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Abstract

This paper presents a formulation based on simple first-order shear deformation theory (S-FSDT)
for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The
S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT
such as needless of shear correction factor, containing less number of unknowns than the existing
FSDT and strong similarities with the CPT. Governing equations and boundary conditions are
derived based on Hamilton’s principle using the nonlocal differential constitutive relations of
Eringen and von Kdrman geometrical model. Numerical results are obtained using differential
quadrature (DQ) method and the Newton—Raphson iterative scheme. Finally, some comparison
studies are carried out to show the high accuracy and reliability of the present formulations
compared to the nonlocal CPT and FSDT for different thicknesses, elastic foundations and nonlocal
parameters.

1. Introduction

In recent years, nanostructures have been widely used in various engineering structures. One type of
nanostructures with high usage is nanoplate which accurate prediction of its bending, vibrational and buckling
behaviors becomes important and essential for engineering design and manufacturing. Nanoplates such as
Graphene sheets (GSs) have attracted a great deal of attention from the researchers community for their superior
properties and extensive applications in many fields such as modern aerospace, superfast biomedical,
bioelectrical and nano-composites. Due to some disadvantages of experimental methods and atomistic
simulation such as being difficult and expensive, various size dependent continuum theories such as nonlocal
elasticity theory of Eringen have been widely applied to investigate the mechanical behaviors of carbon
nanotubes and graphene sheets because of its simplicity, high consistency and good agreement with molecular
dynamics (MD) simulations. In this way, several plate theories such as nonlocal first-order and higher-order
shear deformation theories (FSDT) and (HSDTs) have been employed to study the mechanical behaviors of
Graphene sheets [1-18]. The HSDTs can obtain higher accurate and stable solutions, but they require the
continuity for the generalized displacements, and most importantly their computational costs are rather high.
Also, the FSDT requires only inter element continuity but it suffers from the shear correction factor effects for
thick plates [19]. Prabhu and Davalos [20] have derived a general expression for the shear correction factor of
laminated rectangular beams and plates with arbitrary lay-up configurations using an energy equivalence
principle. Their results indicate that value of 5/6 is desirable for the shear correction factor. But this amount is
applicable for local one and cannot be suitable for nonlocal cases. Recently, Thai and Choi [21] proposed a
simple first-order shear deformation theory (S-FSDT) for the bending and free vibration analysis of functionally
graded plates to avoid the use of shear correction factors and reducing unknown parameters without reducing
accuracy. In their method, the governing equations can be derived by partitioning the transverse deflection into
the bending and shear components. Compared to the traditional FSDT, the S-FSDT is independent of shear
correction factor and also one unknown can be saved by using this theory [19]. Up to now, some works have
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been devoted to study the mechanical behavior of plates based on S-FSDT. Zenkour and Sobhy [22] studied a
nonlocal simplified shear deformation plate theory for bending of nanobeams in thermal environment. They
showed that results predicted by the S-FSDT are more accurate than those predicted by classical and shear
deformation theories. Yu et al[19] investigated the R-FSDT for nonlinear bending analysis of functionally
graded plates. Their results showed that deflections computed from the present method are in a good
agreement with the other solutions. Yin et al [23] proposed a simple first-order shear deformation theory
(S-FSDT) to consider the mechanical behavior of functionally graded plates. They found that S-FSDT
method can be implemented by researchers within existing open-source isogeometric codes with very little
effortand also, the S-FSDT based isogeometric analysis is well suited to the other solutions. Thaiand Choi
[24] studied the bending of laminated composite plates based on S-FSDT. Their studies show that results
obtained by S-FSDT have the same accuracy with traditional FSDT which has more number of unknowns.
Senjanovic et al [25] presented the consistent first-order shear deformation plate theory to consider shear-
locking problem. Senjanovic et al [26] present a new beam theory to study the flexural and in-plane shear
vibrations. Mantari and Granados [27] studied dynamic analysis of functionally graded plates using a novel
FSDT with four unknowns. They used Navier’s solution to solve the governing equations which were derived
by employing the Hamilton’s principle. Thai et al [28] derived a new simple four-unknown shear and normal
deformations theory for static, dynamic and buckling analyses of isotropic and sandwich functionally graded
(FG) plates.

According to the best of the author’s knowledge, there is still no literature dealing with nonlocal
formulations for nonlinear bending and buckling of orthotropic graphene sheets based on S-FSDT. Using the
principle of virtual work and nonlocal differential constitutive relations of Eringen, the equilibrium equations of
the nanoplate are derived in terms of the generalized displacements based on S-FSDT and the von Kédrman
nonlinear strains. Differential quadrature method is then used to solve some case studies for bending behavior of
graphene sheets with simply-supported boundary condition. To verify the present results and formulations,
some comparison studies are carried out between the obtained results and the conventional FSDT and classical
plate theory (CPT) in the literature. The excellent agreement between the S-FSDT and those of FSDT and CPT
shows the advantage of S-FSDT. Finally, some parametric studies have been carried out based on S-FSDT and
conventional FSDT for bending behavior of nanoplates through considering various parameters such as small-
scale parameter, thickness and elastic foundation.

2. Nonlocal bending formulation

Consider a rectangular nanoplate with length L,, width L, and thickness /2 as shown in figure 1. The displacement
field according to the FSDT can be expressed by [2].

ux, y, z, t) = uoglx, y, t) + zp.(x, y, t)
vix, ¥y, 2z 1) = vl y 1)+ 20y, 1) (1)
W(x) Yy, % t) = WO(x) Y t)

where u, vand w are the displacement components of point (x, ¥, z) along x, y and z directions, respectively. Also
ug, vo and wy are the displacement functions of the middle surface of the plate. Moreover, ¢, and ¢, are the
rotational displacement about the y and x directions, respectively.

As shown in figure 2, the shear stress is assumed to be constant in the thickness direction based on FSDT
which is not true.

In the S-FSDT theory, it is assumed that transverse displacement w is divided into the bending component
wp, and the shear component w,, which means that:

w = w(bending) + w(shear) 2)

Also, the rotation variable in the S-FSDT is expressed in terms of the bending component only:

__om
V= oy
8Wb
_ 9w 3
® o 3
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Figure 1. Geometry and coordinates of rectangular nanoplate on the polymer matrix.
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Figure 2. Shear stress in the thickness direction based on FSDT theory and actual state.

With implementation equations (2) and (3) into equation (1) it can be rewritten as follows:

ux, y, z, t) = u(x,y)—z%
Ox

V(x > Vs 2, t) = v(x, y) — Z% 4
Oy

w(x, ¥, 2) = wy(x, ) + wi(x, ¥)
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The strains associated with the displacement field can be expressed by:

_ Ou w1 (E)wb )2 1 (awS )2 Owy, Ow;

E’”‘_ax Z@xz +2 Ox +2 Ox + Ox Ox
Ov O*wy, 1 Owy S Ow; ? Owy, Ow,

=2 RS Al P + 2
N Oy ‘ y? 2( Oy ] 2\ oy dy Oy

_ Ow, _ Ow,
T T e

Oou  Ov 0*wy (6wb 3w5) ow,  Ow,

I B + 224 AL 5
Yo (8}/ ax] Z@x@y Ox ox J\ Oy Oy ©)

According to the nonlocal continuum theory of Eringen [29, 30] which accounts for small-scale effects, the
stress at a reference point is defined by a function of the strain field at all neighbor points in the continuum body.
The components of nonlocal stress tensor o;i(x) are given in the form of the following expression:

0X) = [NIX = X', )m(X)dV() VxeV ®)

Here, 0, 7jare the nonlocal and classical or local stress tensors, respectively. A(|X = X'|, &) is the nonlocal
modulus function which describes the strain effect at X point for stress at reference point X’, |[X — X’| denotes a
Euclidean distance and Vis the entire volume of body considered in this article. It can be observed that the
integral constitutive relation (equation (6)) makes the elasticity problems difficult to solve. Therefore, the
following differential form of the nonlocal constitutive equation is defined by Eringen [29, 31, 32].

(1 — uV¥o" = o (7)

where 1 = (eqa)” is the nonlocal parameter which incorporates the small-scale effect (ea) into the formulation.
Itis noticed that ey is a value allocated to each material which is determined by matching the dispersion curves
based on atomic models [29, 33], a is the internal characteristic length (like C—C bond length for carbon
nanotube) and V> denotes the Laplacian operator and is given by V> = 9%/9x> + 9°/9y”. The hexagonal
structure of graphene sheet leads to disparity between angles of in-plane load and inter-atomic bonds
orientations at different directions [34].

The graphene sheets have anisotropic properties [35]. So, based on equation (7), the stress—strain equations
of arectangular orthotropic nanoplate can be expressed by the following generalized Hooke’s law (subscript nl
and / denote the quantities in nonlocal and local, respectively):

Oy | O ] o ()
Oyy Oyy Eyy
Ty | —pV % [ =[Qyul x | Ew ®)
0yz 0yz €z
sz_ Oxz Exz
In which:
Ex Yy By 0 0 0
L= vyt 1 — gty
Uy Ex E, 0 0 0
QI =1 — vy 1 — vy &)
0 0 G. 0 0
0 0 0 G, O
0 0 0 0 Gy

Also, moment and stress resultants of nonlocal elasticity are expressed as:

B
(Nx» Ny; ny> Qx» Qy) = th (o Oy> Oxy> Oxz> Uyz)nldz
’ (10)

h
(M, My: Mxy) = th (0% Oy» ny)andZ
2

Using equations (5), (8) and (10), the nonlocal stress resultants can be obtained in terms of displacements and
rotations as follows:
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Ny, N, .
N, N, AlAn, 0 0 0 0 0 0
N N ApAyp 00 0.0 0 0
xy xy 0 0A 0 0O 0 0 O
M _ szxx _10 o0 0 DuDip 0 0 0
M,y S 0 0 0 DpDypy 0 0 0
M, M, 00 0 0 0 Ds 0 0
Q Q 0 0 0 0 0 0 HuO
00 0 0 0 0 0 Hss
_Qx _Qx_ - -
O, o) 1(0u), om0
Ox 2\ Ox 2\ Ox Ox Ox
v 1fom 1(%2 w, O,
dy 2\ oy 2\ Oy dy Oy
o v (c‘m M)%ﬁm)
dy  Ox Ox Ox J\ Oy oy
9wy
X 6x2 (11)
O*wy
_8)/2
732Wb
xdy
ow,
.
ow,
i Ox |

where Aji(i,j = 1,2,6), Dii(i,j = 1,2,6) and Hy,, Hss are the extensional, bending and shear stiffness of the
orthotropic sheets, respectively, defined by:

h
n h3

(Ajj, Dj) = fi(l) ) Q;dz = (h’ E)Qij ij=1,2,6
2

Hu = Gy.h, Hss = G h (12)

Using the Hamilton’s principle, the governing equations as well as the related boundary conditions along
the edges of rectangular graphene plate can be derived. The equations of the total potential energy are expressed
as[14]:

= ft U + 6Q)dt = 0 (13)
0

In which Uis strain energy and €2 is work done by external forces. In the case of static loading, the principle of
virtual work can be expressed as follows based on nonlocal elasticity theory [36]:

ST = 86U + Qs + 6% = 0 (14)

Here
6U = f/ g (06w + Ol 0,y + O bewy + 06w + Ol bE,) AV (15)
And, the works done by the external forces are defined by:

L, pL,
08y = f yf (q — kw(wy + wy) + ko VE(wy, + wy)) dwydxdy (16)
0 0

L, pL,
50, = f ’ f (q — kw(wp + W) + ko V2(wp + wy) Swedxdy
0 0

In which, ky,and kg are Winkler and shear coefficients of foundation parameters, respectively. Furthermore, q
indicates the uniform transverse load

Using the principle of stationary total potential energy, the nonlocal governing equations can be obtained.
Then, by inserting equation (7) in nonlocal governing equations, the stress resultants in local forms are displayed
in the following equations:
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Nx,x + ny,y =0
Ny + N, = 0
O*w,  O*wy

X Qx,x + Qy,y + (1 - Hvz)Nxx(W + 8x2

) + (1 — uVHN,,

y? y? Oxdy  Oxdy
+ (1 — puVH(g — kwwp + w) + kg ViHwp + W) = 0

" (82w5 n 0*wy, 0*wy, 82ws)

) +2(1 — Mvz)ny(

2 2
= My = 2Mayy — My, + (1 — /NZ)N,QC(8 LA W”) + (1 - pv?
Ox? Ox?
9w, O*wy 0wy, 0w,
X Nyl == + +2(1 — pVANy | =2 + =2
YJ’[ dy? dy? ] ( pwV?) y(axay 8x8y)
+ (1 — uV2(q — kwwp + w) + ke V2w + w)) = 0 a7)

Using equations (11) and (17), the governing equations can be obtained in terms of the displacements. For
the sake of brevity, only the first equation is given based on displacement field as follows:

Ox? Ox* Ox Ox* Ox Ox* Ox Ox* Ox
0% 0*wy, Owy, O*w, Ow,  O%*wy Ow, 0*w, Owy
+ Ap + — + + + —_—
Ox0y ~ 0xdy Oy Ox0y Oy  0xOy Oy  0xOy Oy
0*u 0% O*wy Owy, ~ Owy, O*wy 0wy Ows,  Owy O%ws 0*w, Owy,
+ Ags| = + L b e
oy O0x0y Oy* Ox Jy 0x0y Oy* Ox Oy Ox0y Oy* 0x
ow, O%wy  O%w, Ow, ~ Ows O*w,
L S B
Ay Ox0y  Oy? Ox Oy Oxdy

2 2 2 2 2
Au(a_u 0wy Owy | Ow, Ows | 0wy Ows | 3Ws%)

(18)

3. Nonlocal buckling formulation

In this part, the single-layered graphene sheet (SLGS) resting on an elastic medium is simulated as a rectangular
nanoplate. As seen in figure 1, the length, width and thickness of the sheet are defined by L,, L, and h,
respectively, in x, y and z directions. Cartesian coordinate system is placed at one corner of the graphene sheet
with the x, y and z axes along the length, width and thickness, respectively. Also, in-plane compressive loadings
along the x and y axes are expressed by P, and P,, respectively, as follows:

P.=B =P (19)

To analyze the buckling behavior of graphene sheet, the stability equations are derived by the adjacent
equilibrium criterion. According to this, the equilibrium equations are divided into pre-buckling and critical
configurations in the following [16]:

N = N2, + NL,

Ny = ny + N)l'y

Ny =N) + N,

M,y = M2, + ML,

M,y = MJ(’))’ + M;y

M, = M}, + M,, (20)

In which:

N} 4N +N  +N,, =0
Ny +N), +Ny, +N, =0 1)
Using the adjacent equilibrium criterion [16], the stability equations of mechanical buckling load can be
expressed based on S-FSDT as follows:
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1
+ NX}'J’

N}W +N,, =

ow! 9w} *w! 9w
M, —2M,, — M+ (1 - ,NZ)(P)( = 4 3Wz )+(1 vz)(P)( s 4 aywzb]
+ (1 = p V) (—kw(wy + W) + ke V2(wj, + w) = 0
Ow! 9w} *w! 0w}
1 1 1 — vz P s b 1 — vz P b
X QL+ QL + (1 — pV)( )(ax2+8x2)+( nV)( )( F 5
+ (1 — uV(—kyw(w + wh) + ke V2(wp + wh)) =0 (22)

The stability equations can be expressed based on displacement components in the following equations:

0t 9wy 0wy, O*wlow! 0w ow. 0w, awb
Apy + — + — +
Ox? Ox* Ox Ox* Ox Ox* Ox Ox? Ox

oWl 9w 8wh 0wl ow! 9w, ow! = O*w! 8Wb
+A e Z T F T 2

Ox0y  0x0y Oy Ox0y Oy axay 8)/ 0x0dy Oy
(82141 oWl 9w, Ow, n %ywb n 0*wy Ow,!

_l’_ _ _
dy*  OxOy dy* Ox Oy 0xdy dy* Ox

Owy, 0w, A 0wy Ow, N Owy *wy  OPwidwe 0wy OPwy ) _ 23)
dy 0xdy  Oy* Ox dy Oxdy  Oy* Ox dy Oxdy
oW 0*wiow)  O*wlow!  Owlow!  0*w!ow]
Ax y o2 Z T =
oy*  Oy* 9y Oy* oy Oy Oy Oy Oy
oW 9w} owl 0wl ow!  O*wp ow!  O%w! aw,,
+ A + =4 s gt |
Ox0y  0xdy Ox 0x0y Ox Ox0y 0x 0x0y Ox
oWl O OPwp Ow,  Owp 0w 9wl Ow!  Owj 0w,
+ A + o ZHIZT + 2
Oxdy  Ox*  OxOy Ox dy Ox*>  Oxdy Ox dy Ox?
2,1 2 2.1 1 1 92,1
0*w; 8Wb+8w6wb+8ws% Ow; 0w _ (24)
Ox0y Ox dy 0ox*  Oxdy Ox dy 0Ox*
0w} 0w o*w! 0w o*w! 0w}
H + Hy + (1= pVIP)| = + |+ 0 — p V)@ + —
5582 82 1 —p )()(8x2 82) 11— p )()(y 0y
+ (1= pVA) (—kw(w, + o) + kg V2w + i) = 0 (25)
d'w, 0*w} 0*w} o*w! 0w,
D + 2(D12 + D, + D + A = pVHP)|— +
N (D12 66) 0x0y? 22 3y (1 = pVH(P) o e

2 62Wsl 82wb 2 1 1 20001 1
+ (1 = puVo)(P) 52 + 5 + (1 = uVH(—kw(wy + wy) + ke V3w, + wy)) = 0 (26)
y y

Here, two terms of Ny, N}{y and small terms (order 2 and 3 related to w;, w, ) are ignored for obtaining the final
stability equations as follows:

&) Pwl  (Pwh | 9w
(Hss + P) i + (Hyy + P) Yopp| L T
Ox? ay?

Ox? ay?
o*w! 0wl O0*wl 9w 0*w! 0*w}
—pP| s 2 + 2
a (5‘x4 oy* Oox* oy* Ox*0y? Ox*0y?

OPwy 0wy, 0wl 0w,
+ (1 — )| —k by Z b 4 T % 2
( M)( W( Ox* oy? Ox* oy? )

4,1 4,1 4,1 4,1 4,1 4,1
+kG(8wb+8w5+8wb+8wS+28wb 23w5 ]):0

27
Ox* Ox*t oyt oyt Ox*0y? Ox*0y? @7
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0*w} 0*w} 0*w}
(D11 — pP) g + (2(D12 + Des) — Z,UP)W + Dx, oyt

o*wl 0wl 0w, 0w} 0*w; o*w!  0'w, 0*w!
+P + + + - + — 2

Ox? y? Ox? y? e oy* oy* Ox%0y?

Pwp  *w) 0w 0*w!
+ (1 — w| -k + ERAL B
( M)[ W[ Ox? Oy? Ox? y?

O*wp ol o'w)  O*w! 0*w} 0*w!
T kg 2 2
Ox* ox* oy* oyt Ox*0y? Ox*0y?

=0 (28)

4. Numerical methodology

To solve the equilibrium equations, differential quadrature method (DQM) [37] is employed in this study. In
recent years, many researchers used DQM to analyze the nanostructures [38, 39]. DQM is an efficient numerical
method for solving partial and ordinary differential equations. Based on the DQM, the partial derivative of a
function with respect to a variable is estimated by considering a weighted linear sum of the functional values at
all grid points in the whole domain. Therefore, the partial derivatives of a function f(x, y) as an example, at the
point (x; ;) are expressed by [37]:

arf al (r)x .

%(xi, )/j) = Z Cint™ f (xXms )’j) i=1,.,N (29)
m=1

of d (ry ;

a—y,(xi’ V) = Z Clfxiy) j=1..M (30)
r=1

where Nand M are the number of grid points along x and y directions, respectively. Also, C™”*and C™” are the
weighting coefficients related to the sth-order derivative and for the first-order derivative (r = 1) can be
obtained as follows [37]:

_ RGD) = ]
(xi — x))R(x))
Mx __ . ] =
Czj = 5, j=1, 2,.,N (31)
N
- 3 CPF fori=j
k=1,i=k
C P .
7()/’) fori=j
0; = )Py
c;].W = hj=1, 2,., M (32)
M
- > cl” fori=j
k=1,i=k
where R(x;) and P(y;) are defined by:
=1 j=1
Rx) =[] xi—xpi=j, P(%):H(}Q—)’j)iij (33)
N M

Also, for higher-order partial derivatives (r > 1) the weighing coefficients along x and y directions are
defined as follows:

-

(n—1x

nlAi}CCi(i”Dx _ —(x.’j_ x-)] fori = j
i j

CYv = | i=1, 2,..N (34
N
-y Clg,")" fori=j

j=1=i

L
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Table 1. Comparison of the present results (S-FSDT) with those of [ 11, 14]
and [37] for non-dimensional central deflection of the SLGS with simply-
supported boundary condition.

Non-dimensional central deflection

q (psi) FSDT[11] FSDT [14] CPT [37] Present results

0.5 0.048 0.048 0.048 0.048
1.0 0.064 0.064 0.064 0.064
2.0 0.083 0.083 0.083 0.076
2.5 0.090 0.088 0.089 0.078
3.0 0.096 0.095 0.095 0.085

Table 2. Comparison between the non-dimensional central deflections of present results (S-FSDT) with those of [38] (CPT)
and [14] (FSDT) for nonlocal bending analysis of simply-supported nanoplate.

CPT [38] FSDT [14] Present results
q(MPa) epa = 0.8 nm epa = 0 nm epa = 0.8 nm epa = 0 nm epa = 0.8 nm epa = 0 nm
20 0.1017 0.1105 0.0960 0.1037 0.0956 0.1035
40 0.1386 0.1526 0.1274 0.1382 0.1208 0.1377
60 0.1631 0.1789 0.1488 0.1609 0.1396 0.1544
( Cgmfl)y
m Aéfci(im‘l)y — 2| fori=j
0 =)
~my __ ..
Cjj V= < hj=1, 2,..M (35)
M p—
- Ciﬁ-m)y fori=j
j=1=i

L

In order to obtain the suitable number of discrete grid points and a better mesh point distribution,
Chebyshev-Gauss-Lobatto technique has been employed as follows:

xi—k(l — cos(l 1)7r i=1, 2,..,N
2 N-1

Lyl—cos(jl)w i=1, 2, ..M (36)
%75 M- 1 Jm o

With implementation of DQM into the bending equations and also equations (27), (28), the discretized algebraic
equations can be obtained. The mentioned set of nonlinear algebraic equations then will be solved using the
Newton—Raphson method for bending analysis and also critical buckling load can be calculated using a standard
eigenvalue solver.

5. Results and discussion

In order to verify the formulation, some comparison studies are carried out for large deflection behavior of the

orthotropic single-layered graphene sheets (SLGSs) embedded in an elastic matrix based on FSDT, S-ESDT and

CPT. The results are defined and presented in terms of the following dimensionless parameters:
M/v]:whmax K kG _ kW><Lx2

> G

_ | Ky = 37
L, Gy x b " Gy xh (37)

To verify the present results in different values of thickness-to-length ratios, the current solutions for several
thicknesses of nanoplates and nonlocal parameters are compared with those reported by [11, 14, 37, 38] for
different transverse loads based on classical plate theory (CPT) and first-order shear deformation theory (FSDT).
In order to achieve this goal, the SLGSs with different thickness values which are taken from [11, 14, 37, 38] is
considered under simply-supported boundary conditions and uniform transverse load. As seen in tables 1 and 2,
the FSDT and CPT results obtained by [11, 14, 37, 38] are in close agreement with the current solution. So, the
reliability and accuracy of the present formulation with other reported results are verified. However, difference
between the results of current theory and other plate theories increases with going up the load values of g which
can be originated from shortcomings of CPT and FSDT in large deflections. As a matter of fact, in large
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Figure 3. The convergence rate of the non-dimensional maximum deflections based on FSDT and S-FSDT.

deflections the error of assuming constant shear stress along the thickness in FSDT’s assumptions will be further
magnified. Furthermore, the influences of transverse shear strains which are ignored in CPT are more important
in large deflections. Finally, regardless to the independency of S-FSDT to the shear correction coefficient, it
should be noted that solving the governing equations based on S-FSDT is easier than the conventional FSDT
owing to containing a smaller number of unknowns. The material properties and geometry of the SLGSs which
are used in tables 1 and 2 are as follows:

Table 1: E; = 18.7¢%, E, = 1.3¢5, Gy, = 0.6, L, = 9.4nm, L, = 7.75nm, h = 0.0624 nm, vy, = 0.3
x[11, 14, 37]

Table 2: E; = 2.434eS, B, = 2.473¢%, G, = 1.039¢%, L, = 9.519nm, L, = 4.844nm, h = 0.129 nm,
X1y = 0.197[14, 38]

For more consideration between the present solution and those of conventional FSDT, the following
material properties and dimensions have been used in bending analysis [15]:

Ly=1L1,=102nm, h = 0.34nm, E, = 1765 GPa, E, = 1588 GPa
kg = 1.13 Pam, 14, = 0.3, 1), = 0.27, ky = 1.13 GPa.nm™! (38)

In order to consider the effect of mesh size on the results, figure 3 reveals that if the grid points are based on 9
nodes in each coordinate direction, the results for deflections are converged to the identical values based on both
nonlocal S-FSDT and FSDT. To this, all of the outcomes are obtained on the basis of the 9 x 9 nodes. Since in
the DQ method the minimum numbers of nodes should be 3 x 3; therefore, before these nodes the value of
deflection is zero and due to proximity of the results of FSDT and S-FSDT, the diagram is plotted after 6 x 6 grid
point in order to further clarify of curves.

Furthermore, to investigate the discrepancy between the critical buckling load obtained by current solution
and FSDT, some comparison and parametric studies have been carried out for the buckling analysis of the
simply-supported orthotropic SLGS based on both S-FSDT and FSDT. In this way, the following dimensions
and material properties have been considered [16]:

Ly =L, =10.77nm, h = 0.34nm, ky = 1.13 GPa.nm™!, kg = 1.13 Pa.m,
E, = 1765 GPa, E, = 1588 GPa, 1y, = 0.3, 1y, = 0.27, k(FSDT) = 5/6 (39)

In which k, is transverse shear correction coefficient used for FSDT formulation to amend the effect of
uniform transverse stress in shear forces.

Figure 4 shows the diagrams of non-dimensional central deflection (W) based on shear modulus of
foundation for various values of small-scale parameter (ega) based on both FSDT and S-FSDT. As shown, with
anincrease in the shear modulus the deflection decreased slightly for both theories. By comparing FSDT and
S-FSDT, it can be concluded that deflection obtained by S-FSDT is less than the results of FSDT. Also, by
increasing the shear modulus of foundation the difference between responses of two theories decreased and the
curves will be converged in higher values of shear modulus, especially in the small-scale effect of 2 nm.
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Figure 4. Effect of nondimensional Pasternak foundation parameter on non-dimensional central deflection for various small-scale
values based on FSDT and S-FSDT.
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Figure 5. Effect of non-dimensional Winkler foundation parameter on dimensionless central deflection for different values of
nonlocal parameter based on FSDT and S-FSDT.

Figure 5 illustrates the variations of non-dimensional central deflection in terms of dimensionless Winkler
elastic foundation based on FSDT and S-FSDT. It is seen that with an increase in Winkler elastic foundation a
nonlinear reduction of maximum deflection is observed in both types of theories. Furthermore, a comparison
between two theories shows that when the non-dimensional Winkler elastic foundation increased to the point of
0.8 and further, the difference between FSDT and S-FSDT results declines and the results of two theories are in
an excellent agreement in several values of nonlocal parameter.

Figures 6(a)—(c) demonstrate the non-dimensional central deflection in terms of thickness parameter for small-
scale values of (a) ega = 0 nm, (b) eja = 1 nmand (c) eya = 1.5 nm based on FSDT and S-FSDT. A remarkable
decrease is seen in non-dimensional maximum deflection as a result of increasing the plate thickness from 0.2 nm to
0.6 nm based on both theories. Also, with an increase in the thickness parameter the results of FSDT and S-FSDT
will be converged and the convergence rate in the case of local theory is smaller than nonlocal one for both theories.
A comparison of figures 6(a)—(c) indicates that with an increase in nonlocal parameter the difference between two
theories increased. Furthermore, by increasing nonlocal parameter the convergence rate of curves goes up.

In order to show the difference of buckling load between the results of FSDT and S-FSDT for both uniaxial
and biaxial loadings, figure 7 is presented in terms of small-scale value. As shown, there is a further difference in
the results of uniaxial loading versus biaxial one in lower values of nonlocal factor. In addition, the critical
buckling loads of uniaxial cases are significantly greater than those of biaxial case in eya = 1 nm, and the
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Figure 6. Diagram of non-dimensional central deflection based on thickness variable (q = 0.05 GPa) with different type of shear
deformation theories for small-scale values of (a) e0a = 0 nm, (b) epa = 1 nmand (c) epa = 2 nm.

descending slope is also greater in the case of uniaxial analysis. It is worth noting that by an increase in small-
scale parameter the results of uniaxial and biaxial cases are getting closer and closer to each other in both
theories.

Figure 8 is presented to consider the effect of thickness-to-length ratio on the buckling load based on both
S-ESDT and FSDT for two different values of nonlocal parameters. As illustrated, in a specified nonlocal
parameter the differences between the buckling loads obtained by S-FSDT and FSDT goes up at higher values of
thickness-to-length ratio. Also, in a definite thickness-to-length ratio the differences between the buckling loads
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Figure 9. Influences of the ratio of thickness-to-length ratios for several small-scale parameters on the biaxial critical buckling loads.
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determined by S-FSDT and FSDT increases in lower values of nonlocal parameter. Also, a significant increase in
critical buckling loads is observed for plates having smaller nonlocal parameter.

Figure 9 shows the biaxial critical buckling loads of thin and moderately thick nanoplates for different values
of the nonlocal parameter based on present theory. It can be seen from the figure that when the nonlocal
parameter increased or when the plate becomes thicker, the slope of the critical buckling load curve increased
more dramatically. It is also clear that with an increase in the thickness of the plate, the gap between the results
obtained for various nonlocal parameter is getting larger at the same dimension ratio (h/L,). In fact, the small-
scale parameter has more effect on the buckling load for thicker plates.

6. Conclusions

In this work, the formulation of nonlinear bending and mechanical buckling of orthotropic SLGSs were
presented based on S-FSDT. Using the Hamilton’s principle, the equilibrium equations were obtained based on
nonlocal elasticity theory and the von Kdrmdn nonlinear strains. Differential quadrature method was used to
solve the governing equation of these case studies. In order to consider the precision and advantage of new
formulation, some comparison studies were conducted based on both FSDT and S-FSDT for bending and
buckling analysis of graphene sheet through considering various parameters such as small-scale parameter,
thickness and elastic foundation. Some general inferences are mentioned below:

+ The S-FSDT formulation is free of the shear correction factor and number of unknowns and governing
equations of the present FSDT are decline by one. So, this theory is efficient to use compared to the
traditional FSDT.

+ Bycomparing FSDT and S-FSDT solutions, deflections obtained by S-FSDT are less than FSDT ones and the
critical buckling loads by S-FSDT are more than those of FSDT which result in this major conclusion that
S-FSDT considered more stiffness for the SLGS compared to FSDT.

+ Increase of plate thickness, Pasternak and Winkler elastic parameters play a decreasing role in the differences
between S-FSDT and FSDT results in bending analysis.

+ The difference between uniaxial bucklingloads of FSDT with S-FSDT is more than biaxial ones, in particular
in lower values of nonlocal parameter.

* Byincreasing the thickness of the plate the difference between buckling loads of S-FSDT and FSDT increased.
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