
TASK QUARTERLY vol. 19, No 4, 2015, pp. 387–396

BEESYCLUSTER AS FRONT-END FOR HIGH

PERFORMANCE COMPUTING SERVICES

PAWEŁ CZARNUL

Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology

Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 14 May 2015; revised: 19 June 2015;

accepted: 26 June 2015; published online: 1 October 2015)

Abstract: The paper presents the BeesyCluster system as a middleware allowing invocation

of services on high performance computing resources within the NIWA Centre of Competence

project. Access is possible through both WWW and SOAP Web Service interfaces. The former

allows non-experienced users to invoke both simple and complex services exposed through easy-

to-use servlets. The latter is meant for integration of external applications with services made

available from clusters or servers. Details of services such as APIs used for development as MPI,

OpenMP, OpenCL as well as queuing systems are hidden from the user. The paper describes

both theWWW and Web Service interfaces extended for use with files of large sizes. Mechanisms

for selection of devices for execution of services are described along with experiments including

remote invocations.

Keywords: BeesyCluster, high performance computing, services, Web Service interface

1. Introduction

In recent years, we have witnessed constant growth of High Performance

Computing (HPC) systems. This applies to single node systems as well as clusters

both of which have increased their parallelization potential by packing more

processing units. Each node now features one or more multicore CPUs with an

increasing number of cores. For instance, the Intel Xeon Processor E5-2699 v3

features 45M Cache, is clocked at 2.30GHz, 3.6GHz turbo and has 18 cores

with the possibility to run 36 threads efficiently. Apart from CPUs capable of

executing the general purpose code efficiently, servers and workstations make use

of accelerators and coprocessors. For instance, the Intel Xeon Phi Coprocessor

7120A features 16GB, is clocked at 1.238GHz, has 61 cores with the possibility

to run 244 threads efficiently. NVIDIA Tesla K80 features 24GB of memory

and 4992 CUDA cores and offers up to 2.91TFlop/s of double precision floating

point performance. Such devices have transformed single computers into parallel



388 P. Czarnul

systems. Furthermore, nodes packed with such devices can still be combined into

clusters offering even more computing power. The TOP500 list [1] features Tianhe-

2 (MilkyWay-2) at the top with 3120000 cores offers 33862TFlop/s performance.

It features Intel Xeon E5-2692 CPUs clocked at 2.200GHz with Intel Xeon Phi

31S1P coprocessors. It is now more than ever that such resources need easy-to-use

interfaces for deployment, usage and publishing of applications to users who act

as clients of HPC services.

The goal of this paper is to present ways of exposing and consuming

computational services through the BeesyCluster system which can be regarded

as a middleware and front-end to a collection of clusters and servers. Services

are published from clusters or servers registered in the BeesyCluster system by

users of the latter. From a consumer point of view this allows calling such services

without the need for taking care of low level details on the cluster side.

2. Related Work

Efficient usage of such cluster resources is possible through one of the two

ways: running ready-to-use domain software or in-house development of custom

parallel codes. Examples of the former include: General Atomic and Molecular

Electronic Structure System (GAMESS) – a general ab initio quantum chemistry

package1, Gaussian – a package for electronic structure modeling2, ArcGIS –

a package for geospatial data, information management and analysis3. For the

latter, there are several Application Programming Interfaces (APIs) available. For

instance, OpenMP [2] allows parallelization of sequential applications by inserting

directives indicating parallel regions of code and usage of a library of functions

that assist in thread level parallelism for shared memory systems. Pthreads is

the traditional low level API for thread management and synchronization that

can be used for programming many core systems with shared memory. Nowadays

parallel programming for GPUs is usually performed with one of the following

APIs: NVIDIA CUDA [3], OpenCL [4] or OpenACC [5]. NVIDIA CUDA proposes

the application structure as a grid composed of blocks which contain threads

where parallelism comes from scheduling many independent blocks. OpenCL

proposes a similar approach – the grid is called NDRange which is composed

of work groups each of which contains a number of work-items. OpenCL allows

mapping an application not only to GPUs (from various vendors) but also

multicore CPUs. Programming Intel Xeon Phi [6–9] is possible using many APIs

such as OpenMP [10], OpenCL [4] and Message Passing Interface (MPI) [11].

MPI has been and is still used as the leading MPI for programming distributed

memory systems i.e. clusters of machines connected with fast interconnects. MPI

allows both processes running on nodes of a cluster as well as threads within

1. http://www.msg.ameslab.gov/gamess/

2. http://www.gaussian.com/

3. http://www.esri.pl/

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


BeesyCluster as Front-End for High Performance Computing Services 389

processes. Communication routines involve both point-to-point and collective

routines involving both data exchange and synchronization such as barrier.

Programs can be run on a cluster from a command-line on per user basis.

Alternatively, execution of applications from many users can be managed by

queuing systems. Typically used systems include Portable Batch System (PBS)4,

TORQUE5, Load Sharing Facility (LSF)6.

It should be noted that clusters, often managed by various institutions can

be combined into grid systems. In these cases, a grid middleware constitutes a layer

that provides a uniform interface to resources hosted by various Virtual Organi-

zations (VOs). Examples of such middlewares are Globus Toolkit7, UNICORE8

or gLite (Lightweight Middleware for Grid Computing)9. Grid middlewares ex-

pose services such as file and data management as well as job submission. Grid

middlewares can use meta schedulers which incorporate queuing systems as job

managers. For instance, in Globus Toolkit, the Grid Resource Allocation Manager

(GRAM) can use PBS for job scheduling.

Additionally, web based interfaces or clients have been proposed for easy

management of these functions, hiding low level details and exposing interfaces to

specific applications hosted on clusters. As an example, GridSpace10 is an envi-

ronment that allows users to define and perform experiments that use underlying

compute and storage resources [12]. It allows collaboration of scientists and can

manage resources using PBS. The UNICORE Rich client is a graphical interface

for remote management of files and job submission to a grid with the possibility

to define workflows [13]. Vine Toolkit [14, 15] offers graphical centralized access

to computational and storage resources, a file manager, application submission

forms, status indication as well as visualization of results. In the PL-Grid system,

users can use a graphical interface for accessing a remote machine and running ap-

plications there11. For instance, the following applications can be run in this way:

Abaqus, Matlab, Avogadro, PMV. In Amazon Elastic MapReduce applications

such as Ganglia, Hadoop publish interfaces as web sites12.

4. http://www.pbsworks.com/PBSProduct.aspx?n=PBS-Professional&
c=Overview-and-Capabilities

5. http://www.adaptivecomputing.com/products/open-source/torque/

6. http://www-03.ibm.com/systems/platformcomputing/products/lsf/

7. http://toolkit.globus.org/toolkit/downloads/latest-stable/

8. http://www.unicore.eu/

9. http://grid-deployment.web.cern.ch/grid-deployment/glite-web/

10. https://gs2.plgrid.pl/userguide

11. https://docs.cyfronet.pl/display/PLGDoc/UI+-+GUI

12. http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
emr-connect-ui-console.html

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


390 P. Czarnul

3. BeesyCluster Interfaces and Use Cases

BeesyCluster is a middleware that allows users to access distributed re-

sources such as clusters, servers and workstations. BeesyCluster offers two inter-

faces:

1. An easy-to-use Web interface with a drag&drop file manager, specialized

editors for code development, team work environment. BeesyCluster offers

single sing-on into many system accounts registered on clusters. Applications

accessible to the user can be published as services and proper privileges can

be granted to either individual users or user groups to invoke such services.

The latter can be combined into workflow applications which are optimized,

scheduled and executed [16, 17]. The typical usage of this interface is described

in Section 3.1.

2. Web Services which expose functions such as invocation of a command on

a cluster, invocation of a service, file upload/download. These are described

in Section 3.2.

As a component of the NIWA Centre of Comptetence13, BeesyCluster is

a front-end and middleware to cluster systems allowing batch processing of high

performance computing jobs such as demanding numerical computations.

A BeesyCluster instance14 deployed at the Faculty of Electronics, Telecom-

munications and Informatics, Gdansk University of Technology, Poland has al-

ready been used for teaching high performance computing systems and integration

of services in distributed environments [18]. Features such as file manager, compi-

lation, running applications in parallel on a cluster, team work features, an editor

for integration of services into a workflow application, running workflows [19] have

been used. BeesyCluster, contrary to many other grids middlewares, uses ssh in

order to access system accounts on distributed resources. The following sections

describe extensions of the NIWA special deployment of BeesyCluster15 and their

features.

3.1. WWW Interface and Usage

The Web interface available in BeesyCluster offers the following functions

to users:

• Single sign-on access to an array of clusters, workstations and servers on which

the user has been granted system accounts;

• A file manager allowing management of files and directories, copying, compi-

lation, running, invocation of any system commands. Figure 1 presents a file

manager with a context menu launched for one of files on a cluster. Figure 2

13. http://niwa.gda.pl/

14. https://beesycluster.eti.pg.gda.pl:10030/ek/AS LogIn

15. available at https://mayday-apl.task.gda.pl:55443/ek/Main in the internal network of
the Gdansk University of Technology

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


BeesyCluster as Front-End for High Performance Computing Services 391

Figure 1. BeesyCluster’s file manager

Figure 2. Compilation of a parallel application using mpicc and running using a script in
BeesyCluster’s file manager

Figure 3. Result of running a parallel application using mpirun

presents a compilation of a parallel application using mpicc while Figure 3 the

result of running the application using mpirun .

• Hiding queuing systems such as PBS or LSF on clusters;

• Team work support including exchange of messages, definition of projects,

milestones, a shared board etc.;

• Publishing applications as services and assignment of rights to invoke such

services either to individual users or groups;

• Wiki module.

3.2. Web Service Interface

The Web Service BeesyCluster interface described in [20] has been extended

with support for remote invocation of not only arbitrary commands on a cluster

but also services made available by other users as well as handling files of large

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


392 P. Czarnul

sizes that might be passed as input. The key operations exposed within Web

Services include:

1. String[] logIn(String[] credentials, long loginagentID, long signerID) – for logging in

and obtaining an authenticator used for subsequent Web Service calls:

– credentials – identification data,

– loginagentID – id of an identification module (algorithm),

– signerID – id of a signer module (algorithm),

– returned value – authenticator used for subsequent Web Service calls.

2. String runCommand (String[] authenticator, int clid, String command) – running a given

command on the given cluster:

– authenticator – returned previously by logIn ,

– clid – id of a cluster to run the command on,

– command – command to launch on the cluster,

– returned value – standard output from the command.

3. String runService (String[] authenticator, String service, String inputData) – running

a service with a given name made available before and for which access should

have been granted to the calling user:

– authenticator – returned previously by logIn ,

– service – name of the service to be called,

– inputData – input data to the service,

returned value – standard output from the service (the service may also write

down output files).

4. int enqueueJob (String[] authenticator, int clid, String jobPath, int minCPU,

int maxCPU, String resultPath, String email) :

– authenticator – returned previously by logIn ,

– clid – id of a cluster to queue the command on,

– jobPath – path to the executable,

– minCPU – minimum number of CPUs to use,

– maxCPU – maximum number of CPUs to use,

– resultPath – path to results,

– email – used for sending information on the status of the job,

– returned value – 0 – success, 1 – error.

5. int uploadAttachments(String[] authenticator, int clid, DataHandler[] attachments,

String[] remoteFileNames) – for uploading large data files to be used as potential

input to commands or services:

– authenticator – returned previously by logIn ,

– clid – id of a cluster to upload data to,

– attachments – data to be uploaded (files),

– remoteFileNames – names of remote files that the data should be written to.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


BeesyCluster as Front-End for High Performance Computing Services 393

4. Typical Scenarios for Scientific Computations

Within the NIWA Centre of Competence project, BeesyCluster offers the

following use cases for exposing high performance computing services to outside

clients:

1. Publication and invocation of a service through WWW. As shown in Fig-

ure 4 user niwauserpublisher publishes a parallel application as a BeesyClus-

ter service and subsequently makes it available to user niwauserclient . Fig-

ure 5 presents launching of the application performed by user niwauserclient .

In this case, the application is run on the system account of user niwauser-

publisher but in a safe sandbox. It should be noted that BeesyCluster fea-

tures a module that allows publishing of applications contained in packages in

UNIX systems as BeesyCluster services [21]. Descriptions of applications from

the packages are published within descriptions of the services in BeesyCluster

automatically.

Figure 4. Sharing a service in BeesyCluster

Figure 5. Invocation of a service published in BeesyCluster

2. Invocation of a service through SOAP Web Services. Any high performance

computing application can be made available as a named service as shown

in Figure 4 and subsequently accessed from an external application using the

runService operation of a SOAP Web Service. Within the NIWA project, this

approach is used for publishing a service linked to the KOALA library which

provides many operations for the graph theory including graph definition and

analysis. In this particular case, for KOALA, another proxy server has been

established in front of the BeesyCluster server in order to publish an easy-to-

use interface to domain users. Behind the proxy, either runCommand or runService

are called.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


394 P. Czarnul

It should also be noted that services deployed in BeesyCluster (either

sequential or parallel applications) can be used in workflows outside of Beesy-

Cluster. Such a workflow could be defined in BPEL and encompass other sys-

tems such as KASKADA [22] or Wiki-WS [23].

It can be seen that the proposed architecture is flexible as it defines services

at many levels that can also be combined into workflow applications at various

levels. Such architecture is presented in Figure 6.

Figure 6. Architecture of solution with proxies

This flexibility comes at the price of increased communication latency.

Table 1 lists execution times of various configurations (without and with a proxy,

i.e. for the architecture shown in Figure 6) for listing contents of a directory

using the WWW interface for a total of 360 bytes, measured within the FireFox

browser. The request adds HTTP headers and the value of a cookie that is decoded

by BeesyCluster in order to authenticate the user.

Table 1. Execution times for various configurations – WWW interface

Configuration Execution time [ms]

Command line – same node 4ms

Client – BeesyCluster server – cluster

access node – cluster node

347ms

Client – proxy server – BeesyCluster

server – cluster access node – cluster node

369ms

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


BeesyCluster as Front-End for High Performance Computing Services 395

5. Conclusions and Future Work

The paper presented the BeesyCluster middleware as a front end for high

performance computing services in the NIWA Centre of Competence project.

Two interfaces: WWW and Web Services were presented that were extended for

use within the project, especially for calling named services from BeesyCluster

using SOAP Web Services as well as handling large sized data files. Future

work based on the proposed solution could include coupling such services into

higher level workflows that incorporate many systems from various domains as

well as optimization of resource selection within BeesyCluster for running high

performance computing applications with consideration of other factors such as

power consumption.

Acknowledgements

This work was carried out as a part of the Centre of Competence for Novel

Infrastructure of Workable Applicationsin “NIWA” project, Operational Program

Innovative Economy 2007–2013, Priority 2 “Infrastructure area R&D”.

References

[1] TOP500 Supercomputer Sites http://www.top500.org/

[2] Chapman B, Jost G and Pas R v. d. 2007 Using OpenMP: Portable Shared Memory

Parallel Programming (Scientific and Engineering Computation), The MIT Press

[3] Sanders J and Kandrot E 2010 CUDA by Example: An Introduction to General-Purpose

GPU Programming, Addison-Wesley Professional

[4] Stone J E, Gohara D and Shi G 2010 Opencl: A parallel programming standard for

heterogeneous computing systems, Computing in Science and Engineering 12 66

[5] Wienke S, Springer P, Terboven C and Mey D 2012 Openacc: first experiences with

real-world applications, Proceedings of the 18th international conference on Parallel

Processing; Euro-Par’12, Springer-Verlag 859

[6] Chrysos G 2012 Intel©R xeon phiTM coprocessor – the architecture; the first intel©R many in-

tegrated core (intel©R mic) architecture product, Intel Corporation https://software.intel.com/

en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

[7] Rahman R 2013 Intel©R xeon phiTM coprocessor vector microarchitecture, Intel Software

and Services Group https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-vector-

microarchitecture

[8] Fang J, Sips H, Zhang L, Xu C, Che Y and Varbanescu A L 2014 Test-driving intel xeon

phi, In: Proceedings of the 5th ACM/SPEC International Conference on Performance

Engineering. ICPE’14, ACM 137

[9] Rosales C 2013 Porting to the intel xeon phi: Opportunities and challenges, In: Extreme

Scaling Workshop (XSCALE13)

[10] Schmidl D, Cramer T, Wienke S, Terboven C and Müller M 2013 Assessing the

performance of openmp programs on the intel xeon phi, Springer Berlin Heidelberg, In

Wolf F, Mohr B, Mey D, eds.: Euro-Par 2013 Parallel Processing; Volume 8097 of Lecture

Notes in Computer Science 547

[11] Forum M P I 2012 MPI: A Message-Passing Interface Standard Version 3.0

[12] Malawski M, Bubak M and Nabrzyski J 2011 GridSpace scripting environment – from

common component architecture to cloud components, CCA’11: Cloud Computing and

Its Applications

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


396 P. Czarnul

[13] Demuth B, Schuller B, Holl S, Daivandy J, Giesler A, Huber V and Sild S 2010 The

unicore rich client: Facilitating the automated execution of scientific workflows, IEEE

Sixth International Conference on e-Science 238

[14] Russell M, Dziubecki P, Grabowski P, Krysinski M, Kuczynski T, Szejnfeld D, Tar-

nawczyk D, Wolniewicz G and Nabrzyski J 2007 The vine toolkit: A java framework

for developing grid applications, In Wyrzykowski R, Dongarra J, Karczewski K, Was-

niewski J, eds.: PPAM; Volume 4967 of Lecture Notes in Computer Science, Springer 331

[15] Szejnfeld D, Dziubecki P, Kopta P, Krysinski M, Kuczynski T, Kurowski K, Ludwiczak B,

Piontek T, Tarnawczyk D, Wolniewicz M, Domagalski P, Nabrzyski J and Witkowski K

2010 Vine toolkit – towards portal based production solutions for scientific and engineer-

ing communities with grid-enabled resources support, Scalable Computing: Practice and

Experience 11

[16] Czarnul P 2015 Integration of Services into Workflow Applications, Chapman &

Hall/CRC Computer and Information Science Series, Taylor & Francis

http://www.taylorandfrancis.com/books/details/9781498706469/

[17] Czarnul P 2013 Modeling, run-time optimization and execution of distributed workflow

applications in the jee-based beesycluster environment, The Journal of Supercomputing

63 46

[18] Czarnul P 2014 Teaching high performance computing using beesycluster and relevant

usage statistics, Procedia Computer Science 29 1458

[19] Czarnul P 2006 Integration of compute-intensive tasks into scientific workflows in

beesycluster, In Alexandrov V, Albada G, Sloot P, Dongarra J, eds.: Computational

Science – ICCS 2006; Volume 3993 of Lecture Notes in Computer Science, Springer 944

[20] Czarnul P, Bajor M, Frączak M, Banaszczyk A, Fiszer M and Ramczykowska K 2006

Remote task submission and publishing in beesycluster: Security and efficiency of web

service interface, Springer, In Wyrzykowski R, Dongarra J, Meyer N, Wasniewski J,

eds.: Parallel Processing and Applied Mathematics; Volume 3911 of Lecture Notes in

Computer Science 220

[21] Czarnul P and Kurylowicz J 2010 Automatic conversion of legacy applications into ser-

vices in beesycluster, 2nd International Conference on Information Technology (ICIT) 21

[22] Krawczyk H and Proficz J 2010 KASKADA – multimedia processing platform architecture,

In Tsihrintzis GA., Virvou M, eds.: SIGMAP 2010 – Proceedings of the International

Conference on Signal Processing and Multimedia Applications; SIGMAP is part of

ICETE – The International Joint Conference on e-Business and Telecommunications,

SciTePress 26

[23] Krawczyk H and Downar M 2012 Commonly accessible web service platform-wiki-ws, In:

Intelligent Tools for Building a Scientific Information Platform, Springer 251

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

