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Abstract
This paper presents a formulation based on simple first-order shear deformation theory (S-FSDT)
for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The
S-FSDThasmany advantages compared to the classical plate theory (CPT) and conventional FSDT
such as needless of shear correction factor, containing less number of unknowns than the existing
FSDT and strong similarities with the CPT. Governing equations and boundary conditions are
derived based onHamilton’s principle using the nonlocal differential constitutive relations of
Eringen and vonKármán geometricalmodel. Numerical results are obtained using differential
quadrature (DQ)method and theNewton–Raphson iterative scheme. Finally, some comparison
studies are carried out to show the high accuracy and reliability of the present formulations
compared to the nonlocal CPT and FSDT for different thicknesses, elastic foundations and nonlocal
parameters.

1. Introduction

In recent years, nanostructures have beenwidely used in various engineering structures. One type of
nanostructures with high usage is nanoplate which accurate prediction of its bending, vibrational and buckling
behaviors becomes important and essential for engineering design andmanufacturing. Nanoplates such as
Graphene sheets (GSs)have attracted a great deal of attention from the researchers community for their superior
properties and extensive applications inmany fields such asmodern aerospace, superfast biomedical,
bioelectrical and nano-composites. Due to some disadvantages of experimentalmethods and atomistic
simulation such as being difficult and expensive, various size dependent continuum theories such as nonlocal
elasticity theory of Eringen have beenwidely applied to investigate themechanical behaviors of carbon
nanotubes and graphene sheets because of its simplicity, high consistency and good agreementwithmolecular
dynamics (MD) simulations. In this way, several plate theories such as nonlocal first-order and higher-order
shear deformation theories (FSDT) and (HSDTs) have been employed to study themechanical behaviors of
Graphene sheets [1–18]. TheHSDTs can obtain higher accurate and stable solutions, but they require the
continuity for the generalized displacements, andmost importantly their computational costs are rather high.
Also, the FSDT requires only inter element continuity but it suffers from the shear correction factor effects for
thick plates [19]. Prabhu andDavalos [20] have derived a general expression for the shear correction factor of
laminated rectangular beams and plates with arbitrary lay-up configurations using an energy equivalence
principle. Their results indicate that value of 5/6 is desirable for the shear correction factor. But this amount is
applicable for local one and cannot be suitable for nonlocal cases. Recently, Thai andChoi [21] proposed a
simplefirst-order shear deformation theory (S-FSDT) for the bending and free vibration analysis of functionally
graded plates to avoid the use of shear correction factors and reducing unknown parameters without reducing
accuracy. In theirmethod, the governing equations can be derived by partitioning the transverse deflection into
the bending and shear components. Compared to the traditional FSDT, the S-FSDT is independent of shear
correction factor and also one unknown can be saved by using this theory [19]. Up to now, someworks have
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been devoted to study themechanical behavior of plates based on S-FSDT. Zenkour and Sobhy [22] studied a
nonlocal simplified shear deformation plate theory for bending of nanobeams in thermal environment. They
showed that results predicted by the S-FSDT aremore accurate than those predicted by classical and shear
deformation theories. Yu et al [19] investigated the R-FSDT for nonlinear bending analysis of functionally
graded plates. Their results showed that deflections computed from the presentmethod are in a good
agreement with the other solutions. Yin et al [23] proposed a simple first-order shear deformation theory
(S-FSDT) to consider themechanical behavior of functionally graded plates. They found that S-FSDT
method can be implemented by researchers within existing open-source isogeometric codes with very little
effort and also, the S-FSDT based isogeometric analysis is well suited to the other solutions. Thai and Choi
[24] studied the bending of laminated composite plates based on S-FSDT. Their studies show that results
obtained by S-FSDT have the same accuracy with traditional FSDTwhich hasmore number of unknowns.
Senjanovic et al [25] presented the consistent first-order shear deformation plate theory to consider shear-
locking problem. Senjanovic et al [26] present a new beam theory to study the flexural and in-plane shear
vibrations.Mantari andGranados [27] studied dynamic analysis of functionally graded plates using a novel
FSDTwith four unknowns. They usedNavier’s solution to solve the governing equations which were derived
by employing theHamilton’s principle. Thai et al [28] derived a new simple four-unknown shear and normal
deformations theory for static, dynamic and buckling analyses of isotropic and sandwich functionally graded
(FG) plates.

According to the best of the author’s knowledge, there is still no literature dealingwith nonlocal
formulations for nonlinear bending and buckling of orthotropic graphene sheets based on S-FSDT.Using the
principle of virtual work and nonlocal differential constitutive relations of Eringen, the equilibrium equations of
the nanoplate are derived in terms of the generalized displacements based on S-FSDT and the vonKármán
nonlinear strains. Differential quadraturemethod is then used to solve some case studies for bending behavior of
graphene sheets with simply-supported boundary condition. To verify the present results and formulations,
some comparison studies are carried out between the obtained results and the conventional FSDT and classical
plate theory (CPT) in the literature. The excellent agreement between the S-FSDT and those of FSDT andCPT
shows the advantage of S-FSDT. Finally, some parametric studies have been carried out based on S-FSDT and
conventional FSDT for bending behavior of nanoplates through considering various parameters such as small-
scale parameter, thickness and elastic foundation.

2.Nonlocal bending formulation

Consider a rectangular nanoplate with length Lx, width Ly and thickness h as shown infigure 1. The displacement
field according to the FSDT can be expressed by [2].
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where u, v andw are the displacement components of point (x, y, z) along x, y and z directions, respectively. Also
u0, v0 andw0 are the displacement functions of themiddle surface of the plate.Moreover,jx andjy are the
rotational displacement about the y and x directions, respectively.

As shown infigure 2, the shear stress is assumed to be constant in the thickness direction based on FSDT
which is not true.

In the S-FSDT theory, it is assumed that transverse displacementw is divided into the bending component
wb and the shear componentws, whichmeans that:

w w bending w shear 2= +( ) ( ) ( )

Also, the rotation variable in the S-FSDT is expressed in terms of the bending component only:
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With implementation equations (2) and (3) into equation (1) it can be rewritten as follows:
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Figure 1.Geometry and coordinates of rectangular nanoplate on the polymermatrix.

Figure 2. Shear stress in the thickness direction based on FSDT theory and actual state.
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The strains associatedwith the displacement field can be expressed by:
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According to the nonlocal continuum theory of Eringen [29, 30]which accounts for small-scale effects, the
stress at a reference point is defined by a function of the strain field at all neighbor points in the continuumbody.
The components of nonlocal stress tensorσij(x) are given in the formof the following expression:

X X X X x x, dV V 6ij ijòs = l - ¢ a t ¢ ¢ " Î( ) (∣ ∣ ) ( ) ( ) ( )

Here,σij, τij are the nonlocal and classical or local stress tensors, respectively.λ(|X−X′|,α) is the nonlocal
modulus functionwhich describes the strain effect atX point for stress at reference pointX′, |X−X′| denotes a
Euclidean distance andV is the entire volume of body considered in this article. It can be observed that the
integral constitutive relation (equation (6))makes the elasticity problems difficult to solve. Therefore, the
following differential formof the nonlocal constitutive equation is defined by Eringen [29, 31, 32].

1 7nl l2m s s-  =( ) ( )

whereμ=(e0a)
2 is the nonlocal parameter which incorporates the small-scale effect (e0a) into the formulation.

It is noticed that e0 is a value allocated to eachmaterial which is determined bymatching the dispersion curves
based on atomicmodels [29, 33], a is the internal characteristic length (like C–Cbond length for carbon
nanotube) and∇2 denotes the Laplacian operator and is given by∇2=∂2/∂x2+∂2/∂y2. The hexagonal
structure of graphene sheet leads to disparity between angles of in-plane load and inter-atomic bonds
orientations at different directions [34].

The graphene sheets have anisotropic properties [35]. So, based on equation (7), the stress–strain equations
of a rectangular orthotropic nanoplate can be expressed by the following generalizedHooke’s law (subscript nl
and l denote the quantities in nonlocal and local, respectively):
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Also,moment and stress resultants of nonlocal elasticity are expressed as:
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Using equations (5), (8) and (10), the nonlocal stress resultants can be obtained in terms of displacements and
rotations as follows:
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whereAij(i, j=1, 2, 6),Dij(i, j=1, 2, 6) andH44,H55 are the extensional, bending and shear stiffness of the
orthotropic sheets, respectively, defined by:
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Using theHamilton’s principle, the governing equations aswell as the related boundary conditions along
the edges of rectangular graphene plate can be derived. The equations of the total potential energy are expressed
as [14]:

U dt 0 13
t

0
ò d dP = + W =( ) ( )

InwhichU is strain energy andΩ is work done by external forces. In the case of static loading, the principle of
virtual work can be expressed as follows based on nonlocal elasticity theory [36]:
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And, theworks done by the external forces are defined by:
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Inwhich, kW and kG areWinkler and shear coefficients of foundation parameters, respectively. Furthermore, q
indicates the uniform transverse load

Using the principle of stationary total potential energy, the nonlocal governing equations can be obtained.
Then, by inserting equation (7) in nonlocal governing equations, the stress resultants in local forms are displayed
in the following equations:
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Using equations (11) and (17), the governing equations can be obtained in terms of the displacements. For
the sake of brevity, only thefirst equation is given based on displacement field as follows:
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3.Nonlocal buckling formulation

In this part, the single-layered graphene sheet (SLGS) resting on an elasticmedium is simulated as a rectangular
nanoplate. As seen infigure 1, the length, width and thickness of the sheet are defined by Lx, Ly and h,
respectively, in x, y and z directions. Cartesian coordinate system is placed at one corner of the graphene sheet
with the x, y and z axes along the length, width and thickness, respectively. Also, in-plane compressive loadings
along the x and y axes are expressed by Px andPy, respectively, as follows:

P P P 19x y= = ( )

To analyze the buckling behavior of graphene sheet, the stability equations are derived by the adjacent
equilibrium criterion. According to this, the equilibrium equations are divided into pre-buckling and critical
configurations in the following [16]:
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Using the adjacent equilibrium criterion [16], the stability equations ofmechanical buckling load can be
expressed based on S-FSDT as follows:
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The stability equations can be expressed based on displacement components in the following equations:
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Here, two terms of N N,xx yy
1 1 and small terms (order 2 and 3 related to w w,b s

1 1) are ignored for obtaining the final
stability equations as follows:
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4.Numericalmethodology

To solve the equilibrium equations, differential quadraturemethod (DQM) [37] is employed in this study. In
recent years,many researchers usedDQM to analyze the nanostructures [38, 39]. DQM is an efficient numerical
method for solving partial and ordinary differential equations. Based on theDQM, the partial derivative of a
functionwith respect to a variable is estimated by considering aweighted linear sumof the functional values at
all grid points in thewhole domain. Therefore, the partial derivatives of a function f(x, y) as an example, at the
point (xi, yj) are expressed by [37]:
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whereN andM are the number of grid points along x and y directions, respectively. Also,C(r)x andC(r)y are the
weighting coefficients related to the sth-order derivative and for thefirst-order derivative (r=1) can be
obtained as follows [37]:
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whereR(xi) andP(yi) are defined by:
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Also, for higher-order partial derivatives (r>1) theweighing coefficients along x and y directions are
defined as follows:
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In order to obtain the suitable number of discrete grid points and a bettermesh point distribution,
Chebyshev-Gauss-Lobatto technique has been employed as follows:
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With implementation ofDQM into the bending equations and also equations (27), (28), the discretized algebraic
equations can be obtained. Thementioned set of nonlinear algebraic equations thenwill be solved using the
Newton–Raphsonmethod for bending analysis and also critical buckling load can be calculated using a standard
eigenvalue solver.

5. Results and discussion

In order to verify the formulation, some comparison studies are carried out for large deflection behavior of the
orthotropic single-layered graphene sheets (SLGSs) embedded in an elasticmatrix based on FSDT, S-FSDT and
CPT. The results are defined and presented in terms of the following dimensionless parameters:
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To verify the present results in different values of thickness-to-length ratios, the current solutions for several
thicknesses of nanoplates and nonlocal parameters are comparedwith those reported by [11, 14, 37, 38] for
different transverse loads based on classical plate theory (CPT) andfirst-order shear deformation theory (FSDT).
In order to achieve this goal, the SLGSswith different thickness valueswhich are taken from [11, 14, 37, 38] is
considered under simply-supported boundary conditions and uniform transverse load. As seen in tables 1 and 2,
the FSDT andCPT results obtained by [11, 14, 37, 38] are in close agreementwith the current solution. So, the
reliability and accuracy of the present formulationwith other reported results are verified.However, difference
between the results of current theory and other plate theories increases with going up the load values of qwhich
can be originated from shortcomings of CPT and FSDT in large deflections. As amatter of fact, in large

Table 1.Comparison of the present results (S-FSDT)with those of [11, 14]
and [37] for non-dimensional central deflection of the SLGSwith simply-
supported boundary condition.

Non-dimensional central deflection

q (psi) FSDT [11] FSDT [14] CPT [37] Present results

0.5 0.048 0.048 0.048 0.048

1.0 0.064 0.064 0.064 0.064

2.0 0.083 0.083 0.083 0.076

2.5 0.090 0.088 0.089 0.078

3.0 0.096 0.095 0.095 0.085

Table 2.Comparison between the non-dimensional central deflections of present results (S-FSDT)with those of [38] (CPT)
and [14] (FSDT) for nonlocal bending analysis of simply-supported nanoplate.

CPT [38] FSDT [14] Present results

q(MPa) e0a=0.8 nm e0a=0 nm e0a=0.8 nm e0a=0 nm e0a=0.8 nm e0a=0 nm

20 0.1017 0.1105 0.0960 0.1037 0.0956 0.1035

40 0.1386 0.1526 0.1274 0.1382 0.1208 0.1377

60 0.1631 0.1789 0.1488 0.1609 0.1396 0.1544
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deflections the error of assuming constant shear stress along the thickness in FSDT’s assumptionswill be further
magnified. Furthermore, the influences of transverse shear strainswhich are ignored inCPT aremore important
in large deflections. Finally, regardless to the independency of S-FSDT to the shear correction coefficient, it
should be noted that solving the governing equations based on S-FSDT is easier than the conventional FSDT
owing to containing a smaller number of unknowns. Thematerial properties and geometry of the SLGSswhich
are used in tables 1 and 2 are as follows:

Table E e e e L L h1: 18.7 , E 1.3 , G 0.6 , 9.4 nm, 7.75 nm, 0.0624 nm, 0.3

11, 14, 37
x y xy x y xy

6 6 6 n= = = = = = =
´[ ]

Table E e e L L h2: 2.434 , E 2.473 , G 1.039e , 9.519 nm, 4.844 nm, 0.129 nm,

0.197 14, 38
x y xy x y

xy

6 6 6

n
= = = = = =

´ = [ ]

Formore consideration between the present solution and those of conventional FSDT, the following
material properties and dimensions have been used in bending analysis [15]:

L L h E E

k

10.2 nm, 0.34 nm, 1765 GPa, 1588 GPa

k 1.13 Pa.m, 0.3, 0.27, 1.13 GPa.nm 38

x y x y

G xy yx W
1n n

= = = = =

= = = = - ( )

In order to consider the effect ofmesh size on the results,figure 3 reveals that if the grid points are based on 9
nodes in each coordinate direction, the results for deflections are converged to the identical values based on both
nonlocal S-FSDT and FSDT. To this, all of the outcomes are obtained on the basis of the 9×9 nodes. Since in
theDQmethod theminimumnumbers of nodes should be 3×3; therefore, before these nodes the value of
deflection is zero and due to proximity of the results of FSDT and S-FSDT, the diagram is plotted after 6×6 grid
point in order to further clarify of curves.

Furthermore, to investigate the discrepancy between the critical buckling load obtained by current solution
and FSDT, some comparison and parametric studies have been carried out for the buckling analysis of the
simply-supported orthotropic SLGS based on both S-FSDT and FSDT. In this way, the following dimensions
andmaterial properties have been considered [16]:

L L h k k

E E k FSDT

10.77 nm, 0.34 nm, 1.13 GPa.nm , 1.13 Pa.m,

1765 GPa, 1588 GPa, 0.3, 0.27, 5 6 39

x y W G

x y xy yx s

1

n n
= = = = =
= = = = =

-

( ) ( )/

Inwhich ks is transverse shear correction coefficient used for FSDT formulation to amend the effect of
uniform transverse stress in shear forces.

Figure 4 shows the diagrams of non-dimensional central deflection (W1) based on shearmodulus of
foundation for various values of small-scale parameter (e0a) based on both FSDT and S-FSDT. As shown,with
an increase in the shearmodulus the deflection decreased slightly for both theories. By comparing FSDT and
S-FSDT, it can be concluded that deflection obtained by S-FSDT is less than the results of FSDT. Also, by
increasing the shearmodulus of foundation the difference between responses of two theories decreased and the
curves will be converged in higher values of shearmodulus, especially in the small-scale effect of 2 nm.

Figure 3.The convergence rate of the non-dimensionalmaximumdeflections based on FSDT and S-FSDT.
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Figure 5 illustrates the variations of non-dimensional central deflection in terms of dimensionlessWinkler
elastic foundation based on FSDT and S-FSDT. It is seen thatwith an increase inWinkler elastic foundation a
nonlinear reduction ofmaximumdeflection is observed in both types of theories. Furthermore, a comparison
between two theories shows thatwhen the non-dimensionalWinkler elastic foundation increased to the point of
0.8 and further, the difference between FSDT and S-FSDT results declines and the results of two theories are in
an excellent agreement in several values of nonlocal parameter.

Figures 6(a)–(c)demonstrate thenon-dimensional central deflection in termsof thickness parameter for small-
scale values of (a) e0a=0 nm, (b) e0a=1 nmand (c) e0a=1.5 nmbasedonFSDTandS-FSDT.A remarkable
decrease is seen innon-dimensionalmaximumdeflection as a result of increasing the plate thickness from0.2 nm to
0.6 nmbasedonboth theories. Also,with an increase in the thickness parameter the results of FSDTandS-FSDT
will be converged and the convergence rate in the case of local theory is smaller thannonlocal one for both theories.
A comparisonoffigures 6(a)–(c) indicates thatwith an increase in nonlocal parameter the difference between two
theories increased. Furthermore, by increasingnonlocal parameter the convergence rate of curves goes up.

In order to show the difference of buckling load between the results of FSDT and S-FSDT for both uniaxial
and biaxial loadings, figure 7 is presented in terms of small-scale value. As shown, there is a further difference in
the results of uniaxial loading versus biaxial one in lower values of nonlocal factor. In addition, the critical
buckling loads of uniaxial cases are significantly greater than those of biaxial case in e0a=1 nm, and the

Figure 4.Effect of nondimensional Pasternak foundation parameter on non-dimensional central deflection for various small-scale
values based on FSDT and S-FSDT.

Figure 5.Effect of non-dimensionalWinkler foundation parameter on dimensionless central deflection for different values of
nonlocal parameter based on FSDT and S-FSDT.
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descending slope is also greater in the case of uniaxial analysis. It is worth noting that by an increase in small-
scale parameter the results of uniaxial and biaxial cases are getting closer and closer to each other in both
theories.

Figure 8 is presented to consider the effect of thickness-to-length ratio on the buckling load based on both
S-FSDT and FSDT for two different values of nonlocal parameters. As illustrated, in a specified nonlocal
parameter the differences between the buckling loads obtained by S-FSDT and FSDT goes up at higher values of
thickness-to-length ratio. Also, in a definite thickness-to-length ratio the differences between the buckling loads

Figure 6.Diagram of non-dimensional central deflection based on thickness variable (q=0.05 GPa)with different type of shear
deformation theories for small-scale values of (a) e0a=0 nm, (b) e0a=1 nmand (c) e0a=2 nm.
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Figure 7.Uniaxial and biaxial critical buckling loads versus small-scale parameter based on S-FSDT and FSDT.

Figure 8. Influences of the ratio of thickness to length on the biaxial critical buckling loads for S-FSDT and FSDT theories.

Figure 9. Influences of the ratio of thickness-to-length ratios for several small-scale parameters on the biaxial critical buckling loads.
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determined by S-FSDT and FSDT increases in lower values of nonlocal parameter. Also, a significant increase in
critical buckling loads is observed for plates having smaller nonlocal parameter.

Figure 9 shows the biaxial critical buckling loads of thin andmoderately thick nanoplates for different values
of the nonlocal parameter based on present theory. It can be seen from thefigure that when the nonlocal
parameter increased orwhen the plate becomes thicker, the slope of the critical buckling load curve increased
more dramatically. It is also clear that with an increase in the thickness of the plate, the gap between the results
obtained for various nonlocal parameter is getting larger at the same dimension ratio (h/Lx). In fact, the small-
scale parameter hasmore effect on the buckling load for thicker plates.

6. Conclusions

In this work, the formulation of nonlinear bending andmechanical buckling of orthotropic SLGSswere
presented based on S-FSDT.Using theHamilton’s principle, the equilibrium equations were obtained based on
nonlocal elasticity theory and the vonKármánnonlinear strains. Differential quadraturemethodwas used to
solve the governing equation of these case studies. In order to consider the precision and advantage of new
formulation, some comparison studies were conducted based on both FSDT and S-FSDT for bending and
buckling analysis of graphene sheet through considering various parameters such as small-scale parameter,
thickness and elastic foundation. Some general inferences arementioned below:

• The S-FSDT formulation is free of the shear correction factor and number of unknowns and governing
equations of the present FSDT are decline by one. So, this theory is efficient to use compared to the
traditional FSDT.

• By comparing FSDT and S-FSDT solutions, deflections obtained by S-FSDT are less than FSDTones and the
critical buckling loads by S-FSDT aremore than those of FSDTwhich result in thismajor conclusion that
S-FSDT consideredmore stiffness for the SLGS compared to FSDT.

• Increase of plate thickness, Pasternak andWinkler elastic parameters play a decreasing role in the differences
between S-FSDT and FSDT results in bending analysis.

• The difference between uniaxial buckling loads of FSDTwith S-FSDT ismore than biaxial ones, in particular
in lower values of nonlocal parameter.

• By increasing the thickness of the plate the difference between buckling loads of S-FSDT and FSDT increased.
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