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Abstract
A class of quantum probabilities is reformulated in terms of non-Newtonian calculus and 
projective arithmetic. The model generalizes spin-1/2 singlet state probabilities discussed 
in Czachor (Acta Physica Polonica:139 70–83, 2021) to arbitrary spins s. For s → ∞ the 
formalism reduces to ordinary arithmetic and calculus. Accordingly, the limit “non-Newto-
nian to Newtonian” becomes analogous to the classical limit of a quantum theory.

Keywords Hidden variables · Bell’s inequality · Non-Diophantine arithmetic · Non-
Newtonian calculus · Correspondence principle · Spin

1 Introduction

The problem of hidden variables in quantum mechanics (Einstein et al., 1935; von Neu-
mann, 1995; Bohm, 1952a, b; Bohm & Aharonov, 1957) has been turned by Bell into an 
experimental criterion for classicality of probabilities (Bell-type inequalities (Bell, 1964; 
Clauser et  al., 1969; Clauser & Horne, 1974; Clauser & Shimony, 1978; Aspect, 1982). 
One of the most spectacular applications of the criterion is in tests for security in quantum 
cryptography (Ekert, 1991). It is generally believed that a system that exhibits two-spin-1/2 
singlet state probabilities cannot be mimicked by a classical one, while by a classical sys-
tem one means the one where Einstein-Podolsky-Rosen-type elements of reality exist. The 
belief is at the very heart of various proofs of the fundamental security of quantum cryp-
tography, but it has been recently challenged in a series of papers (Czachor, 2021; 2020a, 
b; Czachor & Nalikowski, 2021). The claim is that it is possible to reconstruct singlet-state 
probabilities in a local hidden-variable way if one assumes that the hidden-variable model 
is constructed by means of a non-Newtonian calculus (Grossman & Katz, 1972; Pap, 1993; 
Burgin & Czachor, 2020), a possibility not taken into account so far. Non-Newtonian cal-
culus involves derivatives and integrals that are linear with respect to projective arithmetics 
of real numbers (Burgin & Czachor, 2020; Burgin, 2010), but typically are not linear with 
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respect to the usual (Diophantine) arithmetic of reals (Mesiar, 1995; Pap, 2002). This is the 
technical reason why various standard proofs of Bell-type inequalities are not applicable in 
the new framework. A physical meaning of constructions based on non-Newtonian calcu-
lus is not very clear, however. The generalized type of linearity one encounters here is anal-
ogous to the one known from fuzzy calculus (Zimmermann, 1996), so perhaps classical 
systems based on fuzzy logic should be reexamined from the point of view of security in 
quantum cryptography (Pykacz & D’Hooghe, 2001). Another open issue is related to cor-
respondence principles, relating non-Newtonian calculus with the standard Newtonian one.

The goal of the present paper is to generalize the discussion from Czachor (2021) to 
systems involving pairs of particles with higher spins s. What we regard as a trademark of 
a particle with spin s is the form of the Malus law (eg. cos2 � for photons and cos2(�∕2) for 
electrons). One begins with some space of uniformly distributed classical hidden variables 
(a circle), which is decomposed into subsets corresponding to different spin values. With 
each subset, one associates a characteristic function. The probability is computed in an 
ordinary way, as an integral over the space of hidden variables. The integrand is given by 
a product of a probability density times a characteristic function. All these formulas have 
the classical, local Clauser-Horne form (Clauser & Horne, 1974). The only difference is in 
the form of the integral and the exact meaning of the multiplication of functions under the 
integral. The integral is non-Newtonian, and the product is from a projective arithmetic.

Each spin system is described by a different arithmetic. It is shown that in the limit of 
infinite spins, s → ∞ , the arithmetic becomes Diophantine (in the terminology of Burgin 
(Burgin and Czachor 2020; Burgin 2010) we would say that it is characterized by a trivial 
projector), and Bell-type inequalities are no longer violated. The limit of infinite spin thus 
plays here a role of a correspondence principle with the usual arithmetic.

2  Mathematical Prerequisites

2.1  Arithmetic

Let us consider a bijection f ∶ 𝕏 → ℝ which allows us to define addition, subtraction, 
multiplication and division in the set �:

where x, y ∈ � . f is an isomorphism of the arithmetic in � with the one in ℝ . In the ter-
minology of Burgin the arithmetic so defined is projective, while the bijection f is called a 
projector Burgin (2010). A well-known physical example of projective arithmetic is given 
by the  relativistic addition of velocities in (1 + 1)-dimensional Minkowski space Cza-
chor (2020b). Although the arithmetic we will use in the paper is isomorphic to the usual 
addition, subtraction, multiplication, and division, it should be kept in mind that many 

(1)x⊕ y = f −1(f (x) + f (y)),

(2)x⊖ y = f −1(f (x) − f (y)),

(3)x⊙ y = f −1(f (x) ⋅ f (y)),

(4)x⊘ y = f −1(f (x)∕f (y)), (f (y) ≠ 0),
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non-isomorphic arithmetics are possible as well, including non-Diophantine arithmetics of 
natural and whole numbers introduced by Burgin (1977, 2020).

The ordering relation in � is defined as follows: x <′ y if and only if f (x) < f (y) , where <′ 
denotes the less-than symbol in the projective arithmetic. <′ and < are equivalent if f is strictly 
increasing. We can also define the neutral element of addition, 0� = f −1(0) , and the neutral 
element of multiplication, 1� = f −1(1) , satisfying

0′ and 1′ can be termed the projective bits. Projective bits are analogous to quantum bits, 
but are equipped with Einstein-Podolsky-Rosen-type elements of reality (Czachor, 2020a, 
b, 2021; Czachor & Nalikowski, 2021). Additive inverse of a number x ∈ � is defined as 
⊖x = 0� ⊖ x = f −1(−f (x)) , which implies f (⊖x) = −f (x).

2.2  Calculus

Having all the basic properties defined, one can define non-Newtonian calculus. The deriva-
tive of function A ∶ � → � is defined by the difference quotient,

satisfying

For a given function A ∶ � → � there exists a function a ∶ ℝ → ℝ defined by 
A = f −1◦a◦f  . It can be shown that

where a′ means a derivative of function a in the Diophantine arithmetic (which uses +,−,⋅ , 
and /). It can be represented by a commutative diagram (Fig. 1).

Integral non-Newtonian calculus is based on the fundamental theorem of calculus,

(5)x⊕ 0� = x,

(6)x⊙ 1� = x,

(7)x⊖ x = 0�,

(8)x⊘ x = 1�.

(9)
DA(x)

Dx
= lim

h→0�
(A(x⊕ h)⊖ A(x))⊘ h.

(10)
D(A(x)⊕ B(x))

Dx
=

DA(x)

Dx
⊕

DB(x)

Dx
,

(11)
D(A(x)⊙ B(x))

Dx
=

DA(x)

Dx
⊙ B(x)⊕ A(x)⊙

DB(x)

Dx
,

(12)
DA[B(x)]

Dx
=

DA[B(x)]

DB(x)
⊙

DB(x)

Dx
.

(13)
DA(x)

Dx
= f −1(a�(f (x))),
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which is guaranteed by

where ∫ a(x)dx is standard (i.e. Riemann or Lebesgue) integral in ℝ.

2.3  Characteristic Functions

In classical probability theory the characteristic function �
+
(x) = 1 , if x corresponds to 

"yes", and �
+
(x) = 0 , if x corresponds to "no". We can also define the orthogonal char-

acteristic function �
−
(x) = 1 − �

+
(x) . An analogous object is defined in non-Newtonian 

calculus Czachor (2021),

Knowing the bijection f, connecting non-Diophantine arithmetic in � with the Diophantine 
arithmetic in ℝ , a commutative diagram can be drawn (Fig. 2),

where

Reduction of probability density to conditional probability density is defined in the usual 
way,

(14)D

DX ∫
X

Y

A(x)⊙ Dx = A(X),

(15)∫
X

Y

DA(x)

D(x)
⊙ Dx = A(X)⊖ A(Y),

(16)∫
x2

x1

A(x)⊙ Dx = f
−1

(

∫
f (x2)

f (x1)

f◦A◦f
−1
(x)dx

)

= f
−1

(

∫
f (x2)

f (x1)

a(x)dx

)

,

(17)𝜒
±
(x) = 1� ⊖ 𝜒

∓
(x),

(18)𝜒
±
(x)⊙ 𝜒

±
(x) = 𝜒

±
(x),

(19)𝜒
±
(x)⊙ 𝜒

∓
(x) = 0�.

(20)�̄�
+
(r) =

{

1 if r� = f −1(r) means “yes",

0 otherwise,

(21)�̄�
−
(x) = 1 − �̄�

+
(x).

(22)𝜌(𝜆) ⇒ 𝜌
±
(𝜆) = 𝜒

±
(𝜆)⊙ 𝜌(𝜆)⊘ ∫ 𝜒

±
(x)⊙ 𝜌(x)⊙ Dx.

Fig. 1  Relation between A and a 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Bell‑Type Inequalities from the Perspective of Non‑Newtonian…

1 3

3  Bell Experiment with Arbitrary Spins (A Non‑Newtonian Model)

The space of hidden variables for the spin s Bell experiment will be presented as a disc (or 
a circle), in which specific subsets represent spin values. The characteristic functions �̄�

+
(x) 

correspond to these subsets. The model is similar to the “wheel of fortune”, where each 
sector represents some cash value. For each particle with a different spin number, the disc 
will look differently, but all the basic properties will be the same.

When we rotate a particle by a certain small angle and then measure the orientation 
of the spin, the obtained value cannot be much different from the previous one. As we 
know, a particle with the spin number s can have 2s + 1 different values of spin projec-
tion on a certain axis. The values are {−s,−s + 1,… , s − 1, s} . When the particle is in 
state m, we assume the state can change only into m +

1

2
 or m −

1

2
 . For example, let us 

consider a particle with s = 3

2
 (such as Ω− ). The measured spin of the particle must be 

an element of the set {− 3

2
,−

1

2
,
1

2
,
3

2
} (which will be written as “ −−”,“−”, “ + ”, “ ++”). 

Imagine that we have two measuring apparatuses placed one after another, where the 
second is slightly tilted with respect to the first one. If the first device measures state 
−, the second device can register state −, −− or + but not ++ . This means that in our 
model the difference between neighbouring sectors must be equal to 1. We can say that 
the change from one section to another is equivalent to the action of an annihilation or 
creation operator.

We assume that the probability of getting one of the 2s + 1 states is equal to 1

2s+1
 . In 

this model, the probability is represented by the length of an arc or an area of a particular 
sector. So, for every possible state, the sum of all arc lengths (sector areas) describing one 
particular state is the same and equals 1

2s+1
 of the whole circumference (area of the disc).

One of the most important points of this model is a definition of Bell-type measure-
ments for particles with spin greater than 1

2
 . Electrons as particles with a spin 1

2
 have only 

two possible states. Photons as massless bosons also have only two states: +1 and −1 . For 
fermions, we will use the convention that if the measured spin is oriented towards our cho-
sen axis, it will be counted as " + ", in the opposite case as "−", regardless of the value of 
the projection of the spin on our chosen axis. For the Stern–Gerlach experiment, every 
inclination towards the up direction would be counted as " + ", no matter how big the spin 
value is. Similarly with an inclination towards the down direction. For instance, for the 
Ω

− particle, the states " −− " and "−" will be counted as "−", while " ++ " and " + " will be 
counted as " +".

In the case of bosons, there is a probability that the projection of spin on our chosen axis 
is equal to 0. When our apparatus gives 0, we randomly decide if the result is " + " or "−" 
(for instance, by tossing a fair coin). The construction differs from the one by Pearle Pearle 
(1970) where the results 0 are neglected (which effectively introduces undetected signals). 
In our model, no data are rejected.

In order for our model to be consistent with the experiments, the Malus law or the 
Malus-like laws must be fulfilled. The Malus law, originally formulated for photons (mass-
less particles with spin 1), states that conditional probability is p(+|+) = cos2 � , where � 

Fig. 2  Commutative diagram for 
characteristic functions
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is the angle by which the polarizers are tilted. For a particle with other spin numbers, the 
Malus-like law is stated as p(+|+) = cos2(s�) , for instance for electron (spin 1/2) the con-
ditional probability is equal to p(+|+) = cos2(�∕2)

To sum up, our model is a circular disc divided into sections representing each spin ori-
entation. The sections are designed according to the following rules: 

1. Neighbours of the sector describing one particular state of spin can only be those, which 
can be obtained by applying the creation or annihilation operator.

2. Sum of the areas of all sections describing one particular state must be equal.
3. We neglect the exact value of spin, we consider only its sign ("+ " or "−").
4. When 0 occurs for a boson, we randomly select " + " or "−" with equal probability.
5. Malus-like law is fulfilled.

What we have described is the space of hidden variables. The next step is to define an 
appropriate arithmetic and calculus so that a non-Newtonian integral over the hidden vari-
ables will give a joint probability analogous to those occurring in quantum mechanical cor-
relation experiments involving pairs of spin-s particles with anti-correlated spins.

4  Explicit Model for Any s

Let us begin with spin 1
2
 e.g. electron. It has two possible states, which leads to the con-

struction presented in Fig.  3 and maximal violation of the Clauser-Horne inequality, as 
described in detail in Czachor (2021).

Now consider a spin-1 boson, massive or massless. A photon has only two possi-
ble polarisations. For two polarizers tilted by � the Malus law (rule 5) gives the condi-
tional probability p(+|+) = cos2 � , which should be contrasted with the spin-1/2 result 
p(+|+) = cos2(�∕2) . Thus we conclude that a model following our rules must be similar to 
that presented in Fig. 4.

For a massive spin-1 particle, e.g J/� , the reasoning is similar, but we have to keep in 
mind the possibility of finding 0. It must be fitted between “ + " and “−" regions (rule 1), 
and total area of sections “0", “ + " and “−" must be equal. In this manner, we get a model 
presented in Fig. 5.

Fig. 3  Model for particle with a 
spin s = 1

2
 , for example an elec-

tron. Sign " + " means spin "up", 
sign "−" means spin "down"
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As a clear presentation of rule 3, we consider a fermion with spin 3
2
 , such as Ω− . There 

are two distinguishable “up" states and “down" states. An appropriate spin-3
2
 Malus-type 

law leads to the model presented in Fig. 6.
According to rule 3, however, we neglect the exact value of the spin projection on a cho-

sen axis but consider only the sign. This leads to the model presented in Fig. 7.
Now we are ready to develop the model of probabilities typical of a generalized Bell-type 

scenario, where for � = 0 we obtain the perfect anti-correlation p
++

= p
−−

= 0 . Axes of spin 
measurements performed by Alice and Bob are denoted by â and b̂ . The directions do not have 
to be parallel. In Bell-type inequalities, the relevant joint probabilities are p

++
 , p

+−
 , p

−+
 and 

p
−−

 . Our system should be rotationally symmetric, so p
++

= p
−−

 and p
+−

= p
−+

 . To calculate 
the classical probability one has to layer one circular model described before on another so 
that their centres overlay. Probability p

++
 is defined as a ratio between arc length of pieces 

Fig. 4  Model for a massless 
particle with spin number s = 1 
e.g. photon. The angular width of 
each piece is �

2

Fig. 5  Model for massive particle 
with spin number s = 1 e.g. J/� . 
Angular width of bigger sections 
is �

3
 , and smaller is �

6

Fig. 6  Model for particle with 
spin number s = 3

2
 . Angle width 

of greater sectors is�
6
 , and lesser 

sectors is �
12
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where both sectors from both discs have a " + " symbol (denoted by " ++"), to the full length 
of the circle. We use the same procedure for the other zones p

+−
 , p

−+
 and p

−−
 , as shown in 

Fig. 8. The arc width of one piece marked as " ++ " will be also denoted by � . Due to the fact 
that both particles are in a singlet-type state, their spins are anti-correlated. To indicate this 
fact, the direction chosen by Alice is marked as an arrow starting in the middle of the arc rep-
resenting the " + " state and Bob’s direction is an arrow starting from the "−" state. When there 
are more than one regions with described state, an arrow is placed on every appropriate arc. 
Simple examples of this are presented in Figs. 8 and 9. Angle � can be easily correlated with 
the orientations of axes chosen by Alice and Bob. It can be shown that,

Fig. 7  Model for particle with 
spin number s = 3

2
 after apply-

ing the third rule. Angle width of 
each sector is �

3

Fig. 8  Presentation of the prob-
ability model for s = 1

2
 . Direc-

tions chosen by Alice and Bob 
are shown. We assume the singlet 
state, so the anti-correlation 
exists. Definition of angle � is 
also shown

Fig. 9  Presentation of the proba-
bility model for s = 1

2
 . Directions 

chosen by Alice and Bob are 
shown. Due to the multiplicity of 
regions with different states, all 
possible Alice’s and Bob’s direc-
tions are displayed. Definition of 
angle � is also shown
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It is clear that � ≤ �

2s
.

5  Classical and Non‑Classical (Non‑Newtonian/Non‑Diophantine) 
Probabilities

Probabilities are constructed in analogy to those from Czachor (2021). There are two lev-
els of description. Probabilities written without a prime are the ones following from ratios 
described in the previous section. Probabilities denoted with a prime are obtained from the 
unprimed ones by means of the bijection that defines the arithmetic. We demand the consist-
ency condition,

For a particle with spin s the above construction leads to

where [x] is the integral part of x. It can be checked that (24) is fulfilled. The two sets of 
probabilities can be mapped by the bijection

where

Examples of the bijections are illustrated in Figs. 10 and 11

(23)𝜃 = min
(

|â − b̂|mod
𝜋

2s

,
𝜋

s
− |â − b̂|mod

𝜋

2s

)

.

(24)1 = p
++

+ p
+−

+ p
−+

+ p
−−

= p�
++

+ p�
+−

+ p�
−+

+ p�
−−

.

(25)p
±±

=

2s�

2�
,

(26)p
±∓

=

� − 2s�

2�
,

(27)p�
±±

=

n

2 ⋅ 2s
+

1

4s
sin2

(

2s2� −
n�

2

)

,

(28)p�
±∓

=

2s − 1

2 ⋅ 2s
−

n

2 ⋅ 2s
+

1

4s
cos2

(

2s2� −
n�

2

)

,

(29)n = [

4s2�

�
],

(30)p�
±±

= f −1(p
±±

)

(31)p�
±∓

= f −1(p
±∓

),

(32)f (x) =
[4sx]

2 ⋅ 2s
+

1

2s ⋅ �
sin−1

√

2s ⋅ 2x − [4sx]

(33)f −1(x) =
[4sx]

2 ⋅ 2s
+

1

2 ⋅ 2s
sin2 �(2s ⋅ x −

[4sx]

2
).
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f and f −1 are strictly monotonically increasing, so ordering relations are the same in both 
arithmetics. Functions shown in (32) and (33) have infinitely many fixed points,

Fig. 10  Function f for different spin numbers. Dotted line presents function f for s = 1

2
 , dashed line for 

s = 1 , continuous line for s = 3

2

Fig. 11  Function f −1 for different spin numbers. Dotted line presents function f for s = 1

2
 , dashed line for 

s = 1 , continuous line for s = 3

2
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In particular, f (n) = f −1(n) = n for n ∈ ℕ , so the change of arithmetic does not influence 
number theory. For s → ∞ the bijection converges to f (x) = x , because

where {x} is the fractional part of x.
Analogously, the limit of the inverse function also converges to f (x) = x:

(34)f

(

k

8s

)

= f
−1

(

k

8s

)

=

k

8s
, k ∈ ℤ.

(35)

lim
s→∞

f (x) = lim
s→∞

�

[4sx]

2 ⋅ 2s
+

1

2s ⋅ �
sin

−1
√

2s ⋅ 2x − [4sx]

�

= lim
s→∞

�

4sx − {4sx}

4s
+

sin
−1

√

4sx − (4sx − {4sx})

2s�

�

= lim
s→∞

�

x −

{4sx}

4s
+

sin
−1

√

{4sx}

2s�

�

= x,

Fig. 12  Comparison of f function for s = 1

2
 (dashed line) and s = 10 (continuous line). It is visible, that for 

large s function f is very similar to g(x) = x
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For large spins the non-Newtonian/non-Diophantine probabilities are indistinguishable 
from the classical ones. It is clearly visible in Figs. 12 and 13 where functions with higher 
spin parameters are shown. The effect resembles a classical limit of a quantum theory.

6  Clauser‑Horne Inequality

The inequality by Clauser and Horne (1974) employs the following lemma (proof in appendix 
A):

Lemma If 0 ≤ x, x′ ≤ X and 0 ≤ y, y′ ≤ Y  , then

(36)

lim
s→∞

f
−1
(x) =

[4sx]

2 ⋅ 2s
+

1

2 ⋅ 2s
sin

2 �

�

2s ⋅ x −
[4sx]

2

�

= lim
s→∞

�

4sx − {4sx}

4s
+

sin
2 �(2s ⋅ x − (

4sx−{4sx}

2
))

2 ⋅ 2s

�

= lim
s→∞

⎛

⎜

⎜

⎜

⎝

x −

{4sx}

4s
+

sin
2 �

�

{4sx}

2

�

4s

⎞

⎟

⎟

⎟

⎠

= x.

(37)−XY ≤ x�y − x�y� + xy + xy� − Yx − Xy ≤ 0.

Fig. 13  Comparison of f −1 function for s = 1

2
 (dashed line) and s = 10 (continuous line). It is visible, that 

for large s function f is very similar to g(x) = x
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Suppose p1(𝜆, â) is the probability that the first electron has spin in direction â chosen by 
Alice, and p2(𝜆, b̂) corresponds to Bob. Lambda is a classical hidden variable. p12(𝜆, â, b̂) is 
the joint probability. The locality assumption means that

Measured probabilities are then defined by the integrals,

Using the inequality (37) and the definition of locality (38), it can be rewritten as:

Multiplying by �(�) and integrating over the space Λ of the hidden variables, we get

Assuming rotational invariance, we conclude that p1(â) i p2(b̂) are constants, and that 
p12(â, b̂) = p12(𝜑) , where � is an angle between directions â i b̂ . The inequality can be 
rewritten as

where the directions â , â′ , b̂ and b̂′ are chosen so that

By symmetry,

and finally

This derivation can be similarly performed in non-Newtonian calculus. Replacing in 
(39)–(41) products, characteristic functions, and integrals by their non-Newtonian ana-
logues, one arrives at Czachor (2021)

(38)p12(𝜆, â, b̂) = p1(𝜆, â)p2(𝜆, b̂).

(39)p1(â) = ∫
Λ

p1(𝜆, â)𝜌(𝜆) d𝜆,

(40)p2(b̂) = ∫
Λ

p2(𝜆, b̂)𝜌(𝜆) d𝜆,

(41)p12(â, b̂) = ∫
Λ

p12(𝜆, â, b̂)𝜌(𝜆) d𝜆.

(42)
−1 ≤ p

12
(𝜆, â�, b̂) − p

12
(𝜆, â�, b̂�) + p

12
(𝜆, â, b̂) + p

12
(𝜆, â, b̂�) − p

1
(𝜆, â) − p

2
(𝜆, b̂) ≤ 0.

(43)−1 ≤ p12(â
�, b̂) − p12(â

�, b̂�) + p12(â, b̂) + p12(â, b̂
�
) − p1(â) − p2(b̂) ≤ 0.

(44)−1 ≤ 3p12(𝜑) − p12(3𝜑) − p1(â) − p2(b̂) ≤ 0,

(45)|â − b̂| = |â� − b̂| = |â − b̂�| =
1

3
|â� − b̂�| = 𝜑.

(46)p1(â) = p2(b̂) =
1

2

(47)0 ≤ 3p12(�) − p12(3�) ≤ 1.

(48)0 ≤ 3⊙ p�
+−

(𝜃)⊖ p�
+−

(3𝜃) ≤ 1.
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Expression in the middle can be reformulated as

The inequality is not violated because it is expressed in terms of the correct arithmetic, 
namely the one which makes non-Newtonian integrals linear. However, if one employs the 
“wrong” arithmetic, then one arrives at

which is not satisfied, of course (because it was derived according to the rules that are not 
valid in the non-Newtonian formalism). Alternatively, the standard CH inequality can be 
written as

which is true only for f (x) = x . Substituting � =
�

16s2
 , we get

The inequality is violated for any finite s, but the degree of violation decreases with grow-
ing s.

7  Conclusions

We have generalized the construction from Czachor (2021) in two ways. First of all, con-
ditional and joint probabilities typical of a single spin-1/2 or two-spin-1/2 singlet states 
have been generalized in a local hidden-variable way to arbitrary spins. Violation of the 
Clauser-Horne inequality was found for any s, but the degree of violation was decreasing 
with growing s. The latter is consistent with the intuition that larger spins are “more classi-
cal” than the small ones. As a by-product, an arithmetic and calculus have been constructed 
which reconstruct the standard formalism in the limit s → ∞ , which supports the idea 
that arithmetic is as physical as geometry. As stressed in Czachor and Nalikowski (2021), 
what we call a violation of Bell’s inequality looks like a confusion of languages problem, 
where arithmetic rules applicable to macroscopic systems are incorrectly applied to the 
microscopic ones (quantum, or subquantum). The example of dark energy (Czachor, 2021) 
shows that the same may be true if one thinks of cosmological scales.

The examples we have discussed are of a toy-model type so cannot be treated as alterna-
tives to the formalism of quantum mechanics. However, what they show is that one has to 

(49)
3⊙ p�

+−
(𝜃)⊖ p�

+−
(3𝜃) = f −1[f (3)f (p�

+−
(𝜃)) − p�

+−
(3𝜃)]

= f −1[3
𝜋 − 2s𝜃

2𝜋
−

𝜋 − 6s𝜃

2𝜋
] = f −1(1) = 1.

(50)0 ≤ 3p�
+−

(�) − p�
+−

(3�) ≤ 1

(51)0 ≤ 3f −1
(

� − �

2�

)

− f −1
(

� − 3�

2�

) ≤ 1,

(52)

3p�
+−

(�) − p�
+−

(3�) = 3f −1
�

� − �

2�

�

− f −1
�

� − 3�

2�

�

=

3(2s − 1)

4s
+

3

4s
cos2

�

�

8

�

−

2s − 1

4s
−

1

4s
cos2

�

3�

8

�

=

2(2s − 1)

4s
+

3

4s

2 +
√

2

4
−

1

4s

2 −
√

2

4

= 1 +
1 + 2

√

2

2s
≥ 1.
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be very cautious while formulating any claims about the nonexistence of Einstein-Podol-
sky-Rosen elements of reality just on the basis of statistics of correlations.

Appendix

A Lemma used in CH inequality

We will prove a theorem Clauser and Horne (1974).
Theorem If 0 ≤ x, x′ ≤ X i 0 ≤ y, y′ ≤ Y  , then

Proof We will firstly focus on the right inequality. When we suppose that x ≤ x′ the ine-
quality can be rewritten as

which is true, because every expression in brackets is negative. If x ≥ x′ then it can be 
modified as

Now, we prove the left inequality. Supposing x′ ≤ x the expression can be rewritten as

All parts of this expression are positive, so W + XY ≥ 0 . Similarly, if y′ ≤ y then it can be 
rewritten as

and following the previous reasoning it is clear that W + XY ≥ 0 . The last case, which has 
to be checked, is when x ≤ x′ i y ≤ y′ . Then the expression W + XY  can be rewritten as

Sum of the two first expressions is non-negative, because

and

After considering every possibility, we conclude that the theorem is   ◻

(53)−XY ≤ W ≤ 0, W = x�y − x�y� + xy + xy� − Yx − Xy.

(54)W = y(x� − X) + x(y − Y) + y�(x − x�) ≤ 0,

(55)
W = x�(y − y�) + y(x − X) + x(y� − Y)

≤ x�(y − y�) + y(x − X) + x�(y� − Y) = y(x − X) − x�(y − Y)

≤ 0.

(56)W + XY = (X − x)(Y − y) + x�y + y�(x − x�).

(57)W + XY = (X − x)(Y − y) + xy� + x�(y − y�)

(58)W + XY = (X − x)(Y − y) − (x� − x)(y� − y) + xy.

(59)(X − x) ≥ (x� − x) ≥ 0

(60)(Y − y) ≥ (y� − y) ≥ 0.
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