.006 

Space Unet 3.58 3.75 0.65 -0.86 0.20 2.13 4.63 0.91 0.073 

Dynamics_Unet 3.66 3.75 0.62 -0.73 -0.33 2.38 4.50 0.93 0.130 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.13. Basic descriptive statistics and Shapiro-Wilk test results for the measured indicators of the 

Pro-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Balance Pro 4.08 4.25 0.51 -0.77 1.55 2.75 5.00 0.93 0.132 

Clarity Pro 4.04 4.13 0.59 -0.85 0.57 2.63 5.00 0.94 0.227 

Panning Pro 4.14 4.13 0.63 -0.76 0.43 2.63 5.00 0.94 0.282 

Space Pro 4.11 4.13 0.65 -1.43 2.86 2.25 5.00 0.88 0.019 

Dynamics Pro 4.14 4.31 0.56 -1.17 1.37 2.75 5.00 0.90 0.033 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.14. Basic descriptive statistics and Shapiro-Wilk test results for the overall ratings of mixes in each 

music genre 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Overall rating: Pop 3.15 3.09 0.35 0.76 1.30 2.55 4.03 0.94 0.243 

Overall rating: Alternative 3.18 3.14 0.30 0.62 1.71 2.58 3.95 0.95 0.440 

Overall rating: Electronica 3.32 3.38 0.32 -0.65 0.86 2.53 3.93 0.97 0.657 

Overall rating: Rock 3.32 3.33 0.39 -0.03 0.56 2.45 4.08 0.98 0.879 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
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Table 6.15. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of music genres in the 

Amateur-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Pop 2.52 2.20 0.59 0.73 -0.73 1.80 3.80 0.88 0.014 

Alternative 2.61 2.45 0.56 1.23 1.34 2.00 4.10 0.89 0.025 

Electronica 2.61 2.65 0.46 -0.31 0.13 1.60 3.50 0.98 0.974 

Rock 2.93 2.90 0.61 0.72 1.16 1.80 4.40 0.95 0.342 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.16. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of music genres in the 

Izotope-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Pop 2.48 2.45 0.74 0.67 0.86 1.30 4.30 0.95 0.425 

Alternative 2.45 2.45 0.47 0.11 -0.95 1.70 3.30 0.97 0.654 

Electronica 2.87 2.80 0.71 0.42 -0.84 1.90 4.30 0.95 0.350 

Rock 2.70 2.60 0.72 0.34 -0.06 1.50 4.30 0.97 0.815 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W –Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.17. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of music genres in the 

Unet-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W P 

Pop 3.63 3.75 0.61 -0.49 0.00 2.30 4.70 0.97 0.707 

Alternative 3.59 3.75 0.58 -0.90 -0.09 2.30 4.30 0.91 0.052 

Electronica 3.59 3.75 0.71 -0.81 0.38 1.80 4.50 0.93 0.142 

Rock 3.50 3.60 0.76 -0.69 0.13 1.80 4.70 0.93 0.174 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

Table 6.18. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of music genres in the 

Pro-based mix 

 
M Mdn SD Sk. Kurt. Min. Max. W p 

Pop 4.00 4.05 0.58 -0.55 -0.23 2.90 5.00 0.94 0.196 

Alternative 4.08 4.20 0.65 -1.02 0.66 2.50 5.00 0.92 0.105 
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Electronica 4.19 4.20 0.64 -0.77 0.36 2.70 5.00 0.93 0.147 

Rock 4.15 4.20 0.65 -0.88 1.24 2.40 5.00 0.93 0.166 

M – mean; Mdn – median; SD – standard deviation; Sk. – skew; Kurt. – kurtosis; Min. and Max. – minimum and maximum values in 

the distribution; W – Shapiro-Wilk test statistic; p – statistical significance 
 

As part of the first of the research questions, it was decided to check if the types of 

mixes (“Amateur,” “Izotope,” “Unet,” and “Pro”) differ in how the respondents rated them. For 

this purpose, conducted was a series of one-way analyses of variance for dependent samples, 

and individual mixes were compared in the following categories: overall rating, balance, clarity, 

panning, space, and dynamics. 

First, an analysis of the overall rating of mixes was executed. The result is statistically 

significant, and the effect size coefficient indicates strong differences. The pairwise comparisons 

with the Šidák correction demonstrated that the “Pro” mixes were rated the highest by the 

respondents, followed by “Unet”. The “Amateur” and “Izotope” mixes were rated the lowest 

without a significant difference in ratings between them. 

A visual representation of the results is shown in Fig. 6.10. 

Table 6.19. The overall rating of the mix as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Overall rating 2.67a 0.47 2.62a 0.55 3.58b 0.59 4.10c 0.54 39.09 <0.001 0.67 
Note: The means that do not share the letter index differ from each other at a p < 0.05 level—pairwise comparisons with the Šidák 

correction. 

 

Fig. 6.10. Box plot showing the distribution of the overall ratings for the “Amateur”, “Izotope”, “Unet” and 
“Pro” mixes 

Next, the mixes were compared within the balance category. The result was statistically 

significant and the η2 value signified strong differences. The pairwise comparisons with the 

Šidák correction demonstrated that the highest-rated mixes in the balance category were the 
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“Pro” mixes, followed by the “Unet” mixes. The lowest-rated mixes were “Amateur” and 

“Izotope,” without any significant differences in results between them. 

A visual representation of the results is shown in Fig. 6.11. 

Table 6.20. Balance as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Balance 2.66a 0.54 2.58a 0.63 3.46b 0.79 4.08c 0.51 27.62 <0.001 0.59 
Note: The means that do not share the letter index differ from each other at a p < 0.05 level—pairwise comparisons with the Šidák 

correction. 

 

Fig. 6.11. Box plot showing the distribution of the Balance ratings for the “Amateur”, “Izotope”, “Unet”, and 
“Pro” mixes 

An analogous analysis was conducted with the use of the clarity variable. The analysis 

results show very strong and statistically significant differences, and the pairwise comparisons 

with the Šidák correction show that the highest-rated mixes in the clarity category were the “Pro” 

mixes, followed by the “Unet” mixes. The lowest-rated mixes were “Amateur” and “Izotope,” 

without any significant differences in their results. 

 A visual representation of the results is shown in Fig. 6.12. 

Table 6.21. Clarity as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Clarity 2.64a 0.54 2.76a 0.69 3.49b 0.54 4.04c 0.59 22.71 <0.001 0.54 
Note: The means that do not share the letter index differ from each other at a p < 0.05 level—pairwise comparisons with the Šidák 

correction. 
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Fig. 6.12. Box plot showing the distribution of the Clarity ratings for the “Amateur”, “Izotope”, “Unet”, and 
“Pro” mixes 

The next comparison of mixes was conducted within the panning category. The analysis 

results show very strong and statistically significant differences, and the pairwise comparisons 

with the Šidák correction show that the highest-rated mixes in the panning category were the 

“Pro” mixes, followed by the “Unet” mixes. The lowest-rated mixes were “Amateur” and 

“Izotope”, without any significant differences in their results. 

 A visual representation of the results is shown in Fig. 6.13. 

Table 6.22. Panning as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Panning 2,88a 0,50 2,67a 0,60 3,71b 0,66 4,14c 0,63 27,24 <0,001 0,59 
Note: The means that do not share the letter index differ from each other at a p < 0,05 level—pairwise comparisons with the Šidák 

correction. 

 

Fig. 6.13. Box plot showing the distribution of the Panning ratings for the “Amateur”, “Izotope”, “Unet”, and 
“Pro” mixes 
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Next, the mixes were compared using the space variable. The results, as in the 

previous analyses, proved very strong and statistically significant differences between the types 

of mixes. The pairwise comparisons with the Šidák correction proved the “Pro” mixes to be the 

highest-rated mixes in the space category, followed by “Unet”. The “Amateur” and “Izotope” 

mixes were rated the lowest, with no significant difference between them. 

A visual representation of the results is shown in Fig. 6.14. 

Table 6.23. Space as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Space 2.64a 0.59 2.54a 0.60 3.58b 0.65 4.11c 0.65 33.40 <0.001 0.64 
Note: The means that do not share the letter index differ from each other at a p < 0,05 level—pairwise comparisons with the Šidák 

correction. 

 

Fig. 6.14. Box plot showing the distribution of the Space ratings for the “Amateur”, “Izotope”, “Unet”, and 
“Pro” mixes 

 The last variable used for the comparison of mix types was dynamics. Analogously to 

the previous analyses, the results showed very strong and statistically significant differences. 

The pairwise comparisons with the Šidák correction proved the “Pro” mixes to be the highest-

rated mixes in terms of dynamics, followed by “Unet”. The “Amateur” and “Izotope” mixes were 

rated the lowest by respondents, with no significant difference between them. 

A visual representation of the results is shown in Fig. 6.15. 

Table 6.24. Dynamics as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Dynamics 2.51a 0.56 2.56a 0.54 3.66b 0.62 4.14c 0.56 45.38 <0.001 0.70 
Note: The means that do not share the letter index differ from each other at a p < 0,05 level—pairwise comparisons with the Šidák 

correction. 
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Fig. 6.15. Box plot showing the distribution of the Dynamics ratings for the “Amateur”, “Izotope”, “Unet”, 
and “Pro” mixes 

In the next step, it was decided to check if the mix types varied in terms of overall 

ratings within different music genres. For this purpose, a series of one-way analyses of variance 

for dependent samples was used. 

First, the mixes were compared in the Pop category. The result indicates very strong 

and statistically important differences, and the pairwise comparisons with the Šidák correction 

show that the respondents rated the “Pro” mixes the highest in this category, followed by the 

“Unet” mixes. The mixes rated the lowest were the “Amateur” and “Izotope” mixes, with no 

significant differences between them. 

A visual representation of the results is shown in Fig. 6.16. 

Table 6.25. Overall rating of the Pop mixes as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Overall rating in Pop 2.52a 0.59 2.48a 0.74 3.63b 0.61 4.00c 0.58 32.06 <0.001 0.63 
Note: The means that do not share the letter index differ from each other at a p < 0,05 level—pairwise comparisons with the Šidák 

correction. 
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Fig. 6.16. Average overall ratings of mixes in the Pop genre for the “Amateur”, “Izotope”, “Unet”, and “Pro” 
mixes 

Next, the same analysis was conducted for the Alternative category. Again, the result 

was statistically significant and the η2 value indicates very strong differences. The pairwise 

comparisons with the Šidák correction show that the respondents rated the “Pro” mixes the 

highest in the Alternative category, followed by the “Unet” mixes. The mixes rated the lowest 

were the “Amateur” and “Izotope” mixes, with no significant differences between them. 

 A visual representation of the results is shown in Fig. 6.17. 

Table 6.26. Overall rating of the Alternative mixes as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Overall rating in Alternative 2.61a 0.56 2.45a 0.47 3.59b 0.58 4.08c 0.65 39.07 <0.001 0.67 
Note: The means that do not share the letter index differ from each other at a p < 0,05 level—pairwise comparisons with the Šidák 

correction. 

 

Fig. 6.17. Average overall ratings of mixes in the Alternative genre for the “Amateur”, “Izotope”, “Unet”, and 
“Pro” mixes 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Amateur Izotope Unet Pro

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Amateur Izotope Unet Pro

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

98 

Further on, the same analysis was repeated for the Electronica genre. The highest rate 

was achieved by the “Pro” mixes, next the “Unet” mixes, while the “Amateur” and “Izotope” 

mixes had the lowest rates. The “Amateur” and “Izotope” mixes showed no differences between 

their ratings, the “Unet” and “Izotope” mixes differ with statistical significance, whereas the “Pro” 

mixes differ from other types with statistical significance. 

 A visual representation of the results is shown in Fig. 6.18. 

Table 6.27. Overall rating of the Electronica mixes as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Overall rating in Electronica 2.61a 0.46 2.87a 0.71 3.59 0.71 4.19c 0.64 25.57 <0.001 0.57 
Note: The means that do not share the letter index differ from each other at a p < 0,05 or p < 0,1 level—pairwise comparisons with 

the Šidák correction. 

 

Fig. 6.18. Average overall ratings of mixes in the Electronica genre for the “Amateur”, “Izotope”, “Unet”, 
and “Pro” mixes 

 As part of the last analysis of variance, differences in ratings of mixes in the Rock genre 

were examined. The pairwise comparisons with the Šidák correction revealed that the “Pro” 

mixes were rated the highest, followed by “Unet”. The “Amateur” and “Izotope” mixes were rated 

the lowest with no differences between them. The “Unet” and “Amateur” mixes differ on a 

statistical significance level. 

A visual representation of the results is shown in Fig. 6.19. 

Table 6.28. Overall rating of Rock mixes as a function of the mix type 

 
Amateur Izotope Unet Pro 

F p η2  
M SD M SD M SD M SD 

Overall rating in Rock 2.93a 0.61 2.70a 0.72 3.50b 0.76 4.15c 0.65 19.51 <0.001 0.51 
Note: The means that do not share the letter index differ from each other at a p < 0,05 or p < 0,1 level—pairwise comparisons with 

the Šidák correction. 
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Fig. 6.19. Average overall ratings of mixes in the Rock genre for the “Amateur”, “Izotope”, “Unet”, and “Pro” 
mixes 

 The last step of the analysis encompassed examining the correlation between 

respondents’ experience in mixing and their overall ratings of each mix type. For this purpose, 

correlation analysis with the use of the Pearson correlation coefficient r was conducted. 

The analysis proved a statistically significant correlation between the number of years of 

experience in mixing with the rating of “Amateur” and “Pro” mixes and a correlation at a level of 

statistical significance for the “Unet” mixes. 

The negative value of the r coefficient for the correlation of experience and ratings of the 

“Izotope” and “Amateur” mixes means that the more years of experience the listeners have, the 

lower they rate the mixes. In the case of the “Unet” and “Pro” mixes, the correlation is positive, 

and it is either moderately strong or strong, which means that when the number of years of 

experience in mixing grows, the overall rating of those mixes increases. 

Table 6.29. Correlation between the experience in mixing and the overall ratings of mixes 

  
Experience in mixing 

Amateur 

Pearson’s r -0.31 

Significance 0.186 

Izotope 

Pearson’s r -0.52 

Significance 0.018 

Unet 

Pearson’s r 0.38 

Significance 0.098 

Pro 

Pearson’s r 0.69 

Significance 0.001 
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6.4. Discussion 

After testing and analyzing the objective and subjective samples from each mix, self-

similarity matrices (SSM) based on chromagrams were constructed. The graphical 

representation of the SSM of “Secretariat – Over the top” objective and subjective samples is 

given in Fig. 6.20. Figures that correspond to the remaining songs are presented in Appendix D. 

 

Fig. 6.20. Graphical representation of the SSM of “Secretariat – Over the top” objective and subjective 
samples 
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As already mentioned, each pixel in the matrix obtains a greyscale value corresponding 

to the given similarity score. The darkest color refers to the smallest similarity. 

Next, all matrices were compared to each other using the Root Mean Square Error 

(RMSE), Structural Similarity Index (SSIM), used for measuring similarity between images, and 

Visual Information Fidelity (VIF), treated as a full-reference image quality related to image 

information extracted by the human visual system. 

The results obtained are presented in Tables 6.30-6.32. Values of means in bold in 

Table 6.30 signify the smallest differences between mixes. The values obtained indicate that the 

“Pro” and “Unet” mixes are the most similar. In contrast, means highlighted in bold in Tabs. 

6.31-6.32 are the biggest.  

Table 6.30. Root Mean Square Error (RMSE) calculation for all samples 

Song Objective samples Listening samples 

 Pro/Unet Pro/Izotope Pro/Amator Pro/Unet Pro/Izotope Pro/Amator 

Angels in Amplifiers 

- I'm Alright 
2.75 16.54 9.00 2.75 16.53 8.99 

Ben Carrigan - 

We’ll talk about it all 

tonight 

9.09 16.40 16.68 9.11 16.40 16.68 

Georgia Wonder - 

Siren 
4.05 16.91 16.97 4.05 16.91 16.97 

Secretariat - Over 

the top 
11.92 16.94 18.83 11.90 17.03 18.89 

Side Effects Project 

- Sing with me 
20.22 27.27 19.88 20.23 27.27 19.87 

Speak Softly - 

Broken man 
4.23 27.33 23.44 4.23 27.33 23.44 

The Doppler Shift - 

Atrophy 
3.57 9.58 12.19 3.57 9.58 12.17 

Tom McKenzie - 

Directions 
1.71 18.40 13.30 1.71 18.40 13.31 

Mean 7.19 18.67 16.29 7.19 18.68 16.29 

Table 6.31. Structural similarity index (SSIM) calculation for all samples 

Song Objective samples Listening samples 

 Pro/Unet Pro/Izotope Pro/Amator Pro/Unet Pro/Izotope Pro/Amator 

Angels in Amplifiers 

- I'm Alright 
0.9977 0.9433 0.9799 0.9977 0.9433 0.9800 

Ben Carrigan - 

We’ll talk about it all 

tonight 

0.9895 0.9441 0.9337 0.9895 0.9441 0.9338 

Georgia Wonder - 

Siren 
0.9967 0.9521 0.9343 0.9967 0.9521 0.9343 

Secretariat - Over 0.9898 0.9360 0.9386 0.9898 0.9359 0.9386 
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the top 

Side Effects Project 

- Sing with me 
0.8638 0.8470 0.8548 0.8638 0.8471 0.8548 

Speak Softly - 

Broken man 
0.9945 0.8777 0.8878 0.9945 0.8777 0.8878 

The Doppler Shift - 

Atrophy 
0.9947 0.9437 0.9452 0.9947 0.9437 0.9454 

Tom McKenzie - 

Directions 
0.9985 0.9264 0.9700 0.9984 0.9265 0.9700 

Mean 0.9782 0.9213 0.9305 0.9781 0.9213 0.9306 

Table 6.32. Visual Information Fidelity (VIF) calculation for all samples 

Song Objective samples Listening samples 

 Pro/Unet Pro/Izotope Pro/Amator Pro/Unet Pro/Izotope Pro/Amator 

Angels in Amplifiers 

- I'm Alright 
0.89 0.56 0.70 0.89 0.56 0.70 

Ben Carrigan - 

We’ll talk about it all 

tonight 

0.82 0.61 0.58 0.82 0.61 0.58 

Georgia Wonder - 

Siren 
0.93 0.65 0.61 0.93 0.65 0.61 

Secretariat - Over 

the top 
0.92 0.60 0.59 0.92 0.60 0.60 

Side Effects Project 

- Sing with me 
0.46 0.44 0.45 0.46 0.44 0.45 

Speak Softly - 

Broken man 
0.86 0.50 0.50 0.86 0.50 0.50 

The Doppler Shift - 

Atrophy 
0.87 0.63 0.64 0.87 0.63 0.64 

Tom McKenzie - 

Directions 
0.95 0.57 0.70 0.95 0.57 0.70 

Mean 0.84 0.57 0.60 0.84 0.57 0.60 

 

As the tables above demonstrate, the “Unet” mixes are the closest to the “Pro” mixes. 

Both the objective and subjective samples achieve similar results. An interesting example is the 

“Side Effects Project – Sing with me” song, which achieves similar scores regardless of the mix 

type (“Amateur”/”Izotope”/”Unet”). This is possibly due to the fact that the “Pro” mix, apart from 

the mixing itself, was edited manually, i.e., the vocal track was tuned and moved manually to 

achieve a better synchronization [121]. 

In this chapter, the results of objective and subjective tests of the obtained mixes were 

presented. The goal of these tests was to confirm if the system presented in Chapter 4 is 

capable to mix songs in different music genres in such a way that the obtained mixes could be 

evaluated as very good/better than amateur mixes and mixes made using known state-of-the-art 

methods are similar to professional mixes. The conclusions from the abovementioned tests are 
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unequivocally favorable for the proposed solution. The conducted analyzes allowed for 

answering the previously posed questions: 

1. Is it possible to create a system that can automatically mix a song in a given music 

genre? 

The very creation of the mixes used in the tests allows for a positive answer to this 

question. The obtained mixes are free from distortion and the models were trained to be 

independent of music genres. 

2. Can the proposed system objectively produce satisfactory mixes? 

The results unequivocally prove that the developed system, in an objective way, 

produces mixes that are very similar to mixes created professionally. This means that the 

developed system can successfully be used to mix songs in a given music genre. 

3. Are the mixes produced by the proposed system rated as high in subjective tests? 

The participants of the subjective tests were people with experience in mixing. The 

results prove that the mixes produced by the developed system are rated only slightly worse 

than professional mixes. Additionally, the correlation analysis allows for stating that the more 

experienced a person is in mixing, the more likely they are to choose the professional mix and 

the mixes produced by the proposed system. The listeners rated the samples in multiple 

subjective evaluation categories (i.e., Balance, Clarity, Panning, Space, and Dynamics). In each 

of these categories, the “Pro” mix ranked best, followed closely by the “Unet” mix. Additionally, it 

was decided to check whether the system performs better in any specific music genre than 

other mixes obtained, but the results prove that, regardless of the genre, the best mix was 

always the “Pro” mix, again − followed closely by the “Unet” mix. 

Most test results are characterized by statistical significance. 

Overall, the results achieved prove thesis no. 2, i.e., “The prepared mixes may 

subjectively be evaluated as better ones than recordings created by an amateur engineer 

or mixes produced using state-of-the-art methods and can be comparable to mixes 

produced by a professional mixer.”  
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7. SUMMARY 

The last chapter summarizes the experiments performed while preparing the 

dissertation and the results of the proposed research theses. Additionally, presented are the 

directions of work development which deserve to be pointed out, briefly discussed, and 

explored. 

The main goal of the research was to develop and test an audio file mixing system that 

allows creating mixes from raw audio signals in a given music genre automatically, without user 

intervention, which would match professionally made mixes in quality. As part of the system 

concept, an architecture based on a one-dimensional Wave-U-Net encoder was designed. The 

implemented system consists of five models that have been trained. A specially prepared 

MUSDB18-HQ database, which was enriched by individual tracks from the Cambridge database 

and five original compositions from the author, was used for training purposes. 

In order to test the validity of the theses posed, multiple experiments were conducted. 

The first of them concerned the objective features of the obtained mixes. The developed system 

should automatically mix the input tracks in such a way that the mix obtained as the output will 

be objectively better than the state-of-the-art method and comparable to (or indistinguishable 

from) a mix created by a professional mixing engineer. In the dissertation, it was proven that it is 

possible to automatically mix input tracks provided by the user, using previously trained models, 

in a way that the final effect would be objectively very close to mixes prepared by a professional 

mixing engineer. 

The research conducted for the system was divided into two parts. In the first phase of 

the research study, analyzed were samples that were not normalized and were subjected to 

objective analysis, i.e., waveform statistics (RMS level, Integrated Loudness, Loudness Range, 

and True peak level) and low-level MPEG-7 descriptors (Odd-to-Even Harmonic Ratio, RMS-

Energy Envelope, and Harmonic Energy). Statistical analysis was conducted based on the 

results. The results obtained from the analysis of the developed automatic mixing system prove 

thesis no. 1, i.e., “It is possible to mix music consisting of separate raw recordings using 

a one-dimensional adaptation of the Wave-U-Net autoencoder that can objectively be 

evaluated similarly to a professional mix.” 

In the second phase, listening tests were conducted on normalized samples, where the 

listeners rated each sample in multiple evaluation categories (Balance, Clarity, Panning, Space, 

and Dynamics). Based on the results, a statistical analysis was performed. The results achieved 

prove thesis no. 2, i.e., “The prepared mixes may subjectively be evaluated as better ones 

than recordings created by an amateur engineer or mixes produced using state-of-the-art 

methods and can be comparable to mixes produced by a professional mixer.” 

In this dissertation, several original achievements accomplished by the author 

can be distinguished: 

• An automatic audio file mixing method using Wave-U-Net autoencoders was proposed. 

• A custom database for the model training purposes, including songs recorded by the 

author, was prepared. 
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• A methodology that includes objective and subjective evaluation and a comparison 

between the results obtained in the assessment process was introduced. 

• A series of tests that enabled to rate the quality of the obtained mixes objectively was 

proposed. 

• A listening test allowing for testing multiple characteristics of the obtained mixes was 

prepared. 

• A series of experiments in the form of subjective tests where listeners rated the quality 

of the obtained mixes were performed. 

• The correlation between objective and subjective results was derived, showing that it 

should be a part of the evaluation methodology. 

• A method of comparing differences between the prepared mixes using the similarity 

matrices was proposed, which allowed for additional verification of the results of the 

objective and subjective quality assessment. 

 

Overall, the methodology proposed shows the possibility of mixing audio signals of good 

quality automatically. This is especially important in applications designed for the game 

development industry, where audio quality is important; still, the whole effort is on visual effects 

or custom music branding. In the latter case, it may concern combining songs focused on 

matching the end and the beginning of tracks to be mixed.  These areas are open to such 

findings as automatization of the audio mixing process. 

 

Further research directions 

In the extended plans of the proposed method, it is anticipated to include an additional 

module in the proposed system, i.e., the integration of an automatic instrument classification 

module at the system’s input. This way, the user would not need to introduce appropriate tracks 

to respective inputs in the system manually. In the current form, for the system to work correctly, 

the user needs to assign bass tracks to the bass model, drum tracks to the drums model, etc. 

Automatic instrument classification is possible [7][39][57][60][100] and would improve the 

performance of the system in the context of the length of the process. It would also enhance the 

user’s experience and the ease of use for beginner users who are not trained sound engineers. 

The system proposed by the author could additionally be expanded by implementing an 

automatic detector of the song’s music genre. It could be implemented at the system’s input 

(during prediction) as well as at the output (during training). This solution would bring additional 

benefits during the training of models that are later used for prediction (mix). The system could 

acquire information about the input genre during training directly from the database; thus, the 

models would learn how to mix (react) songs in a given genre. During prediction, automatic 

genre classification would allow for better mixing of songs in different genres because the 

models would be trained in an analogical way. Moreover, it would be possible to mix the same 

sets of tracks in different music genres. The possibility of mixing a song simultaneously in 

multiple varying genres (where the user could choose which mix they prefer most) or combining 
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genres (e.g., 60% Rock and 40% Electronica) might be an interesting solution. Currently, the 

models are trained on a database consisting of four music genres – Pop, Alternative, Rock, 

Electronica. Most mixing engineers work with a few preferred music genres, so this addition to 

the system could be used for genres with which the engineers are not familiar. 

Another proposed direction of further research and development is an additional module 

that could edit individual tracks. Such a module would allow synchronizing tracks with each 

other automatically (for example, in multitrack drum recordings) and automatically deleting (or 

scaling down the volume of) unwanted sounds (such as the vocalist’s breathing or accidental 

microphone hits in between the desired signal). The module should be implemented at the 

system’s input so that all tracks can be edited before mixing. Currently, the user needs to 

synchronize all tracks and edit unwanted or accidental sounds manually. 

A particularly interesting direction, which is a scope separate from the research 

conducted within this dissertation, is an automatic recognition of rhythm and tempo. The 

knowledge of a given song’s tempo in Beats Per Minutes (BPM) units may be crucial for using 

effects such as reverb or delay. If the reverb applied to a track is too long, a post-masking effect 

can occur. Knowing the rhythm and tempo of a song could also allow for setting a perfect delay 

tempo. Synchronizing the delay effect to the song’s tempo is a universal procedure done by 

mixing engineers. For example, knowing that a song’s tempo is 120 BPM, a mixer is able to set 

the tempo of subsequent delay’s playback as quarter notes. Most popular plugins that offer a 

delay effect enable the user to select such an option as “1/4” or if it is necessary to provide the 

value in milliseconds, the user can calculate it (in the example given above, it would be 500 ms). 

The proposed development directions will be the subject of research plans in the near 

future. It will allow for the conceptual development of the methods proposed and tested for the 

dissertation purposes. 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

107 

REFERENCES 

[1] Abdi H., “The Conferonni and Sidak Corrections for Multiple Comparisons”, Encyclopedia 
of measurements and statistics, 3, 2007. 

[2] Audio Unity Group, https://www.audio-unity-group.com/andrew-scheps-on-mixing-100-in-
the-box/, access: 09.11.2021. 

[3] Bachem A., “Tone height and tone chroma as two different pitch qualities”, Acta 
Psychologica, 1950. 

[4] Barbedo J. G. A., Lopes A., “A New Cognitive Model for Objective Assessment of Audio 
Quality”, JAES, 53, ½, pp. 22-31, 2005. 

[5] Bendiksen R., “Digitale Lydeffekter”, Norwegian University of Science and Technology, 
1997. 

[6] Benito A. L., Reiss J. D., “Intelligent multitrack reverberation based on hinge-loss markov 
random fields”, Audio Engineering Society Int. Conf. (Semantic Audio), June 2017. 

[7] Blaszke M., Koszewski D., “Determination of Low-Level Audio Descriptors of a Musical 
Instrument Sound Using Neural Network”, Signal Processing: Algorithms, Architectures, 
Arrangements, and Applications (SPA) Proceedings, 2020. 

[8] Cai D., Wang W., Li M., "Incorporating Visual Information in Audio Based Self-
Supervised Speaker Recognition", IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, vol. 30, pp. 1422-1435, doi: 10.1109/TASLP.2022.3162078, 2022. 

[9] Cambridge-MT Patrons Podcast, https://www.patreon.com/posts/cambridge-mt-
13924190, access: 19.04.2022. 

[10] Cambridge-MT Patrons Podcast, https://www.patreon.com/posts/cambridge-mt-
12239764, access: 19.04.2022. 

[11] Cambridge-MT Patrons Podcast, https://www.patreon.com/posts/cambridge-mt-
15135897, access: 19.04.2022. 

[12] 
Cambridge-MT Patrons Podcast, https://www.patreon.com/posts/cambridge-mt-
25725471, access: 19.04.2022. 

[13] Bevelle M., “Compressors and limiters”, Studio Sound, pp. 32, 1977. 

[14] Bromham G., “How can academic practice inform mix-craft?”, Mixing Music, Routledge, 
2017. 

[15] Chourdakis E.T., Reiss J. D., “Automatic control of a digital reverberation effect using 
hybrid models”, Audio Engineering Society 60th Int. Conf. (DREAMS), February 2016. 

[16] Chourdakis E. T., Reiss J. D., “A machine learning approach to application of intelligent 
artificial reverberation”, J. Audio Eng. Soc., vol. 65, January/February 2017. 

[17] De Man B., “Towards a better understanding of mix engineering”, PhD thesis, Queen 
Mary University of London, May 2017. 

[18] De Man B., Mora M., Fazekas G., Reiss J. D., “The Open Multitrack Testbed”, Audio 
Engineering Society Convention e-Brief, Los Angeles, USA, October 2014. 

[19] De Man B., Reiss J. D., Stables R., “Ten years of automatic mixing”, Proceedings of the 
3rd Workshop on Intelligent Music Production, Salford, UK, September 2017. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.audio-unity-group.com/andrew-scheps-on-mixing-100-in-the-box/
https://www.audio-unity-group.com/andrew-scheps-on-mixing-100-in-the-box/
https://www.patreon.com/posts/cambridge-mt-13924190
https://www.patreon.com/posts/cambridge-mt-13924190
https://www.patreon.com/posts/cambridge-mt-12239764
https://www.patreon.com/posts/cambridge-mt-12239764
https://www.patreon.com/posts/cambridge-mt-15135897
https://www.patreon.com/posts/cambridge-mt-15135897
https://www.patreon.com/posts/cambridge-mt-25725471
https://www.patreon.com/posts/cambridge-mt-25725471
http://mostwiedzy.pl


. 

 

108 

[20] Deruty E., “Goal-oriented mixing”, in 2nd AES Workshop on Intelligent Music Production, 
vol. 13, 2016. 

[21] Diener L., Sootla S., Branets S., Saabas A., Aichner R., Cutler R., “INTERSPEECH 2022 
Audio Deep Packet Loss Concealment Challenge”, arXiv:2204.05222, 2022. 

[22] Discogs, https://www.discogs.com/artist/447075-Ben-Carrigan, access: 19.04.2022. 

[23] Driscoll W. C., “Robustness of the ANOVA and Tukey-Kramer statistical tests”, 
Computers & Industrial Engineering, vol. 31, 1–2, pp. 265-268, October 1996. 

[24] Dutilleux P., “Vers la machine a sculpter le son, modification en temps reel des 
carasteristiques frequentielles et temporelles des sons”, PhD thesis, University of Aix-
Marseille II, 1991. 

[25] Engel J., Resnick C., Roberts A., Dieleman S., Eck D., Simonyan K., Norouzi M., “Neural 
audio synthesis of musical notes with wavenet autoencoders”, 34th International 
Conference on Machine Learning, 2017. 

[26] Everardo F., “Towards an Automated Multitrack Mixing Tool using Answer Set 
Programming”, Proceedings of the 14th Sound and Music Computing Conference, July 
5-8, Espoo, Finland, 2017. 

[27] FabFilter ProQ 3, https://www.fabfilter.com/downloads/pdf/help/ffproq3-manual.pdf, 
access: 15.04.2022. 

[28] Foote J., “Visualizing music and audio using self-similarity”, In Proceedings of the 
seventh ACM international conference on Multimedia, Part 1, pp. 77-80, October 1999. 

[29] FxDSP API Reference, https://fxdsp.readthedocs.io/en/latest/api/pan.html, access: 

10.03.2022. 

[30] Gardner W. G., “Reverberation algorithms”, In M. Kahrs and K. Brandenburg (eds), 
Applications of digital signal processing to audio and acoustics, Kluwer Academic 
Publishers, pp. 85-131, 1997. 

[31] George D., Mallery P., “IBM SPSS Statistics 26 Step by Step: A Simple Guide and 
Reference”, Routledge Taylor & Francis Group, New York 2020. 

[32] Gerzon M. A., “Unitary (energy preserving) multichannel networks with feedback”, 
Electron. Lett. V, 12, pp. 278-279, 1976. 

[33] Gillet O., Richard G., “ENST-Drums: An Extensive Audio-Visual Database for Drum 
Signals Processing”, in Proceedings of the 7th International Conference on Music 
Information Retrieval (ISMIR), October 2006. 

[34] Gonzalez E. P., Reiss J. D., “An automatic maximum gain normalization technique with 
applications to audio mixing”, Audio Engineering Society Conv. 124, May 2008. 

[35] Gonzalez E. P., Reiss J.D., “Automatic equalization of multichannel audio using cross-
adaptive methods”, Audio Engineering Society Conv. 127, October 2009. 

[36] Gonzalez E. P., Reiss J. D., “Automatic gain and fader control for live mixing”, IEEE 
Workshop on Applications of Signal Processing to Audio and Acoustics, October 2009. 

[37] Hafezi S., Reiss J. D., “Autonomous multitrack equalization based on masking 
reduction”, J. Audio Eng. Soc., vol. 63, May 2015. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.discogs.com/artist/447075-Ben-Carrigan
https://www.fabfilter.com/downloads/pdf/help/ffproq3-manual.pdf
https://fxdsp.readthedocs.io/en/latest/api/pan.html
http://mostwiedzy.pl


. 

 

109 

[38] Haykin S. S., “Neural networks and learning machines”, 3rd ed. New York, Prentice Hall, 
2009. 

[39] Herrera P., Peeters G., Dubnov S., “Automatic Classification of Musical Instrument 
Sounds”, Journal of New Music Research 32(1), August 2010. 

[40] Higham C. F., Higham D. J., “Deep Learning: and Introduction for Applied 
Mathematicians”, http://arxiv.org/abs/1801.05894, 2018. 

[41] Hulse R., “A different way of looking at compression”, Studio Sound, 1997. 

[42] International Telecommunication Union, “Algorithms to measure audio programme 
loudness and true-peak audio level," ITU-R BS.1770-2, 2011. 

[43] Izhaki R., “Mixing Audio: Concepts, Practices and Tools”, Focal Press, 2010. 

[44] Izotope Neutron 3 documentation, https://support.izotope.com/hc/en-
us/articles/360051377974-Neutron-3-Help-Documentation, access: 10.02.2022. 

[45] Izotope Ozone 9 documentation, https://support.izotope.com/hc/en-
us/articles/360046031314-Ozone-9-Help-Documentation, access: 18.04.2022. 

[46] Katayose H., Yatsui A., Goto M., “A mix-down assistant interface with reuse of 
examples”, Int. Conf. on Automated Production of Cross Media Content for Multi-
Channel Distribution, November 2005. 

[47] Katz B., “Mastering Audio: The art and the science”, Focal Press, 2007. 

[48] Kim H. G., Moreau N., Sikora T., “MPEG-7 audio and beyond: audio content indexing 
and retrieval”, Chichester, West Sussex, England, Hoboken, NJ, USA, J. Wiley, 2005. 

[49] Kleczkowski P., “Perception of Mixture of Musical Instruments with Spectral Overlap 
Removed”, Archives of Acoustics, 37, 3, pp. 355-363, 2012. 

[50] Knees P., Schedl M., “Music Retrieval and Recommendation: A Tutorial Overview”, 38th 
International ACM SIGIR Conference on Research and Development in Information 
Retrieval, 1133-­‐1136, 2015. 

[51] Kolasinski B., “A framework for automatic mixing using timbral similarity measures and 
genetic optimization”, Audio Engineering Society Conv. 124, May 2008. 

[52] Korbicz J., Obuchowicz A., Uciński D., „Sztuczne sieci neuronowe: podstawy i 
zastosowania”, Warsaw, Akademicka Oficyna Wydawnicza PLJ, 1994. 

[53] Korvel G., Treigys P., Kostek B., “Highlighting interlanguage phoneme differences based 
on similarity matrices and convolutional neural network”, The Journal of the Acoustical 
Society of America, 149(1), 508-523, 2021. 

[54] Kostek B., “Musical Data Musical Instrument Classification and Duet Analysis Employing 
Music Information Retrieval Techniques”, Proceedings of the IEEE 92, 4, 712-729, 2004. 

[55] Kostek B., Czyzewski A., Krolikowski R., “Neural Networks Applied to Sound Localization 
Detection”, 110th AES Convention, Paper no. 5375, 2011. 

[56] Kostek B., Kupryjanow A., Zwan P., Jiang W., Ras Z., Wojnarski M., Swietlicka J., Report 
of the ISMIS 2011 Contest: Music Information Retrieval, Foundations of Intelligent 
Systems, Springer Verlag, Berlin, Heidelberg, 715–724., 2011, pp. 715–724, doi: 
10.1007/978-3-642-21916-0_75. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://arxiv.org/abs/1801.05894
https://support.izotope.com/hc/en-us/articles/360051377974-Neutron-3-Help-Documentation
https://support.izotope.com/hc/en-us/articles/360051377974-Neutron-3-Help-Documentation
https://support.izotope.com/hc/en-us/articles/360046031314-Ozone-9-Help-Documentation
https://support.izotope.com/hc/en-us/articles/360046031314-Ozone-9-Help-Documentation
http://mostwiedzy.pl


. 

 

110 

[57] Koszewski D., Kostek B., “Musical instrument tagging using data augmentation and 
effective noisy data processing”, Journal of Audio Engineering Society, JAES vol. 68 
Issue 1/2 pp. 57-65, January 2020. 

[58] Lattner S., Grachten M., Widmer G., “Imposing higher-level structure in polyphonic music 
generation using convolutional restricted boltzmann machines and constraints”, Journal 
of Creative Music Systems, 2, pp. 1-31, 2018. 

[59] Lindsay A.T., Herre J., “MPEG-7 and MPEG-7 Audio’ An Overview”, Journal of Audio 
Engineering Society, vol. 49, no. 7/8, pp. 589–594, 2001. 

[60] Liu J., Xie L., „SVM-Based Automatic Classification of Musical Instruments”, Intelligent 
Computation Technology and Automation (ICICTA), vol. 3, June 2010. 

[61] Lukin A., Todd J., “Adaptive time-frequency resolution for analysis and processing of 
audio”, AES Convention paper no. 6717, May 2006. 

[62] Lund T., “Level and distortion in digital broadcasting”, EBU Technical Review, April 2007. 

[63] Ma Z., Reiss J. D., Black D. A. A., “Implementation of an intelligent equalization tool 
using YuleWalker for music mixing and mastering”, Audio Engineering Society Conv. 
134, May 2013. 

[64] Malecki P., “Evaluation of objective and subjective factors of highly reverberant acoustic 
field”, PhD Thesis, AGH University of Science and Technology, Krakow, 2013. 

[65] Mansbridge S., Finn S., Reiss J. D., “Implementation and evaluation of autonomous 
multi-track fader control”, Audio Engineering Society Conv. 132, April 2012. 

[66] Mathworks Matlab manual, https://www.mathworks.com/help/matlab/, access: 
28.10.2021. 

[67] Merriam-Webster, https://www.merriam-webster.com/dictionary/automatic, access: 
29.03.2022. 

[68] Midside, http://www.midside.com/music/acremaker/, access: 19.04.2022. 

[69] Mimilakis S. I.  Cano E., Abfer J., Schuller G., “New sonorities for jazz recordings: 
Separation and mixing using deep neural networks”, 2nd Workshop on Intelligent Music 
Production, September 2016. 

[70] Mimilakis S. I., Drossos K., Floros A., Katerelos D., “Automated tonal balance 
enhancement for audio mastering applications”, Audio Engineering Society Conv. 134, 
May 2013. 

[71] Mimilakis S.I., Drossos K., Virtanen T., Schuller G., “Deep neural networks for dynamic 
range compression in mastering applications”, Audio Engineering Society Conv. 140, 
May 2016. 

[72] “Mixing Secrets” free multitrack library, https://www.cambridge-mt.com/ms/mtk/, access: 
25.04.2019. 

[73] Moffat D., Sandler M., “Machine Learning Multitrack Gain Mixing of Drums”, Audio 
Engineering Society 147th Convention, New York, October 16-19, 2019. 

[74] Moffat D., Thalmann F., Sandler M., “Towards a semantic web representation and 
application of audio mixing rules”, Proceedings of the 4th Workshop on Intelligent Music 
Production, Huddersfield, UK, 14 September 2018. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.mathworks.com/help/matlab/
https://www.merriam-webster.com/dictionary/automatic
http://www.midside.com/music/acremaker/
https://www.cambridge-mt.com/ms/mtk/
http://mostwiedzy.pl


. 

 

111 

[75] Moorer J. A., “About this reverberation business”, Comp. Music J., 3, pp. 13-28, 1979. 

[76] Müller M., Kurth, F., “Enhancing Similarity Matrices for Music Audio Analysis” 5. V - V. 
10.1109/ICASSP.2006.1661199, 2006. 

[77] Najafabadi M. M., Villanustre F., Khoshgoftaar T. M., Seliya N., Wald R., Muharemagic 
E., “Deep learning applications and challenges in big data analytics”, J. Big data, vol. 2, 
no. 1, 2015. 

[78] Nielsen S., “Personal Communication”, TC Electronics A/S, 2000. 

[79] Oeksound Soothe 2 manual, https://oeksound.com/manuals/soothe2/, access: 
18.04.2022. 

[80] Okwonu F. Z., Asaju B. L., Arunaye F. I., “Breakdown Analysis of Pearson Correlation 
Coefficient and Robust Correlation Methods”, International Conference on Technology, 
Engineering and Sciences (ICTES), 2020. 

[81] Orfanidis S. J., “Introduction to Signal Processing”, Prentice Hall, 1996. 

[82] Osmalskyj J., Van Droogenbroeck M., Embrechts J. J., “Performances of low-level audio 
classifiers for large scale music similarity”, International Conference on Systems, Signals 
and Image Processing, 2014. 

[83] Ostertagova E., Ostertag O., “Methodology and Application of One-way ANOVA”, 
American Journal of Mechanical Engineering, vol. 1, no. 7, pp. 256-261, 2013. 

[84] Paulus J., Müller M., Klapuri A., “State of the Art Report: Audio-Based Music Structure 
Analysis”, Ismir, pp. 625-636, August 2020. 

[85] Pras A., Guastavino C., Lavoie M., “The impact of technological advances on recording 
studio practices”, Journal of the American Society for Information Science and 
Technology, January 2013. 

[86] Pure Mix, https://www.puremix.net/video/andrew-scheps-mixing-ziggy-marley-in-the-
box.html, access: 15.10.2021. 

[87] Puri T., Soni M., Dhiman G., Khalaf O. I., Alazzam M., Khan I. R., "Detection of Emotion 
of Speech for RAVDESS Audio Using Hybrid Convolution Neural Network", Journal of 
Healthcare Engineering, vol. 2022, Article ID 8472947, 9 pages, 
https://doi.org/10.1155/2022/8472947, 2022. 

[88] Python documentation, https://docs.python.org/3/, access: 18.03.2022. 

[89] Rafii Z., Liutkus A., Stoter F. R., Mimilakis S. I., Bittner R., “MUSDB18-HQ – an 
uncompressed version of MUSDB18”, https://doi.org/10.5281/zenodo.3338373, August 
2019. 

[90] Ramirez M. A., Benetos E., Reiss J. D., „Deep Learning for Black-Box Modeling of Audio 
Effects”, Applied Sciences, vol. 10, no. 2, p. 638, 2020. 

[91] Ramirez M. A., Reiss J. D., „Analysis and Prediction of the Audio Feature Space when 
Mixing Raw Recordings into Individual Stems”, Audio Engineering Society Convention, 
143, Conv. Paper no. 9848, October 2017. 

[92] Ramirez M. A., Reiss J. D., “Deep learning and intelligent audio mixing”, Proceedings of 
the 3rd Workshop on Intelligent Music Production, Salford, UK, September 2017. 

[93] Ramirez M. A., Reiss J. D., „Modeling nonlinear audio effects with end-to-end deep 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://oeksound.com/manuals/soothe2/
https://www.puremix.net/video/andrew-scheps-mixing-ziggy-marley-in-the-box.html
https://www.puremix.net/video/andrew-scheps-mixing-ziggy-marley-in-the-box.html
https://doi.org/10.1155/2022/8472947
https://docs.python.org/3/
https://doi.org/10.5281/zenodo.3338373
http://mostwiedzy.pl


. 

 

112 

neural networks”, IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), May 2019. 

[94] Ramirez M. A., Stoller M. A., Moffat D., “A Deep Learning Approach to Intelligent Drum 
Mixing With the Wave-U-Net”, J. Audio Eng. Soc., vol. 69, no. 3, pp. 142–151, March, 
https://doi.org/10.17743/jaes.2020.0031, 2021. 

[95] Ravichandran N. K., “Tamil Natural Language Voice Classification using Recurrent 
Neural Networks”, IJRESM, vol. 5, no. 1, pp. 79–82, January 2022. 

[96] “Recommendations for Loudness of Internet Audio Streaming and On-Demand 
Distribution”, Technical Document AESTD1008.1.21-9, September 2021. 

[97] Reed D., “A perceptual assistant to do sound equalization", in Proceedings of the 5th 
International Conference on Intelligent User Interfaces, pp. 212/218, January 2000. 

[98] Reiss J. D., Ramirez M., “End-to-end equalization with Convolutional Neural Networks”, 
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), 
Aveiro, Portugal, September 4-8, 2018. 

[99] Ronan D., Ma Z., Namara P., Reiss D. J., „Automatic Minimisation of Masking in 
Multitrack Audio using Subgroups”,  https://doi.org/10.48550/arXiv.1803.09960, 2018. 

[100] Rosner A., Kostek B., „Automatic music genre classification based on musical instrument 
track separation”, Journal of Intelligent Information Systems, 50(2), pp. 363-384, 2018. 

[101] Rumsey F., “Loudness revisited”, JAES, 62, 12, pp. 906-910, 2014. 

[102] Santos A., Rodrigues J., Folgado D., Santos S., Fujao C., Gamboa H., “Self-Similarity 
Matrix of Morphological Features for Motion Data Analysis in Manufacturing Scenarios”, 
BIOSIGNALS pp. 80-90, 2021. 

[103] Sarroff A., Casey M., “Groove Kernels as Rhythmic Acoustic Motif Descriptors”, 14th 
International Society for Music Information Retrieval Conference (ISMIR), 2013. 

[104] Schroeder M. R., “Improved quasi-stereophony and colorless artificial reverberation”, J. 
Acoust. Soc. Am., 33(8), pp. 1061-1064, 1961. 

[105] Schroeder M. R., “Natural-sounding artificial reverberation”, J. Audio Eng. Soc., 10(3), 
pp. 219-223, 1962. 

[106] Schroeder M. R., “Digital simulation of sound transmission in reverberant spaces”, J. 
Acoust. Soc. Am., 47(2 Part 1), pp. 424-431, 1970. 

[107] Schroeder M. R., “Computer models for concert hall acoustics”, Am. J. Physics, 41, pp. 
461-471, 1973. 

[108] Schroeder M. R., Logan B., “Colorless artificial reverberation”, J. Audio Eng. Soc., 9, pp. 
192-197, 1961. 

[109] Schulze-Forster K., C., Richard G., Badeau R., “Unsupervised Audio Source Separation 
Using Differentiable Parametric Source Models”, arXiv:2201.09592, January 2022. 

[110] Scott J., et al., “Automatic multi-track mixing using linear dynamical systems”, 8th Sound 
and Music Computing Conference, July 2011. 

[111] Scott J., Kim Y. E., “Analysis of acoustic features for automated multi-track mixing”, 12th 
International Society for Music Information Retrieval Conference, October 2011. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.17743/jaes.2020.0031
https://doi.org/10.48550/arXiv.1803.09960
http://mostwiedzy.pl


. 

 

113 

[112] Sigtia S., Benetos E., Dixon S., “An end-to-end neural network for polyphonic piano 
music transcription”, IEEE/ACM Transactions on Audio, Speech and Language 
Processing, vol. 24, no. 5, pp. 927– 939, 2016. 

[113] Silva D. F., Yeh C. M., Zhu Y., Batista G. E. A. P. A., Keogh E., “Fast Similarity Matrix 
Profile for Music Analysis and Exploration”, IEEE Transactions on multimedia, Vol. 14, 
no. 8, August, 2015. 

[114] Shah A. P., Hori T., Le Roux J., Hori C., DSTC10-AVSD Submission System with 
Reasoning using Audio-Visual Transformers with Joint Student-Teacher Learning, The 
10th Dialog System Technology Challenge Workshop at AAAI 2022. 

[115] Shapiro S. S., Wilk M. B., “An Analysis of Variance Test for Normality (complete 
samples)”, JSTOR, Oxford University Press, vol. 52, no. 3/4, pp. 591-611, December 
1965. 

[116] Shepard R. N., “Circularity in judgments of relative pitch”, The journal of the acoustical 
society of America, 36(12), pp. 2346-2353, 1964. 

[117] Shi J., Ma C., “Unsupervised Sounding Object Localization With Bottom-Up and Top-
Down Attention”, Proceedings of the IEEE/CVF Winter Conference on Applications of 
Computer Vision (WACV), pp. 1737-1746, 2022. 

[118] Shiu Y., Jeong, H., Kuo, C.C. J., “Similarity matrix processing for music structure 
analysis”, 10.1145/1178723.1178734, 2006. 

[119] Sonible smart EQ+ manual, https://www.sonible.com/wp-
content/uploads/2016/11/manual-smartEQ.pdf, access: 15.02.2022. 

[120] Sonible smart:comp manual, https://www.sonible.com/wp-
content/uploads/2019/07/manual-smartComp.pdf, access: 15.02.2022. 

[121] Sound on sound, https://www.soundonsound.com/techniques/mix-rescue-preslin-davis, 
access: 19.04.2022. 

[122] Sound on sound, https://www.soundonsound.com/techniques/mix-rescue-tom-mckenzie, 
access: 19.04.2022. 

[123] Soundtheory Gullfoss manual, 
https://www.soundtheory.com/static/Gullfoss%20Manual.pdf, access: 18.04.2022. 

[124] SoX manual, http://sox.sourceforge.net/sox.pdf, access: 18.07.2021. 

[125] Steinmetz J. C., Pons J., Pascual S., Serra J., “Automatic multitrack mixing with a 
differentiable mixing console of neural audio effects”,  arXiv:2010.10291 2020. 

[126] Stoller D., Ewert S., Dixon S., “Wave-U-Net: A Multi-Scale Neural Network for End-to-
End Audio Source Separation”, in Proceedings of the 19th International Society for Music 
Information Retrieval Conference (ISMIR 2018), June 2018. 

[127 Tadeusiewicz R., „Neural Networks”, Warsaw, Akademicka Oficyna Wydawnicza, 1993. 

[128] TechTarget, https://www.techtarget.com/searchenterpriseai/definition/deep-learning-
deep-neural-network, access: 10.04.2022. 

[129] Ten Myths About Normalization, https://www.hometracked.com/2008/04/20/10-myths-
about-normalization/, access: 18.04.2022. 

[130] Terrell M. J., Reiss J. D., “Automatic monitor mixing for live musical performance”, J. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.sonible.com/wp-content/uploads/2016/11/manual-smartEQ.pdf
https://www.sonible.com/wp-content/uploads/2016/11/manual-smartEQ.pdf
https://www.sonible.com/wp-content/uploads/2019/07/manual-smartComp.pdf
https://www.sonible.com/wp-content/uploads/2019/07/manual-smartComp.pdf
https://www.soundonsound.com/techniques/mix-rescue-preslin-davis
https://www.soundonsound.com/techniques/mix-rescue-tom-mckenzie
https://www.soundtheory.com/static/Gullfoss%20Manual.pdf
http://sox.sourceforge.net/sox.pdf
https://www.hometracked.com/2008/04/20/10-myths-about-normalization/
https://www.hometracked.com/2008/04/20/10-myths-about-normalization/
http://mostwiedzy.pl


. 

 

114 

Audio Eng. Soc., vol. 57, November 2009. 

[131] Terrell M. J., Sandler M., “An offline, automatic mixing method for live music, 
incorporating multiple sources, loudspeakers, and room effects”, Computer Music 
Journal, vol. 36, May 2012. 

[132] Terrell M. J., Simpson A., Sandler M., “The mathematics of mixing”, J. Audio Eng. Soc., 
vol. 62, January/February 2014. 

[133] The MPEG-7 Standard, http://mpeg7.org/mpeg-7-standard, access: 20.03.2022. 

[134] Timbre toolbox, https://github.com/mondaugen/timbretoolbox, access: 06.07.2021. 

[135] Toulson R., “Can we fix it? – The consequences of ‘fixing it in the mix’ with common 
equalisation techniques are scientifically evaluated”, J. Art of Record Production, vol. 3, 
November 2008. 

[136] Tukey J. W., “Exploratory data analysis”, Addison-Wesley, Reading, 1977. 

[137] Unehara M., Yamada K., Shimada T., „Subjective evaluation of music with brain wave 
analysis for interactive music composition by IEC”, Soft Computing and Intelligent 
Systems (SCIS), pp. 66-70, 2014. 

[138] Wakefield J.P., Dewey C., “An investigation into the efficacy of methods commonly 
employed by mix engineers to reduce frequency masking in the mixing of multitrack 
musical recordings”, 138th International AES Convention, May 2015. 

[139] Wang N., Fang Y., “Music Recognition and Classification Algorithm considering Audio 
Emotion”, Scientific Programming, vol. 2022, Article ID 3138851, 10 pages, 
https://doi.org/10.1155/2022/3138851, 2022. 

[140] Ward D., Reiss J. D., Athwal C., “Multitrack mixing using a model of loudness and partial 
loudness”, Audio Engineering Society Convention 133, October 2012. 

[141] Weissenberger L., “Toward a Universal, Meta-Theoretical Framework for Music 
Information Classification and Retrieval”, Journal of Documentation, 71, 5, 2015. 

[142] Westhausen N. L., Huber R., Baumgartner H., Sinha R., Rennies J., Meyer B. T., 
“Reduction of Subjective Listening Effort for TV Broadcast Signals with Recurrent Neural 
Networks”, https://doi.org/10.48550/arXiv.2111.01914, 2021. 

[143] Wichern G., et al., “Comparison of loudness features for automatic level adjustment in 
mixing”, Audio Engineering Society Conv. 139, October 2015. 

[144] Wilson A., Fazenda B., “An evolutionary computation approach to intelligent music 
production, informed by experimentally gathered domain knowledge”, 2nd Workshop on 
Intelligent Music Production, September 2016. 

[145] Wilson A., Fazenda B.M., “Populating the Mix Space: Parametric Methods for Generating 
Multitrack Audio Mixtures”. Appl. Sci. 2017, 7, 1329. https://doi.org/10.3390/app7121329. 

[146] Yang D., Wang H., Zou Y., Wang W., “A Two-student Learning Framework for Mixed 
Supervised Target Sound Detection “, arXiv:2204.02088, April 2022. 

[147] Zacharov N., Huopaniemi, J., „Results of a Round Robin Subjective Evaluation of Virtual 
Home Theatre Sound Systems”, Proceedings of the Audio Engineering Society 107th 
International Convention, January 1998. 

[148] Zadeh L. A., „Fuzzy logic, neural networks, and soft computing”, Commun. ACM, t.37, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mpeg7.org/mpeg-7-standard
https://github.com/mondaugen/timbretoolbox
https://doi.org/10.1155/2022/3138851
https://doi.org/10.48550/arXiv.2111.01914
https://doi.org/10.3390/app7121329
http://mostwiedzy.pl


. 

 

115 

no. 3, pp. 77-84, 1994. 

[149] Zhu L., Rahtu E., “Visually Guided Sound Source Separation and Localization Using 
Self-Supervised Motion Representations”, Proceedings of the IEEE/CVF Winter 
Conference on Applications of Computer Vision (WACV), pp. 1289-1299, 2022. 

[150] Zolzer U., “Digital Audio Signal Processing”, John Wiley & Sons, Ltd. 2nd edition, 2011. 

[151] Zubayer I., Abdel-Aty M., “Real-time Emergency Vehicle Event Detection Using Audio 
Data”, https://doi.org/10.48550/arXiv.2202.01367, February 2022. 

[152] Zwicker E., Fastl H., “Psychoacoustics: Facts and models”, Springer-Verlag, 1990. 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.48550/arXiv.2202.01367
http://mostwiedzy.pl


. 

 

116 

LIST OF FIGURES 

1.1. Process of a musical piece production 20 

1.2. Various types of composing a song: a) writing the guitar part as a tablature, 
b) composing using MIDI, c) writing down notes on a five-line staff 

21 

1.3. Example of a multitrack recording setup 21 

1.4. Stages of analysis executed in the course of the dissertation 23 

1.5. Organization of the thesis. Chapters are presented along with their content 24 

2.1. Hysteresis gate 26 

2.2. Highlighted audio regions are active 26 

2.3. 3 dB Equal Power Pan [29] 27 

2.4. Various filter types: a) low-pass, b) high-pass, c) band-pass, d) band-reject, 
e) all-pass [150] 

28 

2.5. Block diagram of a dynamic range controller [150] 30 

2.6. Block diagram of a limiter [150] 31 

2.7. Block diagram of a compressor/expander [150] 32 

2.8. Block diagram of a noise gate [150] 33 

2.9. Block diagram of a de-esser [150] 34 

2.10. Block diagram of an FIR comb filter [150] 35 

2.11. Block diagram of an IIR comb filter [150] 36 

2.12. The all-pass filter structure [150] 37 

2.13. Components of a room impulse response 38 

2.14. Pink noise with the RMS level (top) and filtered pink noise with the RMS 
level (bottom) 

39 

2.15. 𝐿2-normalization in 𝑓𝑐 and ϛ for the state variable filter 40 

4.1. Stages of analysis executed in Chapter 4 51 

4.2. Block diagram of an automatic audio mixing system 54 

4.3. Block diagram of the adapted Wave-U-Net network for automatic mixing K 
stems using L layers 

56 

4.4. MUSDB18-HQ database structure [89] 58 

4.5. Drum set recording setup 59 

4.6. Test loss function of Stem-to-mix model training 60 

5.1. Stages of analysis executed in Chapter 5 61 

5.2. Main test arrangement 62 

5.3. All 11 tracks from Secretariat – Over the top song in the form of a mel 
spectrogram 

63 

5.4. Levels and panning setting in the Amateur mix of Secretariat – Over the top 
song 

65 

5.5. Waveforms of each track in the Secretariat – Over the top song 65 

5.6. Selection of the focus point of the song (vocal in this case) 67 

5.7. Results of automatic balance settings and instrument classification made by 
the Neutron Pro plugin (corrected track types marked) 

67 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

117 

5.8. Instrument, Style and Intensity selection 68 

5.9. Selected settings of the Izotope Nectar Pro plugin on a vocal track 69 

5.10. An example of pre-mixing tracks to fit the input of the other-to-stem model 
in the form of a mel spectrogram 

70 

5.11. Selected part (15 s) of the Secretariat – Over the top song for the listening 
evaluation 

71 

5.12. All four mixes of Secretariat – Over the top song in the form of a mel 
spectrogram 

72 

6.1. Stages of analysis executed in Chapter 6 73 

6.2. Chromagram of the Secretariat – Over the top “Unet” mix 77 

6.3. RMS level calculated for all music pieces evaluated 78 

6.4. Integrated Loudness calculated for all music samples 78 

6.5. Loudness Range calculated for all music samples 79 

6.6. True peak level calculated for all music samples 79 

6.7. Descriptors calculated for Secretariat – Over the top “Izotope” sample 80 

6.8. Variation of the RMS-Energy Envelope depending on the mix type in the 
Secretariat – Over the top song 

82 

6.9. Results of the survey in which the subjects were asked how many years of 
experience they have in mixing music 

89 

6.10. Box plot showing the distribution of the Overall ratings for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

93 

6.11. Box plot showing the distribution of the Balance ratings for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

94 

6.12. Box plot showing the distribution of the Clarity ratings for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

95 

6.13. Box plot showing the distribution of the Panning ratings for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

95 

6.14. Box plot showing the distribution of the Space ratings for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

96 

6.15. Box plot showing the distribution of the Dynamic ratings for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

97 

6.16. Average overall ratings of mixes in the Pop genre for the “Amateur, 
“Izotope”, “Unet”, and “Pro” mixes 

98 

6.17. Average overall ratings of mixes in the Alternative genre for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

98 

6.18. Average overall ratings of mixes in the Electronica genre for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

99 

6.19. Average overall ratings of mixes in the Rock genre for the “Amateur”, 
“Izotope”, “Unet”, and “Pro” mixes 

100 

6.20. Graphical representation of the SSM of the Secretariat – Over the top 
objective and subjective samples 

101 

  

  

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

118 

LIST OF TABLES 

2.1. Coefficients for first-order filters 29 

2.2. Coefficients for second order filters 29 

3.1. List of companies producing plugins that allow for automatic mixing with a 
breakdown of their capabilities 

47 

4.1. Software system requirements 52 

4.2. Hardware system requirements 53 

4.3. Drum set recording session input list. Particular parts of the set are listed 
along with used microphones 

58 

4.4. Models and number of inputs and outputs 60 

5.1. List of selected songs 62 

5.2. Used effects in “Amateur” mix of Secretariat – Over the top song 66 

6.1. Interpretation of the correlation coefficient values 76 

6.2. RMS level calculated for all objective samples 80 

6.3. Integrated Loudness calculated for all objective samples 81 

6.4. Loudness Range calculated for all objective samples 81 

6.5. True peak level calculated for all objective samples 82 

6.6. Statistical significance calculation results of the RMS-Energy Envelope 
descriptor 

83 

6.7. Statistical significance calculation results of the Harmonic Energy descriptor 84 

6.8. Statistical significance calculation results of the Odd-To-Even Harmonic 
Ratio 

86 

6.9. Basic descriptive statistics and Shapiro-Wilk test results for the overall 
ratings of mixes and the listeners’ years of experience in mixing 

90 

6.10. Basic descriptive statistics and Shapiro-Wilk test results for the measured 
indicators of the Amateur-based mix 

90 

6.11. Basic descriptive statistics and Shapiro-Wilk test results for the measured 
indicators of the Izotope-based mix 

90 

6.12. Basic descriptive statistics and Shapiro-Wilk test results for the measured 
indicators of the Unet-based mix 

91 

6.13. Basic descriptive statistics and Shapiro-Wilk test results for the measured 
indicators of the Pro-based mix 

91 

6.14. Basic descriptive statistics and Shapiro-Wilk test results for the overall 
ratings of mixes in each music genre 

91 

6.15. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of 
music genres in the Amateur-based mix 

92 

6.16. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of 
music genres in the Izotope-based mix 

92 

6.17. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of 
music genres in the Unet-based mix 

92 

6.18. Basic descriptive statistics and Shapiro-Wilk test results for the ratings of 
music genres in the Pro-based mix 

92 

6.19. The overall rating of the mix as a function of the mix type 93 

6.20. Balance as a function of the mix type 94 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

119 

6.21. Clarity as a function of the mix type 94 

6.22. Panning as a function of the mix type 95 

6.23. Space as a function of the mix type 96 

6.24. Dynamics as a function of the mix type 96 

6.25. Overall rating of the Pop mixes as a function of the mix type 97 

6.26. Overall rating of the Alternative mixes as a function of the mix type 98 

6.27. Overall rating of the Electronica mixes as a function of the mix type 99 

6.28. Overall rating of the Rock mixes as a function of the mix type 99 

6.29. Correlation between experience in mixing and the overall ratings of mixes 100 

6.30. Root Mean Square Error (RMSE) calculation for all samples 102 

6.31. Structural similarity index (SSIM) calculation for all samples 102 

6.32. Visual Information Fidelity (VIF) calculation for all samples 103 

 

  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


. 

 

120 

Appendix A: Detailed structure of selected songs 

Table A.1. Structure of the “Angels in Amplifiers” song 

Angels in Amplifiers – I’m alright 

No. Track name Mono/Stereo 

1 Kick Mono 

2 Snare Mono 

3 Overheads Stereo 

4 Toms Stereo 

5 Percussion Stereo 

6 Bass Mono 

7 Piano Mono 

8 Electric guitar Mono 

9 Acoustic guitar 1 Mono 

10 Acoustic guitar 2 Mono 

11 Lead vocal Mono 

12 Backing vocal 1 Mono 

13 Backing vocal 2 Mono 

 

Table A.2. Structure of the “Ben Carrigan” song 

Ben Carrigan – We’ll talk about it all tonight 

No. Track name Mono/Stereo 

1 Drum machine Mono 

2 Kick Mono 

3 Kick sample Mono 

4 Snare Mono 

5 Snare sample 1 Mono 

6 Snare sample 2 Mono 

7 Hihat Mono 

8 Tom 1 Mono 

9 Tom 2 Mono 

10 Cymbal Mono 

11 Cymbal sample 1 Mono 

12 Cymbal sample 2 Mono 

13 Drums room Mono 

14 Shaker Mono 

15 Sleigh bells Mono 

16 Tambourine Mono 

17 Hand claps Mono 

18 Bass Mono 

19 Acoustic guitar 1 Stereo 

20 Acoustic guitar 2 Mono 

21 Rhythm guitar Stereo 

22 Piano Stereo 

23 Organ Mono 

24 Keyboard Mono 

25 Piano SFX Stereo 
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26 Glockenspiel Stereo 

27 Violin 1 Mono 

28 Violin 2 Mono 

29 Viola Mono 

30 Cello Mono 

31 Strings 1 Stereo 

32 Strings 2 Stereo 

33 Violin sample Stereo 

34 Viola sample Stereo 

35 Cello sample 1 Stereo 

36 Cello sample 2 Stereo 

37 Trumpet sample Stereo 

38 French horn sample Stereo 

39 Harmonica Mono 

40 Lead vocal Mono 

41 Backing vocal 1 Mono 

42 Backing vocal 2 Mono 

43 Backing vocal 3 Mono 

44 Backing vocal 4 Mono 

45 Backing vocal 5 Mono 

46 Backing vocal 6 Mono 

47 Backing vocal 7 Mono 

48 Backing vocal 8 Mono 

49 Backing vocal 9 Mono 

50 Backing vocal 10 Mono 

51 Backing vocal 11 Mono 

 

Table A.3. Structure of the “Georgia Wonder” song 

No. Track name Mono/Stereo 

1 Loop 1 Stereo 

2 Loop 2 Stereo 

3 Loop 3 Stereo 

4 Loop 4 Stereo 

5 Kick Mono 

6 Snare Mono 

7 Hihat Stereo 

8 Cymbal rolls Stereo 

9 Cymbals Stereo 

10 Bass Mono 

11 Synth 1 Stereo 

12 Synth 2 Stereo 

13 Synth 3 Stereo 

14 Synth 4 Stereo 

15 Synth 5 Stereo 

16 Synth 6 Stereo 

17 Synth pad 1 Stereo 
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18 Synth pad 2 Stereo 

19 Synth pad 3 Stereo 

20 Strings Stereo 

21 SFX 1 Stereo 

22 SFX 2 Stereo 

23 SFX 3 Stereo 

24 SFX 4 Stereo 

25 SFX 5 Stereo 

26 SFX 6 Stereo 

27 Acoustic guitar 1 Stereo 

28 Acoustic guitar 2 Stereo 

29 Acoustic guitar 3 Stereo 

30 Acoustic guitar 4 Stereo 

31 Acoustic guitar 5 Mono 

32 Electric guitar 1 Stereo 

33 Electric guitar 2 Stereo 

34 Electric guitar 3 Mono 

35 Electric guitar 4 Mono 

36 Electric guitar 5 Mono 

37 Electric guitar 6 Mono 

38 Electric guitar 7 Mono 

39 Electric guitar 8 Mono 

40 Electric guitar 9 Mono 

41 Electric guitar 10 Mono 

42 Electric guitar 11 Mono 

43 Electric guitar 12 Mono 

44 Electric guitar 13 Mono 

45 Electric guitar 14 Mono 

46 Electric guitar 15 Mono 

47 Sitar Stereo 

48 Lead vocal Mono 

49 Lead vocal doubles Stereo 

50 Backing vocal 1 Mono 

51 Backing vocal 2 Mono 

52 Backing vocal 3 Mono 

53 Backing vocal 4 Mono 

54 Backing vocal 5 Mono 

55 Backing vocal 6 Mono 

56 Backing vocal 7 Mono 

57 Backing vocal 8 Mono 

58 Backing vocal 9 Mono 

59 Backing vocal 10 Mono 

 

Table A.4. Structure of the “Secretariat” song 

No. Track name Spatiality 

1 Kick Mono 
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2 Snare Mono 

3 Overheads Stereo 

4 Bass Mono 

5 Electric guitar 1 Mono 

6 Electric guitar 2 Mono 

7 Electric guitar 3 Mono 

8 Hammond Stereo 

9 Lead vocal Mono 

10 Lead vocal doubles Mono 

11 Backing vocal Mono 

 

Table A.5. Structure of the “Side Effects Project” song 

No. Track name Spatiality 

1 Kick Stereo 

2 Snare 1 Stereo 

3 Snare 2 Stereo 

4 Clap 1 Mono 

5 Clap 2 Mono 

6 Clap 3 Mono 

7 Clap 4 Stereo 

8 Hihat 1 Mono 

9 Hihat 2 Stereo 

10 Hihat 3 Stereo 

11 Hihat 4 Mono 

12 Bongo Stereo 

13 Timbale Stereo 

14 Tom 1 Stereo 

15 Tom 2 Stereo 

16 Reverse Cymbal Stereo 

17 Shaker Mono 

18 Bass Stereo 

19 Harp Stereo 

20 Synth Mono 

21 Electric guitar Stereo 

22 Sample 1 Stereo 

23 Sample 2 Stereo 

24 Sample 3 Stereo 

25 Sample 4 Stereo 

26 Sample 5 Stereo 

27 Lead vocal Mono 

28 Lead vocal doubles 1 Mono 

29 Lead vocal doubles 2 Mono 

30 Lead vocal doubles 3 Mono 

31 Backing vocal 1 Mono 

32 Backing vocal 2 Mono 

33 Backing vocal 3 Mono 
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34 Backing vocal 4 Mono 

35 Backing vocal 5 Mono 

36 Backing vocal 6 Mono 

37 Backing vocal 7 Mono 

38 Backing vocal 8 Mono 

39 Backing vocal 9 Mono 

40 Backing vocal 10 Mono 

41 Backing vocal 11 Mono 

42 Backing vocal 12 Mono 

43 Backing vocal 13 Mono 

44 Backing vocal 14 Mono 

45 Backing vocal 15 Mono 

46 Backing vocal 16 Mono 

 

Table A.6. Structure of the “Speak Softly” song 

No. Track name Spatiality 

1 Drums 1 Stereo 

2 Drums 2 Stereo 

3 Percussion 1 Mono 

4 Percussion 2 Mono 

5 Bass synth Mono 

6 Piano 1 Mono 

7 Piano 2 Mono 

8 Piano 3 Mono 

9 Piano 4 Mono 

10 Rhodes 1 Stereo 

11 Rhodes 2 Mono 

12 Rhodes 3 Stereo 

13 Synth 1 Stereo 

14 Synth 2 Stereo 

15 Lead vocal Mono 

16 Backing vocal 1 Mono 

17 Backing vocal 2 mono 

 

Table A.7. Structure of the “The Doppler Shift” song 

No. Track name Spatiality 

1 Kick Mono 

2 Snare top Mono 

3 Snare bottom Mono 

4 Hihat Mono 

5 Overheads Stereo 

6 Drums room Stereo 

7 Ride Mono 

8 Tom 1 Mono 

9 Tom 2 Mono 

10 Tom 3 Mono 
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11 Bass Mono 

12 Electric guitar 1 Mono 

13 Electric guitar 2 Mono 

14 Electric guitar 3 Mono 

15 Electric guitar 4 Mono 

16 Electric guitar 5 Mono 

17 Electric guitar 6 Mono 

18 Electric piano 1 Stereo 

19 Electric piano 2 Stereo 

20 Synth 1 Stereo 

21 Synth 2 Stereo 

22 Lead vocal Mono 

 

Table A.8. Structure of the “Tom McKenzie” song 

No. Track name Spatiality 

1 Kick Mono 

2 Snare top Mono 

3 Snare bottom Mono 

4 Hihat Mono 

5 Overheads Stereo 

6 Shaker Stereo 

7 Tambourine Stereo 

8 Bongos Mono 

9 Bass 1 Mono 

10 Bass 2 Mono 

11 Acoustic guitar 1 Mono 

12 Acoustic guitar 2 Mono 

13 Acoustic guitar 3 Mono 

14 Acoustic guitar 4 Mono 

15 Acoustic guitar 5 Mono 

16 Acoustic guitar 6 Mono 

17 Electric guitar 1 Mono 

18 Electric guitar 2 Mono 

19 Electric guitar 3 Mono 

20 Electric guitar 4 Mono 

21 Lead vocal Mono 

22 Backing vocal 1 Mono 

23 Backing vocal 2 Mono 

24 Backing vocal 3 Mono 

25 Backing vocal 4 Mono 

26 Backing vocal 5 Mono 

27 Backing vocal 6 Mono 

28 Backing vocal 7 Mono 

29 Backing vocal 8 Mono 

30 Backing vocal 9 Mono 

31 Backing vocal 10 Mono 
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Appendix B: Objective results, figures and tables 

 

Fig. B.1. Descriptors calculated for Angels in Amplifiers – I’m Alright – “Amateur” sample 

 

Fig. B.2. Descriptors calculated for Angels in Amplifiers – I’m Alright – “Izotope” sample 
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Fig. B.3. Descriptors calculated for Angels in Amplifiers – I’m Alright – “Pro” sample 

 

Fig. B.4. Descriptors calculated for Angels in Amplifiers – I’m Alright – “Unet” sample 
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Fig. B.5. Descriptors calculated for Ben Carrigan – We’ll talk about it tonight – “Amateur” sample 

 

Fig. B.6. Descriptors calculated for Ben Carrigan – We’ll talk about it tonight – “Izotope” sample 
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Fig. B.7. Descriptors calculated for Ben Carrigan – We’ll talk about it tonight – “Pro” sample 

 

Fig. B.8. Descriptors calculated for Ben Carrigan – We’ll talk about it tonight – “Unet” sample 
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Fig. B.9. Descriptors calculated for Georgia Wonder – Siren – “Amateur” sample 

 

Fig. B.10. Descriptors calculated for Georgia Wonder – Siren – “Izotope” sample 
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Fig. B.11. Descriptors calculated for Georgia Wonder – Siren – “Pro” sample 

 

Fig. B.12. Descriptors calculated for Georgia Wonder – Siren – “Unet” sample 
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Fig. B.13. Descriptors calculated for Secretariat – Over the top – “Amateur” sample 

 

Fig. B.14. Descriptors calculated for Secretariat – Over the top – “Izotope” sample 
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Fig. B.15. Descriptors calculated for Secretariat – Over the top – “Pro” sample 

 

Fig. B.16. Descriptors calculated for Secretariat – Over the top – “Unet” sample 
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 Fig. B.17. Descriptors calculated for Side Effects Project – Sing with me – “Amateur” sample 

 

Fig. B.18. Descriptors calculated for Side Effects Project – Sing with me – “Izotope” sample 
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Fig. B.19. Descriptors calculated for Side Effects Project – Sing with me – “Pro” sample 

 

Fig. B.20. Descriptors calculated for Side Effects Project – Sing with me – “Unet” sample 
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Fig. B.21. Descriptors calculated for Speak Softly – Broken man – “Amateur” sample 

 

Fig. B.22. Descriptors calculated for Speak Softly – Broken man – “Izotope” sample 
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Fig. B.23. Descriptors calculated for Speak Softly – Broken man – “Pro” sample 

 

Fig. B.24. Descriptors calculated for Speak Softly – Broken man – “Unet” sample 
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Fig. B.25. Descriptors calculated for The Doppler Shift – Atrophy – “Amateur” sample 

 

Fig. B.26. Descriptors calculated for The Doppler Shift – Atrophy – “Izotope” sample 
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Fig. B.27. Descriptors calculated for The Doppler Shift – Atrophy – “Pro” sample 

 

Fig. B.28. Descriptors calculated for The Doppler Shift – Atrophy – “Unet” sample 
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Fig. B.29. Descriptors calculated for Tom McKenzie – Directions – “Amateur” sample 

 

Fig. B.30. Descriptors calculated for Tom McKenzie – Directions – “Izotope” sample 
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Fig. B.31. Descriptors calculated for Tom McKenzie – Directions – “Pro” sample 

 

Fig. B.32. Descriptors calculated for Tom McKenzie – Directions – “Unet” sample 
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Fig. B.33. Harmonic Energy descriptor calculated for all songs depending on mix type 
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Fig. B.34. Odd-to-Even Harmonic Ratio descriptor calculated for all songs depending on mix type 
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Fig. B.35. RMS-Energy Envelope descriptor calculated for all songs depending on mix type 
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Appendix C: Questionnaire for listeners 

LISTENING TEST 

 

You will hear eight songs mixed in four different ways. The samples are 15-
seconds long, played in groups of four. Listen carefully and decide how you 
perceive each sample in these categories: 

- Balance: how well-balanced are the levels of each instrument, vocals, etc.? 

- Clarity: how well does the mix represent the entire frequency range of the 
instruments? 

- Panning: is every element in the song placed in the panorama in a way that 
makes sense to the artist and the listener? 

- Space: do various elements in the song (as well as the overall mix) have a 
proper ambiance? 

- Dynamics: does the mix allow each part of the song to “breathe” and 
develop? Is the compression of each element (and the overall mix) adequate? 

You can listen to the group of samples and compare them to each other in any 
order you choose. Rate the samples in each of the above categories from 1 
(bad) to 5 (good). 

 

Please fill questionnaire before listening 

Age: …………….. 

Gender: ………… 

Do you listen to music? …………. If yes, what music genre (list up to three most 

important to you):  ……………………………………………………………………… 

What music genres are you familiar with (select all that apply):  

o Jazz 
o Folk Music 
o Hip Hop Music 
o K-Pop 
o Blues 
o Pop Music 
o Country Music 
o Rapping 
o Reggae 
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o Rock Music 
o Rhythm and Blues 
o Punk Rock 
o Classical 
o Disco 
o Heavy Metal 
o Funk 
o Techno 
o Opera 
o Gospel Music 
o Other (please specify) 

 

Are you a musician? ………….  and /or sound engineer? …………. 

Are you a mixing engineer? ........ If yes, how many years of experience in 

mixing do you have: …………  

What music genres are you usually mix (select all that apply): 

o Jazz 
o Folk Music 
o Hip Hop Music 
o K-Pop 
o Blues 
o Pop Music 
o Country Music 
o Rapping 
o Reggae 
o Rock Music 
o Rhythm and Blues 
o Punk Rock 
o Classical 
o Disco 
o Heavy Metal 
o Funk 
o Techno 
o Opera 
o Gospel Music 
o Other (please specify) 
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 1 - A 1 - B 1 - C 1 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     

 

 2 - A 2 - B 2 - C 2 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     

 

 3 - A 3 - B 3 - C 3 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     
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 4 - A 4 - B 4 - C 4 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     

 

 5 - A 5 - B 5 - C 5 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     

 

 6 - A 6 - B 6 - C 6 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     
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 7 - A 7 - B 7 - C 7 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     

 

 8 - A 8 - B 8 - C 8 - D 

Balance     

Clarity     

Panning     

Space     

Dynamics     
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Appendix D: Self-similarity matrices 

 

Fig. D.1. Graphical representation of the SSM of the Angels in Amplifiers – I’m alright objective and 
subjective samples 
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Fig. D.2. Graphical representation of the SSM of the Ben Carrigan – We’ll talk about it tonight objective 
and subjective samples 
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Fig. D.3. Graphical representation of the SSM of the Georgia Wonder – Siren objective and subjective 
samples 
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Fig. D.4. Graphical representation of the SSM of the Secretariat – Over the top objective and subjective 
samples 
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Fig. D.5. Graphical representation of the SSM of the Side Effects Project – Sing with me objective and 
subjective samples 
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Fig. D.6. Graphical representation of the SSM of the Speak Softly – Broken man objective and subjective 
samples 
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Fig. D.7. Graphical representation of the SSM of the The Doppler Shift – Atrophy objective and subjective 
samples 
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