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A B S T R A C T   

Despite the animal models’ complexity, researchers tend to reduce the number of animals in experiments for 
expenses and ethical concerns. This tendency makes the risk of false-positive results, as statistical significance, 
the primary criterion to validate findings, often fails if testing small samples. This study aims to highlight such 
risks using an example from experimental regenerative therapy and propose a machine-learning solution to 
validate treatment effects. The example analysed was the pharmacological treatment of ear pinna punch wound 
healing in mice. Wound closure data analysed included eight groups treated with an epigenetic inhibitor, 
zebularine, and eight control groups receiving vehicle alone, of six mice each. We confirmed the zebularine 
healing effect for all 64 pairwise comparisons between treatment and control groups but also determined minor 
yet statistically significant differences between control groups in five of 28 possible comparisons. The occur-
rences of significant differences between the control groups, regardless of standardised experimental conditions, 
indicate a risk of statistically significant effects in the case a compound lacking the desired biological activity is 
tested. Since the criterion of statistical significance itself can be confusing, we demonstrate a machine-learning 
algorithm trained on datasets representing treatment and control experiments as a helpful tool for validating 
treatment outcomes. We tested two machine-learning approaches, Naïve Bayes and Support Vector Machine 
classifiers. In contrast to the Mann-Whitney U-test, indicating enhanced healing effects for some control groups 
receiving saline alone, both machine-learning algorithms faultlessly assigned all animal groups receiving saline 
to the controls.   

1. Introduction 

Animal models are the primary tools used to develop novel therapies 
and evaluate their effectiveness. Selecting an appropriate sample size is 
critical to obtaining valid experimental evidence. I The ethical concerns 
expressed as the 3Rs principle (Replacement, Reduction, Refinement) 
[1], in addition to high expenses and extended time of observations, 
often tempt researchers to report results based on a single experiment 
involving a few animals. The advantage of this approach is that animal 
lives are saved, and discoveries are brought to light to be further verified 
by other scientists. Statistical tests are used to substantiate findings. 
However, the issue of statistically significant false positives is not always 
given due consideration. Reports on the low reproducibility of published 
data seem to signal the problem of false-positive results in biomedical 
research. For example, a review by Amgen confirmed 6 out of 53 (11%) 

pre-clinical trials [2]. Several statistical methods have been proposed to 
control the risk of false-positive results [3]. These statistical approaches 
though helpful, cannot nullify differences between experiment repli-
cates resulting from technical and biological variations. The present 
study aims to point out the risks of false-positive results in animal 
experimentation on small samples and propose solutions to distinguish 
variation between experimental replicates from significant treatment 
effects. 

To demonstrate the risk of overstating evidence from small samples, 
we discuss an example of experimental data we obtained in a previous 
study [4], where we proved that an epigenetic inhibitor, zebularine, 
induced ear pinna regeneration in mice. The principle of this model is 
that the regenerative response is evaluated based on measuring the 
closure of 2-mm holes made in the ear pinna. The closure was remark-
able, 83.2 ± 9.4% in the zebularine-treated mice vs 43.7 ± 15.4% in the 
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controls (p < 10E-30), and confirmed in several independent experi-
ments. Unexpectedly, while revisiting the study results, we recorded 
moderate but statistically significant differences between control groups 
treated with the vehicle only. What is essential, our experiment was 
conducted in standardised conditions on a homogenous population of 
inbred mice of the same strain, sex, and age. Given that comparative 
statistical testing can produce confusing signals, we demonstrate 
machine-learning predictions using Naïve Bayes and support vector 
machine algorithms as effective tools for validating responses to drug 
treatment. We believe the presented analysis will provide valuable 
guidance on the design and interpretation of animal experiments. 

2. Methods 

2.1. Animal experiments 

Ear punch experiments in mice are described in our previous publi-
cation [4]. The animal study protocols were approved by the Local 
Ethics Committee for Animal Experimentation (http://lke.utp.edu.pl) at 
the Faculty of Animal Breeding and Biology, University of Science and 
Technology, in Bydgoszcz, Poland (approval No. 5/2015). All experi-
ments were performed in accordance with relevant guidelines and 
regulations. 

2.2. Statistical analysis 

Two-sample comparisons were carried out with the two-tailed non- 
parametric Mann-Whitney U-test. Power and sample size calculations 
were performed using the means and standard deviations determined for 
each tested animal group for the Mann-Whitney U-test. The sample sizes 
were calculated at a power of 0.8 and an alpha level of 0.05. The 
Kruskal-Wallis test with Dunn’s post hoc analysis and Bonferroni 
correction were applied for multiple comparisons. 

All statistical computations were done with XLSTAT (Addinsoft). The 
analysed research data representing the percentages of ear pinna hole 
closure are included in Supplemental Table S1. 

2.3. Machine-learning experiments 

The machine-learning experiment for determining statistical signif-
icance between randomly sampled groups was carried out using the R 
package [5] (https://www.R-project.org/). The two-sample Man-
n-Whitney U test was performed using the standard wilcox.test function, 
where the null hypothesis is that the two distributions of samples differ 
by a location shift 0. Successive tests in the experiments were conducted 
on replicated random samples sampled with replacement. 

2.4. Naïve Bayes and support vector machine classification 

The Naïve Bayes and Support Vector Machine Classifiers (XLSTAT, 
Addinsoft) were applied for assigning samples to control and treatment 
types. The classifiers were run with default parameters. For this pre-
diction, ear hole closure areas in each sample were sorted in descending 
order, and the missing values were replaced with means (Supplemental 
Table S2). Sampled groups were obtained with Data sampling XLSTAT 
function using random sampling without replacement (Addinsoft). 

3. Results 

3.1. Significant differences between control groups determined by 
comparison tests 

In the present study, we conducted a retrospective analysis of wound 
closure data from previous research [4] (Supplemental Table S1). The 
data represents eight zebularine-treated and eight control groups of six 
mice each (Fig. 1). First, using the Mann-Whitney test, we made 
two-sample comparisons between all study groups. Each group treated 
with zebularine showed significantly better wound closure than any 
control group (Fig. 2a). Unexpectedly, in 5 of 28 comparisons between 
the control groups treated with saline alone, we observed statistically 
significant differences. One of the p-values achieved 5.0×10E-4 
(Fig. 2a). As the extent of healing was way lower in the control than in 
zebularine-treated mice, the pro-regenerative effect of zebularine was 
unquestionable (Fig. 2b). On the other hand, the incidents of significant 
differences between control groups receiving saline seem puzzling. As 
noted above, the significant differences between the control groups did 
not compromise the results found for the active compound zebularine. 
When observed in comparisons between saline-treated control groups, 
significant differences in regenerative effects are evident as 
false-positive results. However, the occurrence of such outcomes signals 
that statistically significant differences may be determined when testing 
a compound lacking the desired biological activity. 

In order to include corrections for multiple comparisons, we con-
ducted the Kruskal-Wallis test, followed by Dunn’s pairwise tests. This 
analysis identified statistically significant differences between control 
groups in four of 28 pairwise comparisons (Fig. 2c). It is worth noting 
that the Kruskal-Wallis analyses were possible to perform after the 
completion of the experiments for several control groups. In experiments 
involving a single treatment and a single control group, as often prac-
tised for saving animals, multiple comparison tests cannot be applied. 

3.2. Power statistics and sample size 

Statistical significance is confronted with power and sample size 
statistics to validate study results. In our analysis, the statistical power 

Fig. 1. Ear pinna wound healing - experiment results: A) the percentage of ear hole closure in zebularine (Z.1-Z.7) and saline-treated (C.1-C.8) mice. Each tested 
group consisted of six mice (n = 12 ears). The boxes represent the first and third quartiles; the bars indicate the minimum and maximum; the “+ ” and “–"marks 
represent the means and medians, respectively; B) distributions of ear hole closure results in the controls (C, red) and zebularine-treated mice (Z, purple). 
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values calculated for the comparisons showing significant differences 
between the control groups were as high as 0.82 and 0.97 (Fig. 2d). Also, 
the sample size in our experiments proved sufficient for the differences 
we observed. The sample sizes to achieve a power value of 0.8 were 
n = 9 (C2 vs C5 group) and n = 12 (C4 vs C5 group) (Fig. 2d), which was 
equal to or less than the sample size we applied in the experiment 
(n = 12 ears). 

3.3. Machine-learning experiment 

Assuming that all collected control samples are the estimate of non- 
drug-induced ear pinna wound closure in our experimental setup, we 
designed a machine-learning experiment to model the risk that two 
randomly sampled groups show significant differences. The control- 
control experiment consisted in randomly sampling 1000 k-element 
samples from all control observations, with k ranging from 3 to 12. Each 
of the 1000 samples was then compared using the Mann-Whitney U-test 
with 1000 other samples of the same size randomly sampled from all 
control observations. Then mean numbers of insignificant results per 
million were computed at p = 0.05 and p = 0.01 for each k. Next, we 
carried out an analogous experiment for comparisons between randomly 
sampled treatment and control groups, where each k-sample from the 
treatment group was tested against 1000 samples from the control group 
of the same size. 

The machine-learning experiments demonstrated that the fre-
quencies of false-negative results (insignificant treatment effect 

compared to controls) and false-positive results (significant differences 
between controls) were shallow, provided the sample size was adequate 
(Fig. 3). While the incidence of false-negative results markedly 
decreased with increasing sample size, the frequencies of false-positives 
were roughly similar for sample sizes k = 4–12, ranging from 2.7% to 
4.6% (at p = 0.05, Fig. 3). Interestingly, for 3-element samples, the 
frequency of significant results between control groups equalled zero; 
however, the same was the chance for significant differences between 
control and treatment groups. 

3.4. Variation between treatment and control groups 

Fig. 1a shows the inter-group variation. While there is a clear dif-
ference in wound closure effect of (83.2% vs 43.7%) between the 
assembled treatments and controls, the differences between all pairs of 
treatment and control groups range from 23.3% to 59.5%, and those 
between all pairs of control groups from 0.20% to 21.0% (Fig. 2b). 
Consequently, it is challenging to delimitate a satisfactory difference 
between a single control group and a single treatment group. Over-
lapping distributions of control and treatment observations illustrate 
this problem (Fig. 1b). 

3.5. Naïve Bayes classification 

The main principle of applying the Naïve Bayes method is to use the 
prior probability obtained for training data to compute the posterior 

Fig. 2. Statistical significance determined in two-sample and multiple-sample comparisons contrasted with the effect size and the power and sample size statistics. A) 
Statistical significance: p-values computed for pairwise comparisons between experimental groups of zebularine-treated (Z.1-Z.7) and saline-receiving (C1-C.11) 
animals using the two-tailed Mann-Whitney test; the statistically significant differences between control groups (C1-C.11) are marked with red font. B) Size of the 
healing effect: the differences in mean percentages of ear hole closure between the experimental groups. Each tested group consisted of six mice (n = 12 wounds). C) 
Multiple comparisons between the control groups. The Kruskal-Wallis test, followed by Dunn’s test for pairwise comparisons, was performed for eight control groups 
of mice receiving the vehicle alone. P-values below 0.05 are highlighted with a red background. The Bonferroni corrected significance level was set at 0.0018; the p- 
value significant after the correction was emphasised with bold font. D) Statistical power and sample sizes calculated for the pairwise comparisons between the 
control groups of mice receiving the vehicle alone and showing significant differences. The sample sizes were calculated at a power of 0.8 and an alpha level of 0.05; 
the statistical power values were determined for the sample size n = 12 (12 ear wounds from six mice). The means and standard deviations determined for each 
tested group were used for the computation. 
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probability. In our setting, the differences in the distributions of the 
wound closure between the control and treatment groups allow 
discrimination of subsequent test samples. In other words, the Bayesian 
approach was used here to learn the difference between the outcomes of 
effective therapeutic interventions and control experiments. 

We applied a Gaussian Naïve Bayes Classifier from the XLSTAT 
package [6,7]. In our experimental setup, the observations obtained for 
control and treatment groups create a training dataset. The training 
dataset constitutes a prior for learning an algorithm that assigns any 
subsequently tested group into either a control or treatment type. We 
performed three experiments using the Naïve Bayes Classifier. 

In the first experiment, we generated 1000 12-element groups 
randomly sampled from all control observations (Supplemental 
Table S3) and 1000 12-element groups randomly sampled from all 
treatment observations (Supplemental Table S4). Then we sorted out the 
sampled control group achieving the best mean wound closure and the 
sampled treatment group showing the worst mean wound closure 

(Supplemental Table S2). Next, we classified these two sampled groups 
(prediction set) into control or treatment types using a supervised ma-
chine learning algorithm based on the training set of eight control and 
eight zebularine-treated samples (Table 1). As determined using the 
Mann-Whitney U-test, the randomly sampled control group displaying 
the best wound closure showed significant differences relative to 5 of 8 
experimental control groups (i.e. the sets of observations recorded 
during experiments as listed in Table S1) and the assembly of all con-
trols. At the same time, the Bayes algorithm classified the sample into a 
control type. An analogous analysis was carried out for the randomly 
sampled treatment group with the lowest mean wound closure. The 
Mann-Whitney U-test revealed significant differences in 4 of 8 com-
parisons to experimental treatment groups and the assembly of all 
treatment observations, while the Bayes algorithm classified this group 
into a treatment type (Table 1). Fig. 4 shows a graphical representation 
of the training and the prediction sets described above for an intuitive 
explanation of Bayes classification. 

Fig. 3. Machine-learning experiment for the 
assessment of insignificant comparisons made 
using the Mann-Whitney U-test. The compari-
sons were performed for 1 mln pairs sampled 
randomly from controls (C-C) and 1 mln pairs 
randomly sampled from control and treatment 
groups (C-Z). Low frequencies of insignificant 
control-treatment comparisons describe a low 
risk of false-negative results. High frequencies 
of insignificant inter-control comparisons de-
pict a low risk of false-positive results.   

Table 1 
Naïve Bayes and SVM classifier predictions for the best-closing sampled control and worst-closing sampled treatment group contrasted with the results of the Mann- 
Whitney U-test. The best closing control and the worst closing treatment groups were sorted out each from 1000 12-element groups randomly sampled from assembled 
controls and assembled treatments, respectively. As determined with the Mann-Whitney U-test, the best closing sampled control displayed significant differences 
compared to C.1, C.3, C.5, C.8, C.11 and assembled controls, while classified into a control type in the Bayes prediction based on the training set, including eight 
experimental control samples and eight experimental treatment samples. Analogously, the worst closing sampled treatment group was classified into a treatment type 
in the Bayes prediction, though it showed significant differences in two-sample comparisons with Z.1, Z.2.1, Z.2.2., Z.4, and assembled treatments.  

Sample % 
closure 

Mann-Whitney U-test Machine-learning classifier 

p-val vs best closing sampled 
control 

p-val vs worst closing sampled 
treatment 

Dataset Naïve Bayes Support Vector Machine 
(SVM) 

Best closing sampled control 57.7% 1.00E+ 00 2.74E-04 Prediction Control Control 
Worst closing sampled 

treatment 
75.7% 2.74E-04 1.00E+ 00 Prediction Treatment Treatment 

Zebularine 200 mg/kg 74.2% 1.44E-04 6.30E-01 Prediction Treatment Treatment 
Zebularine 500 mg/kg 79.6% 1.41E-05 3.19E-01 Prediction Treatment Treatment 
C.1 40.5% 1.65E-02 7.40E-07 Training Control Control 
C.2 52.6% 3.54E-01 1.48E-06 Training Control Control 
C.3 43.5% 4.62E-02 8.88E-06 Training Control Control 
C.4 47.6% 6.77E-02 5.18E-06 Training Control Control 
C.5 31.6% 2.44E-05 7.40E-07 Training Control Control 
C.7 50.3% 2.47E-01 1.43E-03 Training Control Control 
C.8 41.3% 5.62E-03 1.48E-06 Training Control Control 
C.11 41.5% 3.85E-03 3.33E-05 Training Control Control 
Assembled controls 43.7% 2.82E-03 1.25E-07    
Z.1 89.9% 7.40E-07 1.58E-04 Training Treatment Treatment 
Z.2.1 91.1% 7.40E-07 5.18E-06 Training Treatment Treatment 
Z.2.2 84.0% 2.96E-06 2.31E-02 Training Treatment Treatment 
Z.3.1 80.6% 2.07E-04 2.28E-01 Training Treatment Treatment 
Z.3.2 80.6% 2.74E-04 1.83E-01 Training Treatment Treatment 
Z.4 82.9% 2.96E-06 3.19E-02 Training Treatment Treatment 
Z.5 80.3% 8.88E-06 2.03E-01 Training Treatment Treatment 
Z.7 75.9% 6.56E-04 9.47E-01 Training Treatment Treatment 
Assembled treatments 83.2% 2.34E-07 7.42E-03     
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Fig. 4. Graphical depiction of the training dataset contrasted with the prediction dataset for Naïve Bayes and SVM classification. The circles represent ear pinna 
wounds, and the size of each circle corresponds to the area of each wound. S.C. – sampled controls showing maximal closure, S. T. sampled treatments showing 
minimal closure. 

Table 2 
Naïve Bayes and SVM classifier predictions for the best-closing experimental control (C.2) and worst-closing experimental treatment group (Z.7) contrasted with the 
results of the Mann-Whitney U-test. As determined with the Mann-Whitney U-test, C.2 showed significant differences compared with C.5, C.8, C.11, and assembled 
controls while classified into control types in the Bayes prediction based on the training set encompassing seven remaining control samples and seven remaining 
treatment samples. Analogously, Z.7 was classified as a treatment type in the Bayes prediction though it displayed significant differences in two-sample comparisons 
with Z.1, Z.2.1, Z.2.2, Z.4, and assembled treatments.  

Sample % closure Mann-Whitney U-test Machine-learning classifier prediction 

p-val vs C.2 p-val vs Z.7 Dataset Naïve Bayes Support Vector Machine (SVM) 

C.2 52.6% 1.00E+ 00 1.48E-06 Prediction Control Control 
Z.7 75.9% 1.48E-06 1.00E+ 00 Prediction Treatment Treatment 
C.1 40.5% 1.60E-01 7.40E-07 Training Training Training 
C.3 43.5% 2.42E-01 1.41E-05 Training Training Training 
C.4 47.6% 3.11E-01 8.88E-06 Training Training Training 
C.5 31.6% 4.96E-04 7.40E-07 Training Training Training 
C.7 50.3% 5.51E-01 2.32E-03 Training Training Training 
C.8 41.3% 3.74E-02 1.48E-06 Training Training Training 
C.11 41.5% 2.42E-02 4.96E-05 Training Training Training 
Assembled controls 42.4% 2.20E-02 2.64E-07    
Z.1 89.9% 7.40E-07 1.43E-03 Training Training Training 
Z.2.1 91.1% 7.40E-07 1.11E-03 Training Training Training 
Z.2.2 84.0% 7.40E-07 2.42E-02 Training Training Training 
Z.3.1 80.6% 3.71E-05 2.28E-01 Training Training Training 
Z.3.2 80.6% 8.88E-06 2.98E-01 Training Training Training 
Z.4 82.9% 7.40E-07 3.87E-02 Training Training Training 
Z.5 80.3% 1.48E-06 1.28E-01 Training Training Training 
Assembled treatments 84.3% 4.58E-08 5.32E-03     
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We used the same training set in the second experiment to classify 
two other experimental groups. These groups received reduced zebu-
larine doses of 500 and 200 mg/kg, while the groups in the training set 
were administered 1000 mg/kg. Both groups receiving the reduced 
doses were classified into a treatment type though 200 mg/kg showed a 
markedly lower wound closure effect than observed in the remaining 
treatment groups (Table 1). 

In the third experiment, the Bayesian predictions were made for the 
experimental groups singled out from the learning set; the controls with 
the best and the treatments with the worst wound closure (C.2, Z.7). The 
training set included seven remaining experimental control and seven 
remaining experimental zebularine-treated groups. Though showing 
significant differences in two-sample comparisons with other control 
and treatment groups, the experimental control group with the best 
mean wound closure (C.2) and the experimental treatment group with 
the worst mean wound closure (Z.7) were assigned to control and 
treatment types, respectively (Table 2). In addition, we performed cross- 
validation, i.e. a series of comparisons where each experimental group 
was singled out from the training set and confronted with thus reduced 
training set containing the remaining control and treatment groups. As 
expected, each experimental control group was classified into a control 
type and each experimental treatment group into a treatment type. 

3.6. Support vector machine classification 

Analogous prediction tests as those made with the Naïve Bayes 
Classifier, were performed with a support vector machine (SVM) algo-
rithm. The modern version of the SVM method was developed in the 
mid-90 s [8,9]. SVM belonging to the most popular and most robust 
supervised learning algorithms used for classification has found multiple 
applications in various fields, including medicine, biology and 
biotechnology [10]. The same training datasets were used, and identical 
prediction results were obtained using the Naïve Bayes and SVM clas-
sifiers (Tables 1 and 2). Cross-validation conducted as described in the 
previous section classified all experimental treatment groups into a 
treatment type and all control groups into a control type. 

3.7. Machine-learning predictions for reduced training sets 

Multiple replicates are not desirable owing to the requirement to 
decrease the number of animals in experiments. Obtaining large training 
datasets for machine-learning predictions is not always feasible. 
Therefore, we tested the Naïve Bayes and SVM classifiers using drasti-
cally reduced training datasets. We analysed two variants reflecting the 
extreme challenges. In the first one, we constructed a training dataset 
consisting of three control groups achieving the best mean ear hole 
closure (C.2, C.4, C.7) and three treatment groups achieving the worst 
mean ear hole closure (Z.3.2, Z.5, Z.7), as depicted in Fig. 5. The 
remaining control and treatment groups entered the prediction set. 
While statistically significant differences between the assembled con-
trols of the training dataset and the control groups from the prediction 
set were determined using two-sample comparisons with the Mann- 
Whitney U-test, the Naïve Bayes and SVM classifiers properly assigned 
all groups to treatment and control types (Table 3). As the second 
variant, we performed an analogous analysis for the training set con-
sisting of three control groups achieving the worst mean ear hole closure 
(C.1, C.5, C.8) and three treatment groups achieving the best mean ear 
hole closure (Z.1, Z.2.1, Z.2.2), as indicated in Fig. 5. Also in this variant 
of analysis, the Naïve Bayes and SVM classifiers correctly and consis-
tently assigned all groups from the prediction set to control and treat-
ment types (Table 4). 

4. Discussion 

In principle, a statistically significant result of comparison between 
treatment and control samples is the primary criterion accepted to 
substantiate findings. Our wound healing data analysis revealed statis-
tically significant differences between independent replicates repre-
senting control groups of mice treated with vehicle alone. Moreover, we 
determined that the power values were satisfactory and sample sizes 
were adequate for the tests. The variations between the control groups 
we observed may seem unexpected since the animals of the same sex, 
age, and strain were maintained in standardised conditions and were 

Fig. 5. Graphical depiction of the training set reduction for Naïve Bayes and SVM classification. The circles represent ear pinna wounds, and each circle’s size 
corresponds to the wound’s area; the blue and pink boxes indicate two variants of training datasets. 
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randomly distributed into control and treatment groups prior to the 
experiments. In addition, the model of ear punching we used is a 
straightforward procedure. Still, the results were not misleading because 
the effects recorded in the treatment groups receiving the tested agent, 
zebularine, were dramatically higher compared to the controls. 

Nevertheless, our example demonstrates a potential risk of false- 
positive results in animal experimentation. Suppose an agent lacking 
the desired biological activity is tested; then a statistically significant 
effect can only manifest variation between experiments, likely due to the 
animal models’ complexity. False-positive results, known as type I er-
rors, are not uncommon in experimental research [11]. Different causes, 
including small sample sizes, increase the risk of false-positive findings 

[12–15]. As the measurements based on the determination of ear hole 
area using image analysis we carried out were reproducible, biological 
variation among the tested animals appears to be more likely to produce 
the observed differences between the control groups of animals. It is 
important to note that the differences occurred in standardised condi-
tions, even though the mice were inbred and of the same age and sex. 
However, even inbred mice are known to display variation resulting 
from epigenetic divergence and random mutations [16,17]. Differences 
can be recorded, e.g., in gene methylation and expression levels between 
individual animals [18–20]. 

The presented example shows that standard tests to examine statis-
tical significance and power and sample size statistics may be 

Table 3 
Naïve Bayes and SVM classifier predictions for reduced training sets consisting of three control groups achieving the best mean ear hole closure (C.2, C.4, C.7) and three 
treatment groups achieving the worst mean ear hole closure (Z.3.2, Z.5, Z.7) contrasted with the results of the Mann-Whitney U-test.  

Sample % 
closure 

Mann-Whitney U-test Machine-learning classification 

vs assembly of 3 best-closing control 
groups C.2, C.4, C.7 

vs assembly of 3 worst-closing treatment 
groups Z.3.2, Z.5, Z.7 

Dataset Naive 
Bayes 

Support Vector 
Machine 

C.2 50.2% 1.00E+ 00 3.67E-11 Training Control Control 
C.4 Training Control Control 
C.7 Training Control Control 
Z.3.2 78.9% 3.67E-11 1.00E+ 00 Training Treatment Treatment 
Z.5 Training Treatment Treatment 
Z.7 Training Treatment Treatment 
Worst closing sampled 

Zeb 1000 
57.7% 4.57E-06 2.95E-01 Prediction Treatment Treatment 

Best closing sampled 
Ctrl 1000 

75.7% 1.00E-01 1.21E-06 Prediction Control Control 

Zebularine 200 mg/kg 74.2% 4.57E-06 1.34E-01 Prediction Treatment Treatment 
Zebularine 500 mg/kg 79.6% 1.60E-06 8.40E-01 Prediction Treatment Treatment 
C.1 40.5% 1.13E-01 2.01E-10 Prediction Control Control 
C.3 43.5% 2.58E-01 5.57E-09 Prediction Control Control 
C.5 31.6% 2.33E-04 2.88E-07 Prediction Control Control 
C.8 41.3% 5.84E-02 5.74E-11 Prediction Control Control 
C.11 41.5% 3.31E-02 1.44E-08 Prediction Control Control 
Z.1 89.9% 3.27E-07 8.22E-04 Prediction Treatment Treatment 
Z.2.1 91.1% 2.88E-07 3.71E-04 Prediction Treatment Treatment 
Z.2.2 84.0% 7.79E-07 1.31E-01 Prediction Treatment Treatment 
Z.3.1 80.6% 2.57E-06 4.75E-01 Prediction Treatment Treatment 
Z.4 82.9% 7.79E-07 1.86E-01 Prediction Treatment Treatment  

Table 4 
Naïve Bayes and SVM classifier predictions for reduced training sets consisting of three control groups achieving the worst mean ear hole closure (C.1, C.5, C.8) and 
three treatment groups achieving the best mean ear hole closure (Z.1, Z.2.1, Z.2.2) contrasted with the results of the Mann-Whitney U-test.  

Sample % 
closure 

Mann-Whitney U-test Machine-learning classification 

vs assembly of 3 worst-closing control 
groups C.1, C.5, C.8 

vs assembly of 3 best-closing treatment 
groups Z.1, Z.2.1, Z.2.2 

Dataset Naive 
Bayes 

Support Vector 
Machine 

C.1    Training Control Control 
C.5 37.8% 1.00E+ 00 0.00E+ 00 Training Control Control 
C.8    Training Control Control 
Z.1    Training Treatment Treatment 
Z.2.1 88.3% 0.00E+ 00 1.00E+ 00 Training Treatment Treatment 
Z.2.2    Training Treatment Treatment 
Worst closing sampled 

Zeb 1000 
57.7% 2.87E-11 1.32E-05 Prediction Treatment Treatment 

Best closing sampled 
Ctrl 1000 

75.7% 2.24E-04 1.15E-10 Prediction Control Control 

Zebularine 200 mg/kg 74.2% 2.87E-11 3.01E-07 Prediction Treatment Treatment 
Zebularine 500 mg/kg 79.6% 2.87E-11 7.03E-04 Prediction Treatment Treatment 
C.2 52.6% 3.78E-03 2.87E-11 Prediction Control Control 
C.3 43.5% 3.90E-01 2.87E-11 Prediction Control Control 
C.4 47.6% 3.72E-02 2.88E-07 Prediction Control Control 
C.7 50.3% 3.83E-02 2.78E-09 Prediction Control Control 
C.11 41.5% 5.81E-01 1.15E-10 Prediction Control Control 
Z.3.1 80.6% 4.76E-07 1.47E-02 Prediction Treatment Treatment 
Z.3.2 80.6% 3.44E-10 3.60E-02 Prediction Treatment Treatment 
Z.4 82.9% 2.87E-11 2.62E-02 Prediction Treatment Treatment 
Z.5 80.3% 2.87E-11 3.19E-03 Prediction Treatment Treatment 
Z.7 75.9% 2.87E-11 2.66E-04 Prediction Treatment Treatment  
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insufficient to discriminate a response to treatment from a variation 
between controls. We point out, however, that the response was 
remarkably lower in the control animals than in the treatment groups. 
The differences in ear hole closure between the zebularine-treated and 
control groups ranged from 23.3% to 59.5% (mean 39.5%), while those 
between the control groups from 0.20% to 21.0% (mean 7.2%) (Fig. 2b). 
The evaluation is evident if the effect of the tested compound markedly 
exceeds the maximum difference recorded between the control groups. 
However, it may be challenging to determine the necessary margin 
discriminating between the treatment effect and biological or experi-
mental variation. In such a case, a Bayes solution can be helpful. 

In his essay from 1763, Thomas Bayes proposed that the probability 
of a future event can be determined based on past events. The concept 
was formulated as Bayes’s theorem by Laplace in 1825. In the Bayesian 
approach, previously collected is used as a prior for analysing subse-
quent observations. Bayesian analysis has been successfully applied 
across different fields, including biomedical research [21]. In our study, 
the Bayesian approach involved learning an algorithm trained on several 
datasets from treatment and control experiments to assign the subse-
quent experiments to either treatment or control types. Although a new 
experimental result can be related to previously collected data using 
standard statistical tests for sample comparisons, the Bayesian approach 
has an essential advantage. Standard statistical tests for sample com-
parison allow computing statistical significance based on pre-defined 
distributions, thus creating more or less rigorous criteria to discrimi-
nate between positive and negative results. In Bayesian statistics, the 
background data are expressed as distributions to evaluate new obser-
vations; thus, the criteria adjust to what is learned from previous ob-
servations. In studies on animal models, such learning from previously 
collected data may save animals’ lives. 

The Gaussian Naïve Bayes classifier we applied is a robust method 
which does not require much training data. We showed that this tool 
effectively distinguished the response to treatment from variation be-
tween the control experiments. Such a practice may save time and ex-
penses, especially in preliminary testing. 

The Bayes predictions were confirmed with another machine- 
learning approach, support vector machine (SVM). We demonstrated 
that the SVM and Naïve Bayes Classifier equally evaluated the observed 
treatment effects. It is worth noting, however, that machine-learning 
classifiers are sensitive to the parameters applied, such as the type of 
distribution in the case of Naïve Bayes and the type of kernel in the case 
of SVM. 

5. Conclusions 

Using a spectacular example from animal experimentation, we 
highlight that a result of a single experiment on a small sample, although 
statistically significant, may not be biologically important. However, in 
principle, we would not like to question reporting of small sample ex-
periments, especially if they are part of multi-faceted evidence. The 
leading conclusion of our study is that accounting for the variation be-
tween the control groups in a given experimental model helps proper 
evaluation of treatment effects, and machine-learning methods like 
Naïve Bayesian and Support Vector Machine classifiers can successfully 
solve this task. 
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