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Abstract The aim of this article is to investigate whether separating music tracks at the pre-
processing phase and extending feature vector by parameters related to the specific musical
instruments that are characteristic for the given musical genre allow for efficient automatic
musical genre classification in case of database containing thousands of music excerpts and
a dozen of genres. Results of extensive experiments show that the approach proposed for
music genre classification is promising. Overall, conglomerating parameters derived from
both an original audio and a mixture of separated tracks improve classification effectiveness
measures, demonstrating that the proposed feature vector and the Support Vector Machine
(SVM) with Co-training mechanism are applicable to a large dataset.

Keywords Music information retrieval (MIR) · Automatic music genre classification ·
Automatic separation of music tracks · Support vector machine (SVM)

1 Introduction

A special issue on automatic processing of music information research, edited by Herrera-
Boyer et al. (2013), accounts on how the past of MIR (Music Information Retrieval),
combined with realistic perspectives on the future of specific topics, influence the future
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of this area. One may argue that due to the amount of available music-related information,
expert-based knowledge may start to be obsolete as it is already preserved in multiple data
records. Thus, the future research in MIR domain may eventually lead to deep machine
learning (Humprey et al. 2013). On the other hand, Lee and Cunningham (2013) show that
understanding users’ needs, behavior and requirements may have a great impact on devel-
oping a system that addresses critical concepts of MIR. Accordingly, they recommend to
increase the visibility and impact of user-based studies in the field. A very comprehen-
sive review of topics related to MIR was recently prepared by Schedl et al. (2014). The
study contains over 300 references, however this is only a small fraction of the literature
sources devoted to Music Information Retrieval. Even a more recent survey was prepared by
Burgoyne et al. (2016), in which research performed within MIR was presented as an
important part of a rapidly evolving area called digital humanities.

Automatic music genre classification (AMGC) has been exploited quite thoroughly in
recent years by the research community (ISMIR conferences, ISMIR (2016)) and is one of
the most popular search query choices within the MIR domain (Bergstra et al. 2006; Burred
2014; Kostek 2005; Ntalampiras 2013; Schedl et al. 2014; Silla et al. 2007; Sturm 2013;
Tzanetakis et al. 2002)). On a smaller scale, a survey, focusing on AMGC was presented by
Silla et al. (2007). They observed that the typical approach adopted to the AMGC is based
on feature space decomposition and machine learning to assign music genre labels. Also
some non-conventional machine learning strategies to AMGC exist, based on both space
and time decomposition schemes, an example of which may be again the work of Silla
et al. (2007). Features employed in their work were selected from several parts of a music
excerpt, as well as from the entire music signal. They used a combination of binary classi-
fiers, the results of which were merged to produce the final music genre labeling (Silla et al.
2007). Another, non-conventional approach was shown in the work by Sturm (2014), as well
as by Bergstra et al. (2006). The AdaBoost algorithm, performing the classification itera-
tively by combining the weighted votes of several weak learners, was utilized. Yet, a novel
data selection strategy based on Gaussian mixture model clustering for the creation of the
Universal Modeling (UM) was introduced by Ntalampiras (2013). The scheme considered
the dataset characteristics, adapted itself to them and achieved increased recognition rates
in comparison to the conventional approach. Very recently, a Special Issue on Intelligent
Audio Processing, Semantics, and Interaction was prepared, in which it was pointed out that
semantic audio incorporates the processes of intelligent audio processing and augmented
(semantic) interaction, thus broadening the area of music information retrieval (Kalliris et al.
2016).

AMGC is still an ongoing process, especially in the context of scalability, as most of the
studies were carried out on the databases delivered either by ISMIR, MIREX, ISMIS confer-
ences or those available in the Internet, e.g. GTZAN, RWC-MDB (Real World Computing
Music Database) (Goto et al. 2002), Magnatune, etc., typically including approx. 1,000–
2,000 music pieces assigned to a few popular music genres (see e.g. Bergstra et al. (2006)).
There are some larger collections of music excerpts, e.g. Latin Music Database contain-
ing 3,160 music pieces categorized in 10 musical genres (Silla et al. 2007). In many cases,
such databases are labeled manually, which means that audio files are correctly assigned
to the corresponding music genre, however the assignment is carried out on subjective
basis. This aspect may have a very positive impact on the effectiveness of classification
experiment. Still, as reported in the literature, for low level-feature-based approach and
multi-class recognition, the effectiveness of music genre classification is in the range of 60–
80% (Bergstra et al. 2006; Tzanetakis et al. 2002; Holzapfel and Stylianou 2008; Kostek
et al. 2011) with some exceptions (see e.g. Ntalampiras (2013)). It is worth mentioning that
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the above-mentioned collections are not consistent among one another, as they differ in the
number of musical pieces, file format, bit resolution, number of genres, etc., hence, a full
comparison within these databases is justified only to some extent.

As pointed out by Silla et al. (2007) music genres are categorical labels created by human
experts in order to identify the style of the music and organize music collections. “Music
genre” notion may not precisely be defined, however the research comprising music catego-
rization, as stated by Tekman and Hortacsu, still plays an essential role in music appreciation
and cognition (Tekman and Hortacsu 2002). One may argue that the expanding consumer
market for social music network services brought new ways for searching and analyzing
musical information and examining their effectiveness and quality, i.e. based on collabora-
tive filtering and similarity measures retrieved from large music archives (Schedl et al. 2014;
Ness et al. 2009). However, the subject of a deeper content exploring, i.e. considering the
sound source separation in the context of music recognition, starts to be useful in improving
genre classification (McKay and Fujinaga 2004; Pérez-Garcı́a et al. 2010; Zhu et al. 2004).
This also is visible in some new applications (e.g. AudioScore Ultimate 7. (2016)).

Finally, music genre is related to the thematic identity of radio broadcasting shows,
therefore to the underlying (semantic) relations between radio producers, content and con-
sumers (Fu et al. 2011; Kotsakis et al. 2012; Romain et al. 2012) with many practical uses
in media analytics and broadcasting programming. Similar audio-driven semantic analysis
approaches (including Music Genre Recognition) can also be considered for the case of
video content, thus leading to various semantic conceptualization outcomes (i.e. related to
activities: dancing, signing, jogging, skiing etc., occasions: birthday, graduation etc., and
others) (Lee and Ellis Daniel 2010). These are examples of intelligent information systems
that will dominate in the upcoming (fully deployed) Semantic Web in the near future.

The presented work is a part of a larger framework carried out over the past several
years. The authors and their collaborators performed several studies devoted to AMGC
(Kostek 2013; Kostek et al. 2011; Kostek et al. 2014; Plewa and Kostek 2015; Rosner et al.
2014; Rosner and Kostek 2015), in which decision algorithms, such as: kNNs (k Nearest
Neighbors), SVM by Sequential Minimal Optimization (SMO) algorithm, Rough Sets and
Bayesian Networks were used. Recently, a paper was published by one of the authors and
her Ph.D. student (Hoffmann and Kostek 2015), which presents a novel approach to the Vir-
tual Bass Synthesis (VBS) applied to mobile devices, called Smart VBS (SVBS). Improving
the low frequency sound of mobile devices is a problem that appears in many studies (Hill
and Hawksford 2010; Mu and Gan 2012, 2015; Oo et al. 2000). The proposed algorithm
uses a rule-based settings of bass synthesis parameters adjusted according to the recognized
music genre. To perform harmonic generation based on a nonlinear device (NLD) method
an intelligent controlling system, automatically adapting to the recognized music genre, was
proposed (Hoffmann and Kostek 2015). Lately, a patent application was prepared in which
the above described approach has been extended to separating music tracks before the NLD
settings are adjusted. Thus, the motivation behind the presented study is to provide answers
with regard to the content of the feature vector derived from separated tracks, also to what
extent separating tracks helps to distinguish between genres, and which genres make the
most use of track separation. The last question has alaredy been asked by Wieczorkowska
et al. (2011) with regard to recognition the dominating musical instrument in sound mixes.

The aim of this research study is two-fold, namely: to propose a feature vector created
based on separated audio tracks but retaining parameters derived from the original excerpt.
This may be important in the context of the nature of musical genres. For example, it is well
known that some genres (e.g. rock, hard rock, techno, etc.) are characterized by rich rhyth-
mic patterns that possibly translate, among others, into the values of energy and temporal
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descriptors. The authors’ approach differs from other studies shown in the literature. When
the track separation is performed on audio source, a music excerpt is separated into har-
monic and drum tracks. We have expanded this by extracting features that are related to
individual music instruments that may be characteristic to the specific genre. Then, hav-
ing several individual tracks, we checked whether it is sufficient to build a feature vector
based on descriptors derived only from individual tracks or whether to include those from
the whole music excerpt as well, assuming the separation is not perfect because of the esti-
mation inaccuracies. The second goal is to check whether the feature vector derived from
this study enables to effectively classify musical genres in the case of a database contain-
ing thousands of records and a dozen of musical genres, i.e. with a similar correctness
comparing to earlier experiments carried out on much smaller music databases.

The paper is organized as follows, Section 2 presents the experimental setup starting
with a concise description of the database employed and parameters utilized. Research stud-
ies devoted to the music separation process are then recalled and a methodology involving
music track separation that was utilized by the authors is explained. Finally, the pre-
processing stage with regard to building a feature vector for the genre classification process
is shown. Section 3 contains a short description of the classification algorithm used in this
study, focusing on the so-called co-training mechanism. Section 4 discusses results of exper-
iments that were carried out for optimizing feature vectors. Overall comments are included
in Summary.

2 Experimental setup

2.1 Music database

For the purpose of experiments a subset of audio excerpts extracted from the Synat
database belonging to 13 popular music genres was used (SYNAT 2016). In addition, a
dataset of musical instrument samples was collected from the Sampleswap music service
(Sampleswap 2016). As it contains samples of various instrument sounds, as well as exam-
ples of instruments playing in the loop, the dataset also provided longer sections of particular
instruments. The samples of three musical instruments were collected for the experiment:
piano, trumpet and saxophone.

The Synat database (Kostek et al. 2014; SYNAT 2016) stores over 50.000 music tracks
of 30-second long song excerpts in mp3 format, representing the following 22 genres:
Alternative Rock, Blues, Broadway & Vocalists, Children’s Music, Christian&Gospel, Clas-
sic Rock, Classical, Country, Dance & DJ, Folk, Hard Rock & Metal, International, Jazz,
Latin Music, Miscellaneous, New Age, Opera & Vocal, Pop, Rap & Hip-Hop, Rock, R&B,
and Soundtracks. The whole database is parameterized employing a feature vector shown
in the subsequent Section. For the experiments carried out within this study over 8,000
music excerpts representing 13 music genres were selected. They are as follows: Alterna-
tive Rock, Blues, Classical, Country, Dance & DJ, Hard Rock & Metal, Jazz, Latin Music,
New age, Pop, R&B, Rap & Hip-Hop, Rock. Music genres chosen for the analysis represent
sufficiently diverse, yet similar music material. Also, they were utilized in other research
works. This way we could indirectly compare the obtained results with findings from the
literature sources.

It should be pointed out that the constructed music robot assigned songs to the genres
(i.e. classes in the Synat database) according to their ID3 tags. These tags were saved in a
fully automatic way without human control. It should be reminded that the ability of humans
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to distinguish between complex music genres is based strongly on context-dependent
inferences and is far from being perfect (Tzanetakis et al. 2002). Hence, the decision sys-
tems trying to mimic human’s way of analyzing music may not be capable to do it with a
very high effectiveness.

2.2 Parametrization

Feature extraction plays a crucial part in the genre recognition process, thus this stage
should be carefully controlled and optimized. Feature vectors (FVs) for music genre clas-
sification are usually based on low-level descriptors from the MPEG-7 standard (Lindsay
and Herre 2001; Hyoung-Gook et al. 2005), Mel-Frequency Cepstral Coefficients (MFCCs)
(Tzanetakis et al. 2002) or finally, dedicated parameters suggested by researchers (Kostek
1999; Kostek et al. 2011; Liu et al. 2007; Nayak and Bhutani 2011; Salamon et al. 2012;
Silla et al. 2007). Table 1 presents a list of parameters contained in the Synat database
(Kostek et al. 2014). Most parameters are based on the MPEG-7 standard, and the remain-
ing ones are the MFCC descriptors and time-related dedicated parameters (Kostek et al.
2011). Since definitions of these parameters are well-known or easily found in the litera-
ture sources, they are not to be recalled here. It is interesting, however, that the same set
of parameters was used in a study on music mood classification and brought sufficient
effectiveness (Plewa and Kostek 2015).

2.3 Music track separation

In recent years, an extensive research has also been conducted on the subject of audio sound
separation, and resulted in interesting ideas and solutions. Among the most promising, one
finds sinusoidal modeling (SM) (Serra and Smith 1990) that was extensively exploited over
the last two decades. There are also many examples of algorithms that were implemented
within many research studies (Bregman 1990; Casey and Westner 2000; de Cheveigne 1993;
Dziubiński et al. 2005; Eweret et al. 2014; Gerber et al. 2012; Gillet and Richard 2008;
Herrera et al. 2000).

Uhle et al. (2003) designed a system for drum beat separation based on Independent
Component Analysis. In contrast, Smaragdis and Brown (2003) applied Non-Negative
Matrix Factorization (NMF) to create a system for transcription of polyphonic music with
a special focus on piano music. In the study of Helen and Virtanen (2005) NMF is used,
combined with a feature extraction and classification process. They have got good results
in drum beat separation from pop music. The same methodology was used by Paulus and
Virtanen (2005) for drum transcription.

In this study, a semi-supervised instrument separation based on NMF is adopted to the
authors’ needs. The main principles of the NMF-based methodology are first recalled with
a focus on cost function minimization.

The main principle of the drum separation algorithm is employing a semi-supervised
approach based on non-negative matrix factorization (NMF). The aim of unsupervised
learning algorithms such as vector quantization is to factorize a data matrix according
to different constraints (Lee and Seung 1999). This results in clustering the data into
mutually exclusive prototypes. The general idea of NMF is to separate input audio track
into several isolated audio tracks, representing specified components such as rhythmic or
melodic part.

NMF is an efficient method used in the blind separation of drums and melodic parts
of music recordings. NMF performs a decomposition of the magnitude spectrogram
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Table 1 Audio features: identifier (ID) and description per type

# ID Audio Feature Description comment

1 TC Temporal Centroid

2 SC, SC V Spectral Centroid – average and
its variance

34 ASE 1-34 Audio Spectrum Envelope (ASE) –
average values in 34 frequency
bands

29 subbands as audio files
are in .mp3 format

1 ASE M Mean ASE (for all frequency bands)

34 ASEV 1-34 ASE variance in 34 frequency bands as above

1 ASE MV Mean ASE variance (for all
frequency bands)

2 ASC, ASC V Audio Spectrum Centroid (ASC) –
average and its variance

2 ASS, ASS V Audio Spectrum Spread (ASS) –
average and its variance

24 SFM 1-24 Spectral Flatness Measure (SFM) –
average values for 24 frequency
bands

20 subbands

1 SFM M Mean SFM (for all frequency bands)

24 SFMV 1-24 SFM variance (for 24 frequency bands) 20 subbands

1 SFM MV Mean SFM variance (for all frequency
bands)

20 MFCC 1-20 Mel Frequency Cepstral Coefficients
(MFCC) – first 20 (mean values)

20 MFCCV 1-20 MFCC Variance – first 20

3 THR [1,2,3]
RMS TOT

No of samples higher than a single/
double/triple RMS value

Dedicated parameters (24) in
time domain based on the
analysis of the distribution
of the signal envelope in
relation to the RMS value

6 THR [1,2,3]RMS 10
FR [MEAN,VAR]

Mean/Variance of THR [1,2,3]RMS TOT
for 10 time frames

1 PEAK RMS TOT A ratio of peak to RMS (Root Mean
Square)

2 PEAK RMS10
FR [MEAN,VAR]

A mean/variance of PEAK RMS TOT
for 10 time frames

1 ZCD Number of transition by the level Zero

2 ZCD 10
FR [MEAN,VAR]

Mean/Variance value of ZCD for 10
time frames

3 [1,2,3]RMS TCD Number of transitions by single/
double/triple level RMS

6 [1,2,3]RMS TCD 10
FR [MEAN,VAR]

Mean/Variance value of [1,2,3]RMS TCD
for 10 time frames

TOTAL number 173

of parameters

V V ≈ W · H) obtained by Short-Time Fourier Transform (STFT), with spectral observa-
tions in columns, into two non-negative matrices W and H where W ∈ Rm×r

≥0 , H ∈ Rr×n
≥0

and a constant r ∈ N . Columns of matrix W resembles characteristic spectra of the audio
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events occurring in the signal (such as notes played by an instrument), and rows in matrix
H measures their time-varying gains. Columns W are not required to be orthogonal as in
Principal Component Analysis (PCA).

For r � n, m, there exists generally only an approximate solution. Factorization is
achieved by iterative algorithms minimizing cost-functions, as presented in (1) (Schuller
et al. 2009):

(V − WH)2 Squared error
‖(V − WH)‖F Frobenius norm
∑

ij

(

Vij log
Vij

(WH)ij
− Vij + (WH)ij

)

Modified KL Divergance
(1)

The first two cost-functions are closely related to each other, both minimizing some form
of quadratic error, the Modified KL Divergence interprets the matrices V and (WH) as
probability distributions and minimizes their divergence. The modification of the Kullback-
Leibler (KL) divergence lies in an additional term (WH)ij −Vij , added not only to introduce
a measurement of the absolute error, but also to ensure non-negativity.

In the experiments carried out, an approach employing an iterative algorithm for com-
puting two factors based on the Modified Kullback-Leibler divergence of V given W and H
was used. A pre-trained SVM (Support Vector Machine) classifier was applied to each NMF
component (column of W and the corresponding row of H) to distinguish between percus-
sive and non-percussive components based on such features as harmonicity of the spectrum
and periodicity of the gains. By selecting the columns of W that are classified as percussive
and multiplying them with their estimated gains in H, we obtain an estimate of the contri-
bution of percussive instruments to each time-frequency bin in V. Thus, we can construct a
soft mask that is applied to V to obtain an estimated spectrogram of the drum part, which is
transferred back to the time domain through the inverse STFT using the OLA (overlap-add)
operation between the short-time sections in the inverting process. It should be reminded
that the redundancy within overlapping segments and the averaging of the redundant sam-
ples averages out the effect of the window analysis (windowing). More details on the drum
separation procedure can be found in the introductory paper by Schuller et al. (2009).

2.3.1 OpenBliSSART

The openBliSSART application is a C++ toolbox that provides Blind Source Separation for
Audio Recognition Tasks (Weninger et al. 2011). Besides the basic blind (unsupervised)
source separation, classification by Support Vector Machines (SVM) using common acous-
tic features from speech and music processing is implemented. A GUI is available based
on cross-platform application framework Qt (Qt 2016) for the source component playback
and data set creation. It includes various source separation algorithms, with a strong focus
on variants of Non-Negative Matrix Factorization (NMF). Furthermore, supervised NMF
can be performed for source separation as well as audio feature extraction (Weninger et al.
2017). It should be noted that openBliSSART has built-in components to separate the HAR-
MONIC and DRUM instruments. However, the toolkit also enables to import audio files
(in order to define new instrument components), create label (to define new instrument’s
name), and create response (to define which instruments should be considered in the separa-
tion process). In our study, we have introduced samples of new instruments (piano, trumpet,
saxophone) to teach the built-in SVM classifier. Musical instrument samples were collected
from the Sampleswap music service (Sampleswap 2016).
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2.3.2 Feature vectors built on separated music tracks

This part of the experiment includes separating the input signal in order to obtain the signal
of the specific instrument, such as: harmonic part of the input audio track, drum signal
(percussion), piano, trumpet, saxophone. Therefore the same parameters as presented in
Table 1 were calculated additionally for the separated music tracks. In that way, vectors of
parameters (VoPs) were obtained, i.e. the FV containing the original track was extended
by new parameters derived from the separated signal. Therefore, feature vectors derived
from original and harmonic signals (denoted as OH), original and drum (OD), original and
piano (OP), etc., as well as from mixtures of more than two signals (e.g. original + drum
+ harmonic resulted in OHD FVs) were created. This strategy assumes that the separation
process may not be perfect.

2.3.3 Normalization methods

Data normalization is a scaling of original data to the specified range, e.g. [−1, 1] or [0, 1],
which is useful in data exploration and specifically for neural networks. In the study per-
formed, the most popular methods of normalizations, such as: Min-Max and Zero-Mean
(ZScore) were applied and tested in the pre-study. Min-Max normalization is a linear trans-
formation on the original data usually to the range [0, 1]. Zero-Mean normalization takes
into account the fact that the mean value should equal zero after the normalization process.
The normalization of training and test datasets designated for the decision algorithms are
performed in the same way as for Min-Max normalization – the mean and standard deviation
values are calculated only for training dataset, and only the current value is retained from
training and test datasets (used respectively for normalization of training and test datasets).

2.4 Experimental setup

As described above, the experimental setup consisted of several steps (see Fig. 1). As
observed in Fig. 1, the feature extraction is performed on original (O) audio and separated
(harmonic (H), drum (D), trumpet (T), piano (P), saxophone (S)) signals. All feature vec-
tors (FVs) are then normalized and optimized. When performing the Non-Negative Matrix
Factorization-based separation, the following configuration was used: cost function (Mod-
ified KL-divergence), window sizes (20 ms, 30 ms or 40 ms), window function (square
root of Hann function), window overlap (0.5), number of components (5, 10, 20 or 30).
After including parameters derived from separated signals to the original FV, they form an
expanded feature vector, which is also optimized (based on the reduction of the number of
attributes – i.e. Best First, Greedy Stepwise, Ranker). This feature vector is called the vec-
tor of parameters (VoP). Finally, the derived VoPs are employed in the classification process
by means of the co-training mechanism applied for SVM (which is described in the next
Section). The last step involves selection of optimum classification algorithm parameters
and settings.

3 Classification process

As already mentioned, there were two stages of experiments, namely one focused on
FVs optimization and the other one was devoted to evaluating music genre classification
effectiveness. Several algorithms were employed in the pre-study phase, namely kNearest
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Fig. 1 Experimental setup

Neighbors (kNNs) algorithm, Support Vector Machine (SVM), both algorithms with- and
without the co-training mechanism, as well as Random Forests. The results achieved
for music genre classification using these algorithms are approximately within the same
range of accuracy. As the best effectiveness was obtained while using the Support Vec-
tor Machine algorithm with a co-training mechanism, consequently, the results for SVM
(co-training), will only be presented. First, some basic information concerning SVM is
recalled below.

SVM uses a nonlinear mapping to transform the original training data into new space.
Within this new space, it searches for the optimal separating hyperplane (i.e., a “decision
boundary” separating the instances of one class from another). With an appropriate nonlin-
ear mapping to a sufficiently high dimension, data from two classes can always be separated
by a hyperplane, which is found by using support vectors (“essential” training data ele-
ments) and margins (defined by the support vectors). The SVM method is accurate thanks
to its ability to model complex, nonlinear decision boundaries. It is much less prone to over-
fitting (especially as the cross-validation procedure is utilized) (Hsu et al. 2003) than other
methods and can also provide a compact description of the learned model. Weka implemen-
tation of the SVM algorithm is the SMO function (Weka library 2016) that allows for using
normalization or standardization of the input data as the preprocessing step, additionally
enabling to determine different kernel functions, such as linear, polynomial or RBF (Gaus-
sian radial basis function). Details of the decision-making stage involving machine learning
with the cross-validation approach are presented in Fig. 2.
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Fig. 2 Classification process using the cross-validation approach

3.1 Co-training method

Co-training (Blum and Mitchell 1998) is an example of semi-supervised machine learning
technique, which uses labeled and unlabeled data to build a classifier. It initially learns on
small training set, then during the classification of unlabeled data, the elements of the most
confident predictions are used to iteratively extend the original training set (Xiaojin and
Goldberg 2009). This is done by adding a threshold criterion in the process of classifying
the data from the test set. If the prediction of classification of unlabeled data is sufficiently
high (i.e. higher than the threshold criterion), such data are marked as classified and they
are added to the training set. This is repeated up to the stage when all the elements from the
test set are classified.

The main advantage of such an approach is that in each iteration, the training set is
extended by new information based on the classification of new elements from the test
set, which can improve the learning process. Contrarily, the disadvantage of the method is
that if the elements are not classified correctly, it introduces misleading information to the
training set. Regardless of that, co-training is a common approach in the machine learning-
based problem solutions and usually gives much better results than the standard methods.
Since the co-training method enhances the performance of classification, it was decided to
be applied in the experiments (Rosner et al. 2013, 2014; Rosner and Kostek 2015).
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3.2 Effectiveness measures

Sturm (2013) indicated that presenting accuracy alone is not sufficient in accurate inter-
pretation of results obtained in the evaluation of music recognition. Therefore, in this
study, the following measures: True Positive (TP) Rate, Precision, Recall, Accuracy and F1
were used:

T PR(Id) = CCP(Id)

T NE(Id)
· 100% (2)

where: Id – class identifier, TPR – percentage of true positives of class Id, CCP – Correctly
Classified Positives of class Id, TNE – total number of elements in class Id, meaning that a
class Id will be classified correctly with TP probability.

Precision(Id) = CCP(Id)

T CP (Id)
· 100% (3)

where: Id, CCP – as above, Precision – proportion of the examples which truly have class
Id among all those which were classified as class Id, in [%], TCP – total number of objects
classified as class Id (including FP(Id) – false positives), meaning that if an instance X is
classified as an object in class Id, then with probability equal to Precision value it is truly
class Id.

Recall(Id) = T PR(Id)

T CN(Id)
· 100% (4)

where: Id, TPR(Id) – as above, Recall(Id) – equivalent to true positive rate (or sensitivity),
TCN – total number of objects classified as class Id (including FN(Id) – false negatives).

Accuracy(Id) = T P (Id) + T N(Id)

T P (Id) + T N(Id) + FP(Id) + FN(Id)
· 100% (5)

where: Id, TP, FP, FN – as above, TN(Id) – true negatives of class Id.

F1 = 2 · Precision(Id) · Recall(Id)

Precision(Id) + Recall(Id)
· 100% (6)

F1 – a combined measure for precision and recall (harmonic mean).

3.3 Feature vector optimization

Optimization of FVs is focused on selecting optimum parameters in the process of music
genre classification. The first step is to reduce the original vector of parameters to eliminate
strongly correlated parameters and replace them with one parameter, so the derived feature
vector consists only of uncorrelated features. The second step is to add new parameters
representing a specific instrument, typical for a given music genre.
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Several optimization methods were performed using Weka implementation (Weka
library), which resulted in a new vector of parameters (VoP). As mentioned before, VoP is
understood here as the optimized FV.

4 Experiments

4.1 Reducing feature vector

4.1.1 Attribute subset selection

Among the methods of feature vector reducing one may discern those based on the attribute
subset selection such as Best First, Greedy or Ranker. They were all tested on music
excerpts extracted from the Synat database in the pre-study phase. For each experiment
different settings were considered (direction of search, direction of search, number of non-
improving nodes to consider before search termination). It occurred that the Best First
(Weka library) method (based on 5-node test results for the Best First method in direction
Forward) returned the best results for reducing FV of 173 parameters. The algorithm was
implemented in the Weka environment, and the analysis searches the space of attribute sub-
sets by greedy hill-climbing augmented with a backtracking facility. Setting the number of
consecutive non-improving nodes allowed controlling the level of the backtracking. Best
First search uses the node depth as its cost.

As a result of such an optimization, a VoP 59 was obtained containing the following 59
descriptors: (VoP 59={TC,ASE1,ASE4,ASE5,ASE21,ASE23,ASE25–E29,ASEV1,ASEV29,
ASE MV,ASC,ASC V,ASS V,SFM1,SFMV1–3,SFMV5,SFMV6,SFMV8–12,SFMV14,
MFCC2–7,MFCC9–13,MFCC17,MFCC20,MFCCV1–6,MFCCV8,MFCCV19,THR 2RMS
TOT,THR 3RMS TOT,THR 1RMS 10FR MEAN,THR 2RMS 10FR MEAN,THR 3RMS
10FR MEAN,1RMS TCD,2RMS TCD,ZCD 10FR VAR,1RMS TCD 10FR MEAN}).

The Principal Component Analysis (PCA) was also used to reduce data dimensionality.
Resulted from PCA there were 74 new components that retain information contained previ-
ously in FV of 173 attributes. For the set of 74 components, a similar correctness to the Best
First algorithm was obtained. Since these two data reduction approaches returned similar
results, thus the smaller VoP 59 was employed for further analysis.

4.1.2 Adding parameters extracted from separated tracks

The importance of the parameters selected for the specific instrument may play a quite sig-
nificant part in the classification process. Thus, the next series of experiments that involved
adding parameters to the feature vector related to separated music tracks were performed.
It was also checked that the mixture of more than three signals, in most cases, returned
less promising results. Further analysis involved optimization of VoPs using the Best
First method.

The optimization process was performed according to the scheme presented below:

a) The reduced VoP p 59 (as shown above in Section 4.1.1) was applied to each separated
signal (the same attributes for original and separated signals). In that way new VoPs of
118 attributes were created for each mixture of two signals, and then subjected to the
Best First method.
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b) The Best First method was applied for each single FV (173 attributes) of the separated
signal and added to VoP p 59 (original signal). As a result, new VoPs of different length
(OH p 125, OD p 90, OP p 105, OT p 102, OS p 74) were created.

c) The Best First method was applied for the VoP of mixture of two FVs (173 (original) +
173 (separated)). This way the following VoPs were extracted: OH p 79, OD p 65, OP
p 61, OT p 60, OS p 60.

Even though not every of the optimized VoPs as shown below gave the best overall
correctness of classification, they were chosen for further experiments:

a) In the case of the OH signal the correctness of classification of the following genres:
Classical, Pop, Latin Music and New Age, was taken into consideration with regard to
the importance of Harmonic part for those genres. Based on those criteria, VoP p 59
(as shown above) was chosen for the OH signal.

b) In the case of Drum mixture Rock, Hard Rock & Metal and Alternative Rock genres
were taken into consideration. Based on those criteria, VoP p 90 was chosen for the OD
signal: (VoP p 90={VoP 59+drum SC v,drum ASE1,7,16–19,29,drum ASEv25,29,
drum ASE MV,drum SFM12–15,17,19,drum SFMv18,drum MFCCV1–4,drum THR
3RMS TOT,drum THR 1RMS 10FR MEAN,drum THR 2RMS 10FR MEAN,drum
THR 3RMS 10FR MEAN,drum THR 3RMS 10FR VAR,drum PEAK RMS TOT,
drum 1RMS TCD,drum ZCD 10FR VAR,drum 1RMS TCD 10FR VAR}).

c) In the case of Piano Classical, Blues, Jazz and New Age genres were taken into
consideration. Based on those criteria, VoP p 61 was chosen for the OP signal (OP
VoP 61={TC,ASE1,4,5,21,23,25–29,ASEV1,29,ASE MV, ASC,ASC V,ASS V,SFM1,
SFMV1–5,8–12,14,MFCC2–7,9–13,17,20,MFCCV1–6,8,19, THR 2RMS TOT,THR
3RMS TOT,THR 1RMS 10FR MEAN,THR 2RMS 10FR MEAN,THR 3RMS 10FR
MEAN,1RMS TCD, 2RMS TCD,ZCD 10FR VAR,1RMS TCD 10FR MEAN,piano
ASE MV, piano 1RMS TCD 10FR MEAN}).

d) In the case of Trumpet and Saxophone Blues, Jazz and New Age genres were
taken into consideration. Therefore, OT VoP p 60 for OT and OS VoP p 60 for OS
were chosen, correspondingly. Their structures are as follows: OT VoP p 60={OP
VoP 61+Trumpet MFCC1} and OS VoP p 60={OP VoP 61+sax MFCC2}.

4.1.3 Results and discussion

All results presented further on refer to the Co-SVM-based classification method. Cross-
validation with 3-folds was used in this stage of experiments. Three iterations of cross-
validation were performed. Then the individual performance values are aggregated, by
calculating the mean over the three rounds. Tables 2 and 3 show confusion matrices along
with the effectiveness measures, i.e. Precision, Recall (True Positive Rate), F1 and Accu-
racy obtained for VoP 59 for the original audio and for the OH (original + harmonic)
mixture, correspondingly. As seen from Tables 2 and 3, there is a high degree of mis-
classifications between alternative rock and rock. It should be emphasized that a song
in the Synat database was assigned to the particular music genre automatically by its
label, however these two genres may be very similar both in perception and an auto-
matic evaluation by a decision algorithm, hence difficult to be distinguished between
each other.
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Overall, the improvement in classification results occurred for almost all music gen-
res when expanding the original audio-based feature vector by parameters derived from
harmonic, drum or a sum of harmonic and drum signals. For example, for the OH sig-
nal, Alternative Rock was less confused than in the case of the Original signal, Pop was
less confused with New Age than for the original signal, Blues with Country, and Coun-
try with Rock, Latin with Country and with Jazz, Rock with New Age, etc. However, these
results were statistically significant only in the case of: Alternative Rock, Blues, Classical,
DanceDJ, Hard Rock & Metal, Latin Music, Rap & Hip Hop, R&B genres (see Table 8).
Even though the difference in classification accuracy for Country, Jazz, New Age, Pop,
Rock genres is still visible when using the expanded VoPs, the results obtained are not
statistically significant.

The next step of experiments was to use different VoPs in the classification process
depending on the type of music genre and taking into account pre-study classification
results. Therefore, experiments were designed according to Section 4.1.2, i.e. selecting the
most effective VoPs and the Co-SVM settings for the particular mixture of separated sig-
nals. In Tables 4, 5, 6 and 7 effectiveness measures, i.e. Precision, Recall, F1 and Accuracy
obtained for OH, OD, OP, OT and OS signals are shown. It should be emphasized that
both Precision and Recall measures have high values for most music classes except for Alt.
Rock, Blues and Pop. Even though parameters selected for OH, OD, OP, OT and OS seem
to return quite similar results, the list of attributes related to the original signal for these
mixtures differs, this especially concerns OH and OD VoPs. It was also observed that for
the VoPs of OP, OT and OS mixtures, the difference between those VoPs is only between
the attributes related to the instrument part, i.e. two parameters for piano (piano ASE MV
and piano 1rms TCD 10FR MEAN), one selected for trumpet (trum mfcc1) and one for
saxophone (sax MFCC2).

To confirm the statistical significance of the results, T-Student test was carried out. The
value of the T-student parameter above the 2.201 value indicates that the null hypothesis can
be rejected, thus all the results with values above the threshold are statistically significant.
Statistical significance threshold was set at 0.05. In Table 8 T-Student’s test values are con-
tained for all the combinations of VoPs. As observed from Table 8, the statistical analysis
returned values above the threshold for: Alternative Rock, Blues, Classical, DanceDJ, Hard

Table 4 Effectiveness measures for the OD signal based on VoP p90 using Co-SVM classification
method [%]

OD p 90 Alternative Blues Classical Country DanceDJ Hard Rock

Rock & Metal

Precision 35.65 42.37 88.75 73.13 74.35 84.86

Recall 39.61 42.05 91.08 77.29 77.21 86.55

F1 37.53 42.21 89.90 75.15 75.75 85.70

Accuracy 96.79 96.44 97.69 93.95 98.47 97.93

OD p 90 Jazz Latin New Age Pop Rap & Hip R&B Rock

Music Hop

Precision 69.95 73.30 75.31 42.31 90.80 68.54 64.44

Recall 70.07 70.50 75.85 40.07 88.74 63.94 63.81

F1 70.01 71.87 75.58 41.16 89.76 66.16 64.12

Accuracy 96.03 97.11 96.74 90.04 97.57 95.38 92.60
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Table 5 Effectiveness measures for the OP signal based on VoP p61 using Co-SVM classification
method [%]

OP p 61 Alternative Blues Classical Country DanceDJ Hard Rock

Rock & Metal

Precision 37.36 49.36 88.89 72.92 71.74 84.87

Recall 32.85 43.56 91.50 77.48 76.45 88.54

F1 34.96 46.28 90.18 75.13 74.02 86.67

Accuracy 97.02 96.86 97.75 93.93 98.34 98.05

OP p 61 Jazz Latin New Age Pop Rap & Hip R&B Rock

Music Hop

Precision 68.07 74.88 72.73 41.86 88.99 69.14 63.86

Recall 71.30 69.14 77.60 37.81 89.43 64.26 64.14

F1 69.65 71.90 75.09 39.74 89.21 66.61 64.00

Accuracy 95.89 97.17 96.58 90.03 97.41 95.45 92.53

Rock & Metal, Latin, Rap & Hip Hop and R&B genres. In the case of Pop and New Age
using mixtures of OP and OT signals, correspondingly, makes the difference statistically
significant.

The empirical study performed by the authors brought several findings:

– In most cases of the mixture of signals the improvement of the effectiveness measures
was observed in comparison to the original signal.

– For each of the genres where Harmonic plays important part (Classical, Latin Music,
New Age and Pop) the improvement of TPR values is observed for the OH signal. For
the three of four selected genres (Classical vs. Latin Music and vs. New Age and vs.
Pop), the improvement of Precision is also observed. In particular, an increase of 12.53
percent points in Precision for the New Age is achieved. Jazz genre deserves a special
attention, in which case Precision was higher for over 4.27 percent points and TPR for
over 3.34 percent points, as well as DanceDJ where TPR got over 3.1 percent points

Table 6 Effectiveness measures for the OT signal based on VoP p60 using Co-SVM classification
method [%]

OT p 60 Alternative Blues Classical Country DanceDJ Hard Rock

Rock & Metal

Precision 36.02 48.18 88.35 72.47 71.48 84.36

Recall 32.37 40.15 90.66 78.06 76.44 86.88

F1 34.10 43.80 89.49 75.16 73.88 85.60

Accuracy 96.95 96.81 97.60 93.90 98.33 97.91

OT p 60 Jazz Latin New Age Pop Rap & Hip R&B Rock

Music Hop

Precision 67.45 74.39 69.40 43.00 88.75 69.54 64.54

Recall 70.42 69.37 74.43 37.81 89.62 64.75 65.65

F1 68.91 71.79 71.83 40.24 89.18 67.06 65.09

Accuracy 95.80 97.15 96.14 90.22 97.40 95.50 92.69
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Table 7 Effectiveness measures for the OS signal based on VoP p60 using Co-SVM classification
method [%]

OS p 60 Alternative Blues Classical Country DanceDJ Hard Rock

Rock & Metal

Precision 36.90 45.42 87.86 72.20 70.50 85.28

Recall 33.33 41.29 91.08 77.77 75.67 88.54

F1 35.03 43.26 89.44 74.88 72.99 86.88

Accuracy 96.99 96.65 97.57 93.83 98.27 98.08

OS p 60 Jazz Latin New Age Pop Rap & Hip R&B Rock

Music Hop

Precision 67.92 73.85 71.66 42.67 89.11 70.02 64.49

Recall 70.07 69.37 75.84 37.31 89.72 63.93 65.11

F1 68.98 71.54 73.69 39.81 89.41 66.84 64.80

Accuracy 95.84 97.11 96.41 90.18 97.46 95.52 92.66

higher. The improvement of Jazz should be stressed out especially in the context of the
lower rate of misclassification between Pop and Jazz. It was also shown that for genres
such as Rock and Hard Rock & Metal, the decrease of correctness for OH was observed,
what confirms that the harmonic part does not play an important part for those genres.
Surprisingly, Alternative Rock got over 6 percent points of improvement of the TPR.
The behavior of Blues is also interesting, where the TPR was also improved for over
4.5 percent points, while Precision decreased by almost 5 percent points.

– The improvement of Recall (TPR) value for Alternative Rock was gained in the case of
the OD signal. Surprisingly, higher Precision values of New Age (over 7 percent points)

Table 8 Student’s T values under the null hypothesis for independent samples (statistical significance
threshold set at 0.05)

2.201 Alternative Blues Classical Country DanceDJ Hard Rock

Rock & Metal

O–OH p 59 8.791 3.392 3.415 1.709 4.101 3.808

O–OD p 90 7.575 3.785 3.501 1.732 4.071 3.72

O–OP p 61 7.477 3.782 3.456 1.748 4.053 3.764

O–OT p 60 6.088 4.082 3.564 1.769 4.096 3.825

O–OS p 60 6.735 4.01 3.538 1.774 4.187 3.784

2.201 Jazz Latin New Age Pop Rap & Hip R&B Rock

Music Hop

O–OH p 59 1.988 3.531 1.96 1.848 3.264 3.631 2.023

O–OD p 90 2.081 3.689 2.111 1.901 3.197 3.705 2.046

O–OP p 61 2.062 3.731 2.122 2.305 3.235 3.612 2.062

O–OT p 60 2.065 3.667 2.217 1.964 3.193 3.798 2.015

O–OS p 60 2.078 3.606 2.166 2.055 3.204 3.754 2.014

Values greater than t > 2.201 are statistically significant
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and Recall (TPR) of Dance & DJ (almost 4 percent points) were also gained. In the
case of classes such as Latin Music, New Age, Pop and Classical, a slight improvement
of classification was also observed. That proves that the lack of Drum element (the
percussion signal was present only for 89.6% of elements from the input audio dataset)
is a piece of information/feature for the classifier with the significance in the training
process.

– The improvement of classification for the genres where the piano plays an important
part was not so visible for the OP signal. Precision was improved in the case of several
genres (e.g. Classical, Dance & DJ, Jazz, Latin, but also Blues, Alternative Rock, etc.),
along with Recall (TPR) values. Improvement of over 3 percent points for the DanceDJ
genre was obtained.

– A slight improvement of Precision is to be observed, i.e. for the OT – Hard Rock &
Metal, Latin, New Age, and in the case of OS – New Age, Rap & Hip Hop and R&B.
This is also visible for Recall (TPR) values (e.g. DanceDJ, R&B).

5 Summary

The article focuses on automatic music genre classification while using the original and
separated tracks. The instrument separation approach was selected to improve the results
of music genre classification, and in particular to decrease the misclassification between
selected genres in the context of the influence of the specific instrument on selected genres.
For that case, a Non-Negative Matrix Factorization (NMF) method was adapted from the
literature, and a new way of using the separated and original signals for parameterization
was proposed. Since other researchers (Lampropoulos et al. 2005; Rump et al. 2010) applied
just one specific single signal in the process of music classification, which did not result in
high accuracy, the authors’ approach was based on creating a new VoP, i.e. extending the
original FV by new attributes representing a specific instrument. In that way five different
separated audio signals were obtained: harmonic, drum, piano, trumpet and saxophone. It
should also be noted that this is a multi-instrument separation process, as the “drum” signal
consists of a few instruments: snare drum, bass drum, tom-tom, timpani, crash cymbals, etc.
With regard to the piano, we have to keep in mind that classical piano has quite different
kind of sound than e.g. a jazzy piano. VoP consisted of an original audio and separated piano
(OP) did not improve the results for classical music but decreased the misclassification of
Jazz.

In the analysis performed, the overall correctness of classification was higher in almost
each case of the mixed VoP in comparison to the Original signal. Also, it was observed that
the specific mix of signals improved the correctness of classification of genres where this
signal played an important part. This means that for genres where harmonic instruments
play an important part, e.g. New Age, Pop, Latin Music, the correctness of classification
increased. The same tendency was observed for other mixed VoPs: OD signal for Alternative
Rock, Hard Rock & Metal, as well as DanceDj, and New Age. In the case of the OP signal,
the improvement in classification of Blues, Classical and New Age was also visible. Overall,
a decrease in misclassification between the similar, as well as opposite genres was obtained.

In the process of the analysis over 8.000 music tracks, representing 13 music genres,
were extracted from the Synat database. Although many research works were published in
the area of music genre classification, most of them, with some exceptions, analyze only
a few genres represented by ∼ 1.000 songs in total. The results shows that the overall
classification obtained by the authors reaches ∼ 72%, what is ∼ 10 percent points better
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in comparison to the results shown in the literature, i.e. ∼ 60% for 10 musical genres
(Tzanetakis et al. 2002) and ∼ 57.8% for 13 music genres (Burred 2014).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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Schedl, M., Gómez, E., & Urba, J. (2014). Music Information Retrieval: Recent developments and
applications. Foundations and Trends R in Information Retrieval, 8(2-3), 127–261. http://dx.doi.org/
978-1-60198-807-2.

Silla, C.N., Kaestner, C.A., & Koerich, A.L. (2007). Automatic Music Genre Classification Using Ensemble
of Classifiers. In IEEE International Conference on Systems, Man and Cybernetics, (pp. 1687–1692).
Montreal. doi:10.1007/BF03192561.

Smaragdis, P., & Brown, J.C. (2003). Non-negative matrix factorization for polyphonic music transcription.
In Proceedings of WASPAA, (pp. 177–180).

Sturm, B.L. (2013). Classification accuracy is not enough. on the evaluation of music genre recognition
systems. Journal of Intelligent Information Systems, 41(3), 371–406. doi:10.1007/s10844-013-0250-y.

Sturm, B.L. (2014). A survey of evaluation in music genre recognition. In Nurnberger, A., Stober, S.,
Larsen, B., & Detyniecki, M. (Eds.) Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation
(pp. 29–66). LNCS 8382.

SYNAT (2016). https://synat.eti.pg.gda.pl/.
Tekman, H.G., & Hortacsu, N. (2002). Aspects of stylistic knowledge: what are different styles like and why

do we listen to them? Psychology of Music, 30(1), 28–47.
Tzanetakis, G., Essl, G., & Cook, P. (2002). Automatic musical genre classification of audio signals. IEEE

Transactions on Speech and Audio Processing, 10(5), 293–302.
Uhle, C., Dittmar, C., & Sporer, T. (2003). Extraction of drum tracks from polyphonic music using indepen-

dent subspace analysis. In Proceedings of the 4th International Symposium on Independent Component
Analysis and Blind Signal Separation (ICA), (pp. 843–848). Nara.

Wieczorkowska, A., Kubera, E., & Kubik-Komar, A. (2011). Analysis of recognition of a musical instrument
in sound mixes using support vector machines. Fundamenta Informaticae, 107(1), 85–104.

Weka library (2016). http://sourceforge.net/projects/weka/files/weka-3-7/3.7.5/.
Weninger, F., Lehmann, A., & Schuller, B. (2011). openbliSSART: Design and Evaluation of a Research

Toolkit for Blind Source Separation in Audio Recognition Tasks. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague: IEEE.

Weninger, F., Lehmann, A., & Schuller, B. (2017). OpenBliSSART, http://openblissart.github.io/
openBliSSART/.

Xiaojin, Z., & Goldberg, A.B. (2009). Introduction to Semi-supervised Learning. In Brachman, R.J., &
Dietterich, T.G. (Eds.) Synthesis Lectures on artificial Intelligence ad Machine Learning: Morgan &
Claypool Publishers.

Zhu, J., Xue, X., & Lu, H. (2004). Musical genre classification by instrumental features. In Proceedings of
the ICMC.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1515/aoa-2015-0051
https://www.qt.io/
https://doi.org/10.2478/aoa-2014-0068
http://sampleswap.org/
http://dx.doi.org/978-1-60198-807-2
http://dx.doi.org/978-1-60198-807-2
https://doi.org/10.1007/BF03192561
https://doi.org/10.1007/s10844-013-0250-y
https://synat.eti.pg.gda.pl/
http://sourceforge.net/projects/weka/files/weka-3-7/3.7.5/
http://openblissart.github.io/ openBliSSART/
http://openblissart.github.io/ openBliSSART/
http://mostwiedzy.pl

	Automatic music genre classification based on musical instrument track separation
	Abstract
	Introduction
	Experimental setup
	Music database
	Parametrization
	Music track separation
	OpenBliSSART
	Feature vectors built on separated music tracks
	Normalization methods

	Experimental setup

	Classification process
	Co-training method
	Effectiveness measures
	Feature vector optimization

	Experiments
	Reducing feature vector
	Attribute subset selection
	Adding parameters extracted from separated tracks
	Results and discussion


	Summary
	Open Access
	References




