
180 Int. J. Ad Hoc and Ubiquitous Computing, Vol. 32, No. 3, 2019

Bilateral multi-issue negotiation of execution
contexts by proactive document agents

Jerzy Kaczorek
The University of Computer Science and Skills,
Lodz, Poland
Email: jkaczorek@gmail.com

Bogdan Wiszniewski*
Department of Intelligent Interactive Systems,
Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology,
Gdansk, Poland
Fax: +48-58-347-22-22
Email: Bogdan.Wiszniewski@eti.pg.edu.pl
*Corresponding author

Abstract: A proactive document can react to its actual environment by autonomously selecting
and performing actions integrated into its body and interact with its user. When migrating over
a network of execution devices it may encounter diverse execution contexts, each one set up
according to temporal characteristics of a receiving device and preferences of its owner. A
concept to augment proactive documents with negotiation capability is proposed – to make
them responsive to such dynamically changing contexts, and implemented in a system, where
they can migrate as attachments to e-mail messages, owing to a dedicated e-mail client capable
of handling them. Negotiation is based on a simple game-theoretic mechanism to minimise
computation load on execution devices. Four negotiation algorithms are proposed and two of
them evaluated in more detail in a series of experiments, when respectively, negotiating parties
do not or do have knowledge on past encounters and negotiated contracts.

Keywords: proactive documents; dynamic execution contexts; mobile agents; ad hoc
collaborative processes.

Reference to this paper should be made as follows: Kaczorek, J. and Wiszniewski, B. (2019)
‘Bilateral multi-issue negotiation of execution contexts by proactive document agents’, Int. J. Ad
Hoc and Ubiquitous Computing, Vol. 32, No. 3, pp.180–196.

Biographical notes: Jerzy Kaczorek obtained his MSc in Computer Science in 2006, and PhD
in 2015, both in Computer Science from the Gdansk University of Technology (GUT), Poland.
He is currently employed as a CIO in a private company in Grudziadz, Poland, and as an
Assistant Professor at the University of Computer Science and Skills in Bydgoszcz, Poland. His
research interests include document engineering, intelligent agents, automated negotiation and
game theory.

Bogdan Wiszniewski is graduated from the Gdansk University of Technology in 1977 and
was awarded his MSc in Computer Science and Engineering with honours. In 1984 and 1998,
respectively, he completed his PhD and DSc. In 2006 he was awarded a Professor title by the
President of Poland. He was a Lecturer in the universities in Canada, USA and UK. He was
also the Principal Investigator or coordinator in many national and international R&D projects
with the significant industrial content. He is an author or co-author of many publications in
national and international journals and conferences, including several national and international
monographs. He was awarded twice by the Polish Minister of Higher Education and Science
for his scientific merits. His current research focus on distributed processing, in particular open
multi-agent systems and eCollaboration using methods and tools of document engineering.

This paper is a revised and expanded version of a paper entitled ‘Bilateral multi-issue
negotiation between active documents and execution devices’ presented at 9th Int. Conf. on
Digital Society ICDS’15, Lisbon, Portugal, 22–27 February 2015.

Copyright © The Author(s) 2019. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the
CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Bilateral multi-issue negotiation of execution contexts by proactive document agents 181

1 Introduction

Knowledge workers, who collaborate in a network
organisation, may interact ad-hoc, and in a loosely-coupled
manner by exchanging electronic documents that constitute
units of information, and at the same time, units of
interaction (Glushko and McGrath, 2008). This dichotomy
has become apparent with the advent of proactive
documents, implemented as autonomous software agents
with built-in execution capability. Examples of technical
implementation of such documents include placeless
documents (Dourish et al., 2000), living documents based
on an agent framework (Schimkat and Küchlin, 2002)
or interactive documents implemented by us as mobile
agents – which instead of a real agent platform rely on
commonly available standard e-mail services to migrate
over a network of loosely coupled mobile devices. Our
document-agents can be proactive in three ways: by
embedding pieces of code or scripts that may be executed
directly on the receiving device, scripts that can test
for availability and request activation of various local
tools installed on the device, or scripts requesting the
local worker’s system to call specific remote services the
document would like to have access to.

When migrating over the network, the proactive
document can carry both, the content to be worked on, and
the specification of its migration path including activities
and transitions of the workflow process it implements.
Each activity represents a piece of work to be performed
on the visited device, whereas the relevant transition
indicates where the outgoing document (constituting a result
of the activity) should migrate next. Such a proactive
document-agent can combine a passive content with
active services to explore information resources, to enable
interaction of users with its logical structure elements, and
to automatically update its content. Our implementation
allows proactive documents not to subscribe to any
particular vendor, tool or format, and could be attached to
e-mail messages as any MIME conformant content (Freed
and Borenstein, 1996).

One advantage of the proactive document implemented
as an agent is its autonomy in achieving goals predefined
by its author. Based on the functionality integrated into its
body, its knowledge on the implemented business process,
its ability to migrate to other nodes of a distributed system
and to learn to make optimal decisions under uncertainty,
it can adapt to various conditions provided by dynamically
changing execution contexts. On the other hand, its
major disadvantage is total dependence on computational
resources provided by the current execution device used to
perform the relevant activity of its workflow process. In that
sense an execution context may often be considered adverse
by a document-agent, as its expectations or needs may be
in conflict to what a device would be willing to offer. In
consequence, a document should be able to adequately react
and adjust to that context at some acceptable cost.

A special workflow engine in a form of a dedicated
e-mail client to be installed on a device to make it capable
of handling such documents was implemented by us on

several mobile platforms during the research reported in
this paper, including Windows Phone, iOS and Android,
and capable of detaching and unmarshaling proactive
attachments, activating them to perform a respective
activity, and upon its conclusion, marshaling and sending
them further as e-mail attachments to other collaborators
indicated in their migration paths. In general, functionality
of our workflow engine can also support negotiation
between documents it handles and the device it is installed
on, as described in the paper.

A single activity of a workflow process implemented
by a proactive document could be performed in diverse
execution contexts – each one set up dynamically,
according to specific characteristics of the receiving device,
its current location and preferences of its owner (worker).

A preferences file, prepared by the worker, enables
the workflow engine to switch a device between modes,
according to its current location or preoccupation. Besides
the airplane mode, when certainly using any network by
a device would not be allowed, other possible modes may
include: a business mode, assuming access to the corporate,
trusted network from inside of the worker’s organisation, a
travel mode, when access to available networks is possible
but unstable or not recommended for security reasons, a
private mode, when some computations a document may
be willing to perform would not be possible, and so on.
Modes could further be combined with specific features
of a particular device class (for instance, a laptop or a
smartphone), its current state (when getting low on the
battery or approaching the allowed monthly data transfer
limit) and personal preferences of the worker (in particular
accessibility options for impaired users). Further in the
paper we distinguish several classes of devices and define
various options for them.

Motivation for this work has been to augment
functionality of proactive documents with negotiation
capability to make them responsive to such execution
contexts. Each single activity could be then performed
without undue delay and in an optimal way, helping
to rationalise document flows in the related business
process. A negotiation mechanism combined with a built
in migration path would enable a process originator to set
up ad-hoc a temporary virtual organisation of collaborators,
and in a loosely coupled manner – without a need to
configure any specific distributed system infrastructure in
advance.

Examples of configuration needs include opening FTP,
HTTP/HTTPS ports in local systems of the prospective
participants of the planned process, configuring firewalls
protecting their respective sites and servers, or when some
‘fully loaded’ agent framework is used, like JADE for
example, also setting-up the agent platform by adding
and connecting special software objects (containers) before
running it (Bellifemine et al., 2007). When compared to the
above, running a temporary virtual organisation with e-mail
services would not require workers to be competent system
administrators. Since e-mail is commonly used across
organisations to exchange documents, one may reasonably
assume that all the required services are already set up

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

182 J. Kaczorek and B. Wiszniewski

properly and related SMTP, IMAP and POP3 ports are
opened (Cotton et al., 2011).

Our negotiation mechanism is bilateral and has
been designed to be extremely simple and easy to
implement – to minimise computation load on execution
devices, as very often no external negotiation service,
such as the one described in Bala et al. (2013),
could be provided for performance and security reasons
in a dynamically changing execution context of a mobile
device.

It involves two rational parties – a document-agent and
a device-agent. They are rational in the economic sense,
i.e., during negotiation each one attempts to maximise its
preferences, modelled as a utility function (Faratin et al.,
1998). Preferences of a document author (originator) are
implemented by the document’s code, whereas preferences
of a device owner (user) are specified in the preferences
file and interpreted by the local workflow engine handling
the received document. Both agents are autonomous, i.e.,
they negotiate one with another in the name of their human
‘perpetrators’.

The rest of the paper is organised as follows. Section 2
defines structure of multi-issue offers, which are exchanged
between parties during negotiation, and specify various
characteristics of execution contexts. Section 3 introduces a
simple bargaining game (SBG) as an underlying negotiation
model and discusses its several variants for resolving
conflicts between the document and its execution device
during their single encounter, i.e., without any knowledge
on prior encounters and previously negotiated contracts.
Section 4 expands the proposed negotiation model by a
machine learning mechanism, to train documents to play the
proposed game during repeated encounters, when historical
data on past negotiations with various devices exist.
Section 5 evaluates performance of two basic algorithms
to play it, for single and repeated encounters respectively.
Section 6 reviews related work and Section 7 concludes the
paper.

2 Multi-issue offers

Reaching agreement on the particular execution context
by conflicting parties requires them to have the same
understanding of all essential issues making that context.
Further in the paper we have assumed five such issues,
enabling nondiscriminating representation of a possibly
broad range of negotiated options in a single offer. We
model them as attributes A1, ..., A5, which values are
represented by specific combinations of their relevant
option flags, with ’0’, ’1’ and ’–’ indicating respectively
that a given option ’is not’ or ’is’ present in the
offered/required execution context, or may be ’any’.
Moreover, the order in which these attributes have been
defined is intended to reflect hierarchical dependency of
negotiated issues. Below we just outline our coding scheme
of attribute values; their detailed description could be found
in Kaczorek (2015).

2.1 A1: performer

Each workflow activity could be performed by a document
or a worker, acting alone or jointly. We distinguish three
groups of options related to this issue, labelled respectively
by D, W , and J . They are further split in more specific
option values, which are represented with binary flags.
Each flag indicates if a given option should be considered
within the related issue: whether a performer could be
the worker (Wkr) operating a device, a service (executable
code) embedded in the document (EmS), an external service
(ExS) the document would like to call via the device, or
a local tool (LoT) or service (LoS) it may want to access
when executing on the device. For example, by combining
these flags as specified by formula (1) one would set the
’performer’ issue of the negotiated execution context of
group D to D3, indicating that: the document would like to
perform its activity on its own by using its embedded code
and some external service but without any specific tool and
independently of any service installed on the device.

Wkr EmS ExS LoT LoS
D3 = 0 1 1 0 − (1)

2.2 A2: availability of resources

Completion of the activity may depend on what kind
of network the execution device could provide, what
browsers and possibly other tools are installed on it, their
compatibility to the ones required by a document, the input
method of user data, and so on. We distinguish three groups
of options related to this issue: when no network connection
is possible, when it can be made from inside of the worker’s
organisation, or from outside of it, labelled respectively
by S, I and E. They are further split in more specific
option values (flags): eIP and lIP indicating respectively
if a device could be exclusively or alternatively connected
from inside or outside of the worker’s organisation, whether
a specific browser (SpB) or tool (SpT) is required, or
their proposed substitutes (AnB, SuT) are possible, and a
full-size keyboard (FKb) is connected or just a smaller
set of selection buttons (SeB) should be used instead.
For example, by combining these flags as specified by
formula (2) one would set the ’availability’ issue of the
negotiated execution context of group E to E1, indicating
that: the device could be connected from outside of its host
organisation and the document would not care about which
browser to use nor seek any other support from the device.

locIP extIP SpB AnB SpT SuT FKb SeB
E1 = 0 1 − − 0 0 0 0

(2)

2.3 A3: performance characteristics

Performance of the document during the activity depends
on the quality of the link providing access of the execution
device to the internet and physical characteristics of its
hardware. We distinguish five groups of options related
to this issue: when no connectivity exist (or is not

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bilateral multi-issue negotiation of execution contexts by proactive document agents 183

recommended by the device), or either WiFi, a slower
3G or the faster 4G/LTE modem or the classic (twisted
pair) Ethernet connectivity could be provided. They are
labelled respectively by U , R, M , A and N , and further
split in more specific option values, indicating whether
the connection may be wired (Wre), would use a TV
cable or a telephone line (C/L), a cellular modem (TMo)
or a wireless (WiFi) network (Wrs) card. Moreover, a
device may have a processor (CPU) above or below some
average power required by a document, and provide more
or less memory (RAM) than some optimum required by
a document. For example, by combining these flags as
specified by formula (3) one would set the ‘performance’
issue of the negotiated execution context of group R to
R2, indicating that: the device could access only a wireless
network and the document would accept less powerful CPU
but with more RAM instead.

Wre C/L TMoWrs CPU RAM
R2 = 0 0 0 1 0 1

(3)

2.4 A4: security mechanisms

During each activity a minimum security of both parties
must be provided, in particular when the document content
is processed, and when the execution device agrees to
connect to the external service requested by the document.
We distinguish four groups of options related to this issue:
when the connection has no security mechanisms involved,
when the wireless network is protected by the access key,
when the secure data transfer protocol is used, or both,
the access key and the secure data transfer protocol are
used. They are labelled respectively by P , K, T , and C,
and further split in more specific option values, indicating
whether a related remote site provides HTTPS (SeT), the
involved wireless connection is protected by the access
key (AcK), a document is digitally signed (DSg), and a
device has an anti-virus tool installed (AnV). For example,
by combining these flags as specified by formula (4) one
would set the ’security’ issue of the negotiated execution
context of group K to K4, indicating that: the document
would accept insecure data transfer but require a wireless
network to be protected by the access key, its content would
be digitally signed and scanned with the device’s antivirus
software.

SeT AcK DSg AnV
K4 = 0 1 1 1

(4)

2.5 A5: eeliability of worker-document interaction

During each activity the appropriate reliability level of
human performance should be supported by the execution
device. We distinguish four groups of options related to
this issue: when the device’s system does not provide
any support to protect the document content from being
lost because of user mistake, when some elementary
back-up mechanisms for the document content are provided,
when the document content is fail-safe, and when the

execution device could provide a maximum possible level
of reliability of man-machine interaction. They are labelled
respectively by L, B, F , and H , and further split in more
specific option values, indicating whether the worker can
decide on permanence of document content modifications
with an acceptance button (AcB), the autosave mode can be
set to prevent loosing accidentally the content entered so far
by mistake (ASv), correctness of the content being entered
may be improved by an automatic check of correctness
(ACh) facility, and an undo button (UdB) is provided
to improve comfort of work of users and further reduce
the rate of errors when modifying document content.
For example, by combining these flags as specified by
formula (5) one would set the ’reliability’ issue of the
negotiated execution context of group F to F1, indicating
that: the document would perform the activity on its own,
so no action from the user operating a device would be
required, except of accepting the result by pressing the
acceptance button.

AcB ASv ACh UdB
F1 = 1 0 0 0

(5)

3 The negotiation process model

Negotiating parties exchange offers modelled as 5-tuples of
items, which are values selected from the corresponding
sets Ai = {ai1 , ai2 , . . . , ain}, i = 1, . . . , 5. Each set Ai

represents the ith negotiated attribute and in = |Ai|.
Operator | | denotes cardinality of its argument set. We call
set AT = ×5

i=1Ai of all 5-tuples a space of offers. Based
on that, offer o ∈ AT is defined as o = ⟨v1, v2, . . . , v5⟩,
where vi ∈ Ai. Each single attribute value vi has an integer
number assigned to reflect its utility to the negotiating
party, calculated by function ui : Ai → N . Negotiating
parties have their own sets of functions {u1, . . . , u5}
to calculate utility of each respective item in the offer.
Utility of each offer o ∈ AT is calculated by either
party in a simple multi-criterial fashion, as weighted
sum U(o) =

∑5
i=1 wi · ui(vi), where wi are positive

numbers such that
∑5

i=1 wi = 1, and denote contribution
of each respective item vi to the overall offer utility
(Triantaphyllou, 2013). Neither wi nor ui are considered
to be time dependent, so utility of each exchanged offer
remains constant throughout negotiation and afterwards,
until parties complete execution of the negotiated service
(consume the agreed contract). Throughout the rest of
the paper all items of a multi-issue offer are assumed
to contribute equally to its respective utility, which we
normalise against maxo∈AT (U(o)), so that U : AT → (0, 1].

The left-open interval models the non-zero property of
function U to indicate that each offer is acceptable to
negotiating parties. Formally, their ultimate objective is to
find offer oc ∈ AT that is acceptable to execution device P1

and proactive document P2, such that

oc = arg max
o∈AT

U1(o)U2(o), (6)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

184 J. Kaczorek and B. Wiszniewski

where U1 and U2 are their respective utility functions
(Nash, 1950). Offer oc is called a contract between P1 and
P2. One problem with solving equation (6) is that neither
party knows its opponent’s utility function, nor is willing
to reveal its own. In consequence, parties have to exchange
offers and counter-offers to systematically search space AT .

Nash proposed a unique solution to equation (6),
which multiplicative form represents the concern for
equity – the product of the value gains is maximised more
for more equal individual gains and each party is motivated
by proportionate cooperation (MacCrimmon and Messick,
1976). We have implemented this proportionate cooperation
principle in Subsection 3.1 with a SBG.

3.1 Simple bargaining game

Formally, devices and documents are players bargaining
over finite set CB ⊂ AT , called a bargaining set.
In each round, players P1 and P2 alternately make
their moves by selecting offers from CB . In each
kth move player Pi evaluates selected offer with
its payoff function πi : A×N → (0, 1], calculated as
πi(o, k + 1) = δi · πi(o, k), where δi < 1 is a discount
factor, and πi(o, 0) = Ui(o). Discounting models the cost
of delay in submitting by Pi an offer that could conclude
the game in the next move. Let denote opponent of player
Pi by P−i, their respective utility functions by Ui and U−i,
payoff functions by πi and π−i, and discount factors by δi
and δ−i.

With both players motivated by the proportionate
cooperation principle according to equation (6), rules of the
SBG game are the following:

1 The game is started by player P1.

2 Players do not reveal their Ui, δi and πi, but share
knowledge on CB .

3 Utility values of players’ offers are discounted upon
transition to the next round.

4 Players exchange offers until the game is concluded
by Pi, who:

a quits the game by repeating one of its previous
offers (negotiation failure), or

b accepts one of P−i’s offers received before as the
contract (negotiation success).

The rules of the SBG game constitute a mechanism
designed to allow each party to adopt freely any algorithm
for selecting offers in step 3, but at the same time to
make them rational to play it in a socially beneficial
way (Binmore, 1994). Since in general the required
proportionate cooperation principle mentioned before is not
self-enforcing, discounting introduced in step 2 has been
intended by us as the incentive for players to explore
new offers and to discourage them from unnecessarily
prolonging the game by repeating the old ones, when
searching of the bargaining set for the Nash solution.

Consider the following example. Let players P1 and P2

bargain over CB = {o1, o2, o3, o4, o5}, with the respective
values of their utility functions specified by formula (7).

o1 o2 o3 o4 o5
U1 : 0.93 1.00 0.79 0.71 0.64
U2 : 0.60 0.53 0.87 0.67 1.00

(7)

By playing the SBG game players would search the
example CB set for the solution of equation (6) as shown
in Figure 1.

Figure 1 Searching CB for the Nash solution
18 J. Kaczorek and B. Wiszniewski

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,00 0,20 0,40 0,60 0,80 1,00

U2

U1
0.79

0.87

(P2 o5)

(P2 o3)

(P1 o1)

(P1 o2)

o4 k = 4

k = 0

k = 1

k = 2

k = 3

(P1 o3)

o3

o2

o1

o5

Figure 1: Searching CB for the Nash solutionPlayer P1 starts the game in move k = 0 by submitting
its most valued offer o2. Instead of accepting it, player P2

attempts o5 in the next move k = 1, as utility of o2 is of the
least value to it. Clearly, in this round neither player could
reasonably accept its opponent’s offer. The next attempt by
P1, now in move k = 2, is offer o1. Since P2 values it less
than o3, in move k = 3 it submits offer o3 to P1 as the
more preferred one. Now P1 has to make a decision what
to do in move k = 4: withdraw from the negotiation, submit
o4 as its counter offer, or accept any previous offer of its
opponent. It may be seen in Figure 1 that a withdrawal
would not be reasonable, as at least one of the offers o5 and
o3 (submitted by P2 before) is better than o4 (the last one
not yet submitted by any player). But submitting o4 would
make P1 loosing more than when accepting o3. On the other
hand, its previous offers o2 and o1 were rejected by P2, so
there would be no point to insist on accepting them by P2.
Finally, neither accepting o5, which is of lesser utility to
P1 than offers o4 (the only one left not submitted yet) and
o3 (that P2 offered in move k = 3), nor submitting o4 as
a counter offer to o3 valued higher, would be reasonable
to P1. Therefore o3 seems to be the best option to P1, and
could be accepted in move k = 4. Indeed, given the values
listed in formula 7, the value of U1(o3) · U2(o3) = 0.87 ·
0.79 = 0.687 is the maximum one. Note, that depending on
the actual values of discount factors used by each player the
contract may be agreed faster – for lower values of δi player
Pi would be more keen to accept counter offers submitted
by its opponent P−i. So with δ1 and δ2 values close to 1
players P1 and P2 would be more patient to explore the
solution space and would finally agree on oc = o3 in move
k = 4 (as shown in Figure 1), whereas with δ1 and δ2 close

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bilateral multi-issue negotiation of execution contexts by proactive document agents 185

to 0 players would be more desperate to consider more the
first ever offers submitted, in the ‘take it or exit’ manner,
and less interested in exploring deeper the solution space.
In the experiments reported in Section 5 we have assumed
players to be moderately patient, with their discount factors
δ1 = δ2 = 0, 8.

The game is implemented by Algorithm 1. When
exchanging offers both parties count their moves in variable
k and share bargaining set CB . Player Pi collects all offers
received so far from P−i in its working set CRi of received
offers, and respectively, all offers submitted to P−i in its
working set CSi. Working sets of each player are initially
empty and counter k of moves is set to 0.

Algorithm 1 A generic SBG algorithm

6 J. Kaczorek and B. Wiszniewski

The game is implemented by Algorithm 1. When
exchanging offers both parties count their moves in variable
k and share bargaining set CB . Player Pi collects all offers
received so far from P−i in its working set CRi of received
offers, and respectively, all offers submitted to P−i in its
working set CSi. Working sets of each player are initially
empty and counter k of moves is set to 0.

Algorithm 1 A generic SBG algorithm
Input: bargaining set (CB).
Output: agreed contract (oc).

Initialisation of working sets:
1: CR1 ← ∅; CS1 ← ∅; CR2 ← ∅; CS2 ← ∅;
2: k ← 0; o2 ← null;
3: while o1 ̸= o2 do

Device’s move:
4: o1 ← submitOffer(CB ,CR1,CS1,o2,k); k ← k + 1;

Document’s move:
5: o2 ← submitOffer(CB ,CR2,CS2,o1,k); k ← k + 1;
6: if o1 = o2 then {oc ← o1; break;};
7: end while

Contract agreed:
8: return oc;

It is interesting to see how good the solution returned
by Algorithm 1 could be and how well it implements
the proportionate cooperation principle mentioned before.
In other words we expect that upon concluding the game
both parties will simultaneously attain their possibly highest
individual gains. Note that the discounting mechanism
incorporated in the game makes each move precious to
either player Pi, since payoffs for any submitted offer
in each successive round decrease geometrically of a
common fractional ratio (discounting factor) δi. Because
of that a rational player would not risk submitting offers
of less utility before submitting offers of higher utility,
for otherwise offers of higher utility could be wasted. In
consequence of that each player would like to submit offers
in the order of its own preference hoping that any of the
offers submitted so far could be accepted by the opponent
as soon as possible. It also assumes that its opponent is
equally rational and knows that its opponent would submit
offers in the same manner. The following theorem holds:

Theorem 1: Given the bargaining set CB of offers shared
by players, the SBG game terminates with the solution
(contract offer) oc ∈ CB such that payoffs for each player
attain simultaneously their highest possible values.

Proof: Since U : AT → (0, 1] each offer in CB can be
accepted by both parties, but either player would like to
know the order in which its opponent would prefer them.
When selecting offers from CB in the order of its individual
preferences each player Pi collects gradually knowledge on
the preferences of its opponent P−i round by round in its
respective CRi set of offers received so far. Similarly, in
each round each player Pi knows that its opponent knows
preferences of offers submitted by it so far in its respective

CSi set. However, both players have no knowledge on each
other preferences of offers in the set CN = CB − CSi ∪
CRi, i.e. offers that have not been submitted yet by any of
them. In the first round the offer made by the player starting
the game may be accepted right away by its opponent. It
will be the case when the first offer ever made by the
starting player happened to be the best offer for both parties.
Otherwise P−i would submit new offer on ∈ CN . Each
time P−i does that Pi knows that utility of such a new offer
if of lesser value to P−i than any offer it received so far in
CRi. Its utility is also of lesser value to any offer in CSi, for
otherwise it would have been submitted by Pi before. When
exchange of offers comes to the point when all remaining
offers in CN have utility of lesser value to Pi than any
new offer on that may yet be received it knows that nothing
better could be submitted by P−i and the best possible offer
in CR should be accepted. If however, any offer o′n ∈ CN

is still better than the last recently received counteroffer
on player Pi submits o′n hoping that the opponent would
eventually accept it, if not any of its previously submitted
offers in CSi. The exchange of offers continues until either
party is not able to find in CN any offer better than any
of the received so far. In that case the first party who
discovers that concludes the game by selecting offer oc ∈
CRi received so far from its opponent that is of the highest
utility value to Pi. When the concluding player Pi finally
chooses oc it will be of the highest possible utility value
it could attain in this game, i.e. such that maximizes its
individual gain but can simultaneously be accepted by the
oppoent. On the other hand there is no offer in CSi that
would be of higher utility value to P−i, for otherwise it
would mean that P−i selected its last new counteroffer from
CN despite of having already a better offer to be accepted
in its CR−i set. But as assumed before both players are
rational and submit offers in the order of their individual
preferences, so it would not be possible and oc is of the
highest possible utility value to attain simultaneously by the
player and its opponent. �

3.2 Best Offer Selection

Based on the above proof it may be seen that when
considering its next move, player Pi analyzes current
content of its respective working sets and makes a decision
whether to accept any of the received offers in CR or to
submit a new one from CN . A straightforward approach
for doing that by Pi would be to compare in each move
k payoff of the most valued offer from CR (that would
conclude the game) with a discounted payoff of the most
valued counteroffer in CN (that would continue it). This
concept is outlined schematically in Figure 2, where offers
in CR and CN are sorted in a descending order of their
utility values, and implemented formally by Algorithm 2.

This implementation is considered naive, since
whenever a player decides to submit a new offer it does
not care whether one could be accepted by its opponent in
the next move. For bargaining sets with a small number
of offers and reasonable high discount factors the contract

It is interesting to see how good the solution returned by
Algorithm 1 could be and how well it implements the
proportionate cooperation principle mentioned before. In
other words we expect that upon concluding the game both
parties will simultaneously attain their possibly highest
individual gains. Note that the discounting mechanism
incorporated in the game makes each move precious to
either player Pi, since payoffs for any submitted offer
in each successive round decrease geometrically of a
common fractional ratio (discounting factor) δi. Because
of that a rational player would not risk submitting offers
of less utility before submitting offers of higher utility,
for otherwise offers of higher utility could be wasted. In
consequence of that each player would like to submit offers
in the order of its own preference hoping that any of the
offers submitted so far could be accepted by the opponent
as soon as possible. It also assumes that its opponent is
equally rational and knows that its opponent would submit
offers in the same manner. The following theorem holds:

Theorem 1: Given the bargaining set CB of offers shared
by players, the SBG game terminates with the solution
(contract offer) oc ∈ CB such that payoffs for each player
attain simultaneously their highest possible values.

Proof: Since U : AT → (0, 1] each offer in CB can be
accepted by both parties, but either player would like to
know the order in which its opponent would prefer them.
When selecting offers from CB in the order of its individual

preferences each player Pi collects gradually knowledge on
the preferences of its opponent P−i round by round in its
respective CRi set of offers received so far. Similarly, in
each round each player Pi knows that its opponent knows
preferences of offers submitted by it so far in its respective
CSi set. However, both players have no knowledge on each
other preferences of offers in the set CN = CB − CSi ∪
CRi, i.e., offers that have not been submitted yet by any of
them. In the first round the offer made by the player starting
the game may be accepted right away by its opponent. It
will be the case when the first offer ever made by the
starting player happened to be the best offer for both parties.
Otherwise P−i would submit new offer on ∈ CN . Each
time P−i does that Pi knows that utility of such a new offer
is of lesser value to P−i than any offer it received so far in
CRi. Its utility is also of lesser value to any offer in CSi, for
otherwise it would have been submitted by Pi before. When
exchange of offers comes to the point when all remaining
offers in CN have utility of lesser value to Pi than any
new offer on that may yet be received it knows that nothing
better could be submitted by P−i and the best possible offer
in CR should be accepted. If however, any offer o′n ∈ CN

is still better than the last recently received counteroffer
on player Pi submits o′n hoping that the opponent would
eventually accept it, if not any of its previously submitted
offers in CSi. The exchange of offers continues until either
party is not able to find in CN any offer better than
any of the received so far. In that case the first party
who discovers that concludes the game by selecting offer
oc ∈ CRi received so far from its opponent that is of the
highest utility value to Pi. When the concluding player Pi

finally chooses oc it will be of the highest possible utility
value it could attain in this game, i.e., such that maximises
its individual gain but can simultaneously be accepted by
the opponent. On the other hand there is no offer in CSi

that would be of higher utility value to P−i, for otherwise it
would mean that P−i selected its last new counteroffer from
CN despite of having already a better offer to be accepted
in its CR−i set. But as assumed before both players are
rational and submit offers in the order of their individual
preferences, so it would not be possible and oc is of the
highest possible utility value to attain simultaneously by the
player and its opponent. �

3.2 Best offer selection

Based on the above proof it may be seen that when
considering its next move, player Pi analyzes current
content of its respective working sets and makes a decision
whether to accept any of the received offers in CR or to
submit a new one from CN . A straightforward approach
for doing that by Pi would be to compare in each move
k payoff of the most valued offer from CR (that would
conclude the game) with a discounted payoff of the most
valued counteroffer in CN (that would continue it). This
concept is outlined schematically in Figure 2, where offers
in CR and CN are sorted in a descending order of their
utility values, and implemented formally by Algorithm 2.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

186 J. Kaczorek and B. Wiszniewski

Figure 2 Naive best offer selection

CB:
CS CR CN

o’ o’’

Algorithm 2 submitOffer() – naive selection

Bilateral multi-issue negotiation of execution contexts by proactive document agents 7

Figure 2 Naive best offer selection

CB:
CS CR CN

o’ o’’

Algorithm 2 submitOffer() – naive selection
Input: bargaining set (CB), past received (CR) and

submitted (CS) offers, incoming offer (or), player’s
discount factor (δi), move number (k).

Output: offer to be submitted in return (os).
1: CR ← CR ∪ {or};
2: CN ← CB − (CR ∪ CS);
3: o′ ← argmaxo∈CR

πi(o, k);
4: o′′ ← argmaxo∈CN πi(o, k);
5: if πi(o

′, k) > δi · πi(o
′′, k) then os ← o′ else os ← o′′;

6: CS ← CS ∪ {os};
7: return os;

may be then agreed in a relatively small number of rounds,
even when players would have to be searching for the
contract in CB until the very last element. With larger
sets, however, a naive approach may lead to an excessive
number of rounds, up to the ⌈ |CB |

2 ⌉ maximum. Therefore a
more clever player may want to consider first which would
be a future counteroffer it may receive from its opponent
in response to the currently considered one. It would imply
a recursive implementation of the submitOffer() procedure.

Let us define strategy function si : N → CB to
associate moves of player Pi with the relevant offers
from the bargaining set. A decision made by player Pi

in move k, whether to accept one of the received offers
o′i ∈ CRi, or continue the game by selecting new offer
o′′i ∈ CN , would be si(k) = argmaxo∈{o′i,o′′i }(πi(o

′
i, k), δi ·

πi(o
′′
i , k)), where Pi’s candidate offer to conclude the

game o′i = argmaxo∈CRi
πi(o, k), and to continue the game

o′′i = argo∈CN
[πi(o, k) ∼= max(1− δ−i) · πi(o, k) + δ−i ·

πi(s−i(k + 1), k)]. Offer o′′i is chosen from CN by Pi as
the one providing a payoff value closest to the weighted
sum of payoffs, what is denoted by ∼=. The first component
of this sum represents a payoff portion related to the
“concluding” offer that could eventually be accepted by
the opponent, whereas the second component represents a
payoff portion of the “continuation” counteroffer that would
be submitted in return by the opponent if the “concluding”
offer could not be accepted. The rationale for choosing
the respective weights 1− δ−i and δ−i is that with δ−i

closer to 1 the opponent would prefer to continue the game
with a new counteroffer submitted by it in the next move,
for otherwise with δ−i closer to 0 the opponent may be
more willing to accept an offer submitted by Pi in the
current move. For that reason, 1− δ−i and δ−i used in
the expression for calculating o′′i are called respectively
conclusion and continuation factors of Pi.

A recursive part of the formula for o′′i requires
Pi to calculate s−i(k + 1) in order to assess which
counteroffer P−i would eventually submit in move k +

1. Besides knowing δ−i by Pi (which for a time
being could be assumed δ−i ≈ δi), assessment of the
prospective counteroffer would require Pi to know also
its opponent’s utility function U−i. Player Pi may cope
with it by assuming that its opponent evaluates offers
in the respective CSi and CN subsets within the same
(0, 1] range, and utility values it calculates for offers in
each respective subset are distributed evenly. Then payoff
of a counteroffer selected by P−i may be approximated
by Pi as the average of payoffs the latter would
get with its πi function. It is denoted formally as
π̄(C, k) = 1/|C|

∑
o∈C πi(o, k), where C ⊂ CB . Therefore

a decision made by player P−i in move k may be
modelled by Pi as s−i(k) = argo∈CB−CRi

[πi(o, k) ∼= 0.5 ·
(πi(o

′
−i, k) + δ−i · πi(o

′′
−i, k))]. Offer o′−i ∈ CSi is in Pi’s

view the one that P−i would consider acceptable to
Pi and concluding the game; Pi models it as o′−i =
argo∈CSi

[πi(o, k) ∼= π̄(CSi, k)]. Offer o′′−i ∈ CN is in Pi’s
view a new offer that P−i may choose to continue
the game; Pi models it as o′′−i = argo∈CN

[πi(o, k) ∼=
(1− δi) · π̄(CN , k) + δi · πi(si(k + 1), k))]. The respective
conclusion and continuation factors for P−i are 1− δi
and δi. Recursive calculation of offers o′′i and o′′−i that
imply continuing the game will eventually terminate in
the last possible move kmax = |CB|+ 1, when CN gets
empty. If Pi concludes the game it selects si(kmax) =
argmaxo∈CRi πi(o, kmax), otherwise P−i concludes the
game by selecting s−i(kmax) = argo∈CSi

[πi(o, kmax) =
π̄(CSi, kmax)].

Continuation counteroffers o′′i and o′′−i are calculated,
respectively for Pi and P−i, in a recursive manner. Instead
of two formulas calling one another recursively, and using
discount factors δi and δ−i alternately, just one unified
formula may be provided. Consider Pi submitting offer
o′′i in the last move k = kmax of the game, when o′′i
will be immediately accepted by P−i. According to the
formula for calculating o′′i proposed before, the respective
conclusion factor of Pi will be 1− δ−i. In order of that to
happen conclusion factor of P−i in the penultimate move
of the game k = kmax − 1 would be 1− δi · (1− δ−i), in
an intermediate move k = kmax − 2 of Pi would be 1−
δ−i · (1− δi · (1− δ−i)), and so on. That pattern may be
described with function λ(k, δi, δ−i), called a cumulative
conclusion factor and calculated as:

λ(k, δi, δ−i) =

{
(1− δ−i) k = kmax

(1− δ−i · λ(k + 1, δ−i, δi)) 0 ≤ k < kmax
(8)

Factor λ(k, δi, δ−i) measures belief of Pi that its
new offer selected from CN in move k would be
accepted by P−i and concluding the game. With
that in mind consider two hypothetical offers in CN :
one õ′ = argo∈CN

max(1− δ−i) · πi(o, k), assessed by
Pi as concluding the game, and respectively õ′′ =
argo∈CN−{õ′}[πi(o) ∼= π̄(CN − {õ′}, k)], as continuing the
game, i.e., a counteroffer of P−i when rejecting õ′.
By substituting õ′ and õ′′ in the respective parts of
the weighted sum for calculating o′′i specified before,
one gets o′′i = argo∈CN

[πi(o, k) ∼= λ(k, δi, δ−i) · πi(õ
′, k) +

This implementation is considered naive, since whenever
a player decides to submit a new offer it does not care
whether one could be accepted by its opponent in the next
move. For bargaining sets with a small number of offers
and reasonable high discount factors the contract may be
then agreed in a relatively small number of rounds, even
when players would have to be searching for the contract in
CB until the very last element. With larger sets, however,
a naive approach may lead to an excessive number of
rounds, up to the ⌈ |CB |

2 ⌉ maximum. Therefore a more clever
player may want to consider first which would be a future
counteroffer it may receive from its opponent in response
to the currently considered one. It would imply a recursive
implementation of the submitOffer() procedure.

Let us define strategy function si : N → CB to
associate moves of player Pi with the relevant offers
from the bargaining set. A decision made by player Pi

in move k, whether to accept one of the received offers
o′i ∈ CRi, or continue the game by selecting new offer
o′′i ∈ CN , would be si(k) = argmaxo∈{o′i,o′′i }(πi(o

′
i, k), δi ·

πi(o
′′
i , k)), where Pi’s candidate offer to conclude the

game o′i = argmaxo∈CRi
πi(o, k), and to continue the game

o′′i = argo∈CN
[πi(o, k) ∼= max(1− δ−i) · πi(o, k) + δ−i ·

πi(s−i(k + 1), k)]. Offer o′′i is chosen from CN by Pi as
the one providing a payoff value closest to the weighted
sum of payoffs, what is denoted by ∼=. The first component
of this sum represents a payoff portion related to the
‘concluding’ offer that could eventually be accepted by
the opponent, whereas the second component represents a
payoff portion of the ‘continuation’ counteroffer that would
be submitted in return by the opponent if the ‘concluding’
offer could not be accepted. The rationale for choosing
the respective weights 1− δ−i and δ−i is that with δ−i

closer to 1 the opponent would prefer to continue the game
with a new counteroffer submitted by it in the next move,
for otherwise with δ−i closer to 0 the opponent may be
more willing to accept an offer submitted by Pi in the

current move. For that reason, 1− δ−i and δ−i used in
the expression for calculating o′′i are called respectively
conclusion and continuation factors of Pi.

A recursive part of the formula for o′′i requires
Pi to calculate s−i(k + 1) in order to assess which
counteroffer P−i would eventually submit in move
k + 1. Besides knowing δ−i by Pi (which for a time
being could be assumed δ−i ≈ δi), assessment of the
prospective counteroffer would require Pi to know also
its opponent’s utility function U−i. Player Pi may cope
with it by assuming that its opponent evaluates offers
in the respective CSi and CN subsets within the same
(0, 1] range, and utility values it calculates for offers in
each respective subset are distributed evenly. Then payoff
of a counteroffer selected by P−i may be approximated
by Pi as the average of payoffs the latter would
get with its πi function. It is denoted formally as
π̄(C, k) = 1/|C|

∑
o∈C πi(o, k), where C ⊂ CB . Therefore

a decision made by player P−i in move k may be
modelled by Pi as s−i(k) = argo∈CB−CRi

[πi(o, k) ∼= 0.5 ·
(πi(o

′
−i, k) + δ−i · πi(o

′′
−i, k))]. Offer o′−i ∈ CSi is in Pi’s

view the one that P−i would consider acceptable to
Pi and concluding the game; Pi models it as o′−i =
argo∈CSi

[πi(o, k) ∼= π̄(CSi, k)]. Offer o′′−i ∈ CN is in Pi’s
view a new offer that P−i may choose to continue
the game; Pi models it as o′′−i = argo∈CN

[πi(o, k) ∼=
(1− δi) · π̄(CN , k) + δi · πi(si(k + 1), k))]. The respective
conclusion and continuation factors for P−i are 1− δi
and δi. Recursive calculation of offers o′′i and o′′−i that
imply continuing the game will eventually terminate in
the last possible move kmax = |CB|+ 1, when CN gets
empty. If Pi concludes the game it selects si(kmax) =
argmaxo∈CRi πi(o, kmax), otherwise P−i concludes the
game by selecting s−i(kmax) = argo∈CSi

[πi(o, kmax) =
π̄(CSi, kmax)].

Continuation counteroffers o′′i and o′′−i are calculated,
respectively for Pi and P−i, in a recursive manner. Instead
of two formulas calling one another recursively, and using
discount factors δi and δ−i alternately, just one unified
formula may be provided. Consider Pi submitting offer
o′′i in the last move k = kmax of the game, when o′′i
will be immediately accepted by P−i. According to the
formula for calculating o′′i proposed before, the respective
conclusion factor of Pi will be 1− δ−i. In order of that to
happen conclusion factor of P−i in the penultimate move
of the game k = kmax − 1 would be 1− δi · (1− δ−i), in
an intermediate move k = kmax − 2 of Pi would be 1−
δ−i · (1− δi · (1− δ−i)), and so on. That pattern may be
described with function λ(k, δi, δ−i), called a cumulative
conclusion factor and calculated as:

λ(k, δi, δ−i)

=

{
(1− δ−i) k = kmax

(1− δ−i · λ(k + 1, δ−i, δi)) 0 ≤ k < kmax
(8)

Factor λ(k, δi, δ−i) measures belief of Pi that its
new offer selected from CN in move k would be
accepted by P−i and concluding the game. With
that in mind consider two hypothetical offers in CN :

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bilateral multi-issue negotiation of execution contexts by proactive document agents 187

one õ′ = argo∈CN
max(1− δ−i) · πi(o, k), assessed by

Pi as concluding the game, and respectively õ′′ =
argo∈CN−{õ′}[πi(o) ∼= π̄(CN − {õ′}, k)], as continuing the
game, i.e., a counteroffer of P−i when rejecting õ′.
By substituting õ′ and õ′′ in the respective parts of
the weighted sum for calculating o′′i specified before,
one gets o′′i = argo∈CN

[πi(o, k) ∼= λ(k, δi, δ−i) · πi(õ
′, k) +

(1− λ(k, δi, δ−i)) · πi(õ
′′, k)]. By assuming δ−i ≈ δi, a

recursive calculation of λ may be further approximated by
iterative form λ(k, δi, δi) = 1 +

∑kmax−k+1
n=1 (−δi)n. The

closer values of δ−i and δi are in reality, the more accurate
estimation of the concluding offer could be.

The concept of an estimated selection of a concluding
offer is outlined schematically in Figure 3 and implemented
formally by Algorithm 3.

Figure 3 Estimated best offer selection

o’ o’’

CB:
CS CR CN

Algorithm 3 submitOffer() – estimated selection

8 J. Kaczorek and B. Wiszniewski

(1− λ(k, δi, δ−i)) · πi(õ
′′, k)]. By assuming δ−i ≈ δi, a

recursive calculation of λ may be further approximated by
iterative form λ(k, δi, δi) = 1 +

∑kmax−k+1
n=1 (−δi)n. The

closer values of δ−i and δi are in reality, the more accurate
estimation of the concluding offer could be.

The concept of an estimated selection of a concluding
offer is outlined schematically in Figure 3 and implemented
formally by Algorithm 3.

Figure 3 Estimated best offer selection

o’ o’’

CB:
CS CR CN

Algorithm 3 submitOffer() – estimated selection
Input: bargaining set (CB), past received (CR) and

submitted (CS) offers, incoming offer (or), players’
discount factor (δi), move number (k).

Output: offer to be submitted in return (os).
1: CR ← CR ∪ {or};
2: CN ← CB − (CR ∪ CS);
3: o′ ← argmaxo∈CR πi(o, k);
4: õ′ = argo∈CN

max(1− δ−i) · πi(o, k);
5: õ′′ = argo∈CN−{õ′}[πi(o) ∼= π̄(CN − {õ′}, k)];
6: λ← 1 +

∑kmax−k+1
n=1 (−δi)n;

7: o′′i =argo∈CN
[πi(o, k)∼=λ·πi(õ

′, k)+(1−λ)·
πi(õ

′′, k)];
8: if πi(o

′, k) > δi · πi(o
′′, k) then os ← o′ else os ← o′′;

9: CS ← CS ∪ {os};
10: return os;

By eliminating recursion from the player’s decision
in each phase which new offer to select from CN to
be accepted by its opponent in the next phase, we get
the less computationally demanding implementation of the
submitOffer() procedure than its recursive counterpart, and
which still provides a considerably better chance for players
to find a contract before exploring the entire bargaining set
CB . The estimated version of submitOffer() was used in our
experiments reported further in the paper.

4 Repeated Encounters

To this end only single encounters of a proactive
document-agent with execution devices have been assumed,
i.e. when it has no knowledge (or does not care) about its
past encounters with devices of specific classes. Recall from
Section 3 that upon concluding negotiation successfully
after playing the game using Algorithm 3, along with the
agreed contract each agent may collect two other pieces
of information: the actual bargaining set shared with its
opponent, and the sequence of offers submitted by the
latter. When brought back by each document agent to the
agency (a sever when they rest idle before migrating again

to implement another workflow), this knowledge could be
collected and used to train them in reaching agreements in a
yet smaller number of rounds; in other words, it will make
them more knowledgeable before the next encounter with a
device of the class they could recognise. Note that training
data needed for that could be accumulated quite fast, given
that agents may have to negotiate execution contexts for
dozens of activities in a single workflow process. So with
several workflow processes originated by the agency (even
with just a few document-agents migrating in the system), it
yields a collection of hundreds of bargaining sets and their
related negotiation histories.

The question we would like to address now is whether
repeated (multiple) encounters of a document agent with
execution devices of some class could aid the former
in recognizing that class, and predicting next – for each
properly recognized device class – a feasible solution of
the game. By “feasible” we mean a solution that would
be negotiated anyway by using Algorithm 3, but when
knowledge on past encounters is used – in a significantly
shorter series of moves.

Formally, we have distinguished two classification
subproblems, i.e. one may want a document to be trained:
(i) to recognise class xi of its opposing device, out of
the possible set of classes {x1, x2, ..., xn} and, (ii) to
discover precedence of offers in the bargaining set that a
device of the recognised class would most likely prefer.
A rationale behind this distinction is the following. Firstly,
combinations of specific options and their values, which
are present in offers in bargaining sets of devices from the
same class, could implicitly identify that class. Secondly,
preferences of devices belonging to the same class may
indirectly affect partial ordering of counteroffers submitted
to the document by that device during negotiation.
As demonstrated further in Subsection 5.1 four generic
device classes such as workstations, laptops, tablets and
smartphones could differ in subtle ways from one another,
both in terms of certain option values present or missing
for selected attributes, as well as their order of preference.
In other words, although each single device may have
its bargaining set and preferences defined individually by
its user, bargaining sets and preferences of all devices
belonging to the same class will have some common
features enabling its distinction from other classes.

We have decided to classify these features with neural
networks, for their ability to generalise, enabling handling
of unseen data, and their relatively simple implementation.

4.1 Classification of device types

A solution to the first classification problem is outlined in
Figure 4. Occurrence vectors β collect flags representing
content of each respective multi-issue offer in CB , as
defined in Section 2; They are constructed by module M1
as bit-words β = ω1ω2 . . . ω5, with each bit field ωi of
length |Ai| indicating which value option of the respective
attribute Ai occurs in any offer of CB . Thus generated
bit-words provide input to neural network N1. In the

By eliminating recursion from the player’s decision in
each phase which new offer to select from CN to be
accepted by its opponent in the next phase, we get the
less computationally demanding implementation of the
submitOffer() procedure than its recursive counterpart, and
which still provides a considerably better chance for players
to find a contract before exploring the entire bargaining set
CB . The estimated version of submitOffer() was used in our
experiments reported further in the paper.

4 Repeated Encounters

To this end only single encounters of a proactive
document-agent with execution devices have been assumed,
i.e., when it has no knowledge (or does not care) about its
past encounters with devices of specific classes. Recall from

Section 3 that upon concluding negotiation successfully
after playing the game using Algorithm 3, along with the
agreed contract each agent may collect two other pieces
of information: the actual bargaining set shared with its
opponent, and the sequence of offers submitted by the
latter. When brought back by each document agent to the
agency (a sever where they rest idle before migrating again
to implement another workflow), this knowledge could be
collected and used to train them in reaching agreements in a
yet smaller number of rounds; in other words, it will make
them more knowledgeable before the next encounter with a
device of the class they could recognise. Note that training
data needed for that could be accumulated quite fast, given
that agents may have to negotiate execution contexts for
dozens of activities in a single workflow process. So with
several workflow processes originated by the agency (even
with just a few document-agents migrating in the system), it
yields a collection of hundreds of bargaining sets and their
related negotiation histories.

The question we would like to address now is whether
repeated (multiple) encounters of a document agent with
execution devices of some class could aid the former
in recognising that class, and predicting next – for each
properly recognised device class – a feasible solution of
the game. By ‘feasible’ we mean a solution that would
be negotiated anyway by using Algorithm 3, but when
knowledge on past encounters is used – in a significantly
shorter series of moves.

Formally, we have distinguished two classification
subproblems, i.e., one may want a document to be trained:

1 to recognise class xi of its opposing device, out of the
possible set of classes {x1, x2, ..., xn}

2 to discover precedence of offers in the bargaining set
that a device of the recognised class would most
likely prefer.

A rationale behind this distinction is the following. Firstly,
combinations of specific options and their values, which
are present in offers in bargaining sets of devices from the
same class, could implicitly identify that class. Secondly,
preferences of devices belonging to the same class may
indirectly affect partial ordering of counteroffers submitted
to the document by that device during negotiation.
As demonstrated further in Subsection 5.1 four generic
device classes such as workstations, laptops, tablets and
smartphones could differ in subtle ways from one another,
both in terms of certain option values present or missing
for selected attributes, as well as their order of preference.
In other words, although each single device may have
its bargaining set and preferences defined individually by
its user, bargaining sets and preferences of all devices
belonging to the same class will have some common
features enabling its distinction from other classes.

We have decided to classify these features with neural
networks, for their ability to generalise, enabling handling
of unseen data, and their relatively simple implementation.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

188 J. Kaczorek and B. Wiszniewski

4.1 Classification of device types

A solution to the first classification problem is outlined in
Figure 4. Occurrence vectors β collect flags representing
content of each respective multi-issue offer in CB , as
defined in Section 2; They are constructed by module M1
as bit-words β = ω1ω2 . . . ω5, with each bit field ωi of
length |Ai| indicating which value option of the respective
attribute Ai occurs in any offer of CB . Thus generated
bit-words provide input to neural network N1. In the
training phase [Figure 4(a)], a collection of bargaining sets
negotiated by a document during its past encounters, is
converted by M1 to occurrence vectors, which are associated
next with their proper device class labels xi by network
N1 to train it. In the classification phase [Figure 4(b)],
a negotiated bargaining set is converted by M1 into the
occurrence vector and used next to classify the respective
device by the already trained network N1.

Figure 4 Device class recognition modules, (a) training
(b) classificationBilateral multi-issue negotiation of execution contexts by proactive document agents 21

bargaining
sets

M1: offers into
occurrence

vectors

occurrence
vectors β

N1: neural
network

x1,
x2,
...,
xn

(a) Training

bargaining
set

M1: offers into
occurrence

vectors

occurrence
vector β

N1: neural
network

xi

(b) Classification

Figure 4: Device class recognition modules

(a)

Bilateral multi-issue negotiation of execution contexts by proactive document agents 21

bargaining
sets

M1: offers into
occurrence

vectors

occurrence
vectors β

N1: neural
network

x1,
x2,
...,
xn

(a) Training

bargaining
set

M1: offers into
occurrence

vectors

occurrence
vector β

N1: neural
network

xi

(b) Classification

Figure 4: Device class recognition modules

(b)

4.2 Classification of device preferences

A solution to the second classification problem is outlined
in Figure 5. Upon recognising device class xi, a document
is ready to recognise preferences of offers in the bargaining
set shared with the actual device of that class. We base
this analysis on recognising binary relations between each
pair of offers in a sequence of offers which devices of the
class known to be xi had submitted in the past. Each device
class xi requires a separate neural network N2 for that – of
the same number of layers and neurones, but with different
weights.

In the training phase [Figure 5(a)] module M2 generates
all possible pairs of offers in CB to train network N2
to recognise their precedence relations. A relation vector
consists of ’1’ or ’0’ labels, each one indicating whether
for each respective pair of offers (oi, oj) they preceded or
succeeded one another in sequences recorded during past
encounters with a device of class xi. In the classification
phase [Figure 5(b)] module M2 generates all possible pairs
of offers for the currently negotiated CB and provides them
to the already trained network N2 to extract their precedence
relations. Floats returned by the network are discretised
with a threshold set to 0.5 to distinguish ’1’ from ’0’ labels
marking respectively the recognised precedence relation.

Next, module M3 reconstructs a sequence of offers based
on the extracted relations; the sequence indicates in what
order the opposing device would like to select offers from
the bargaining set. This knowledge is utilised by module
M4 to assess a possible concluding offer in Algorithm 4, as
explained in the next subsection.

Figure 5 Device preferences recognition modules, (a) training
(b) classification22 J. Kaczorek and B. Wiszniewski

bargaining
sets

M2: generate
pairs of offers

pairs N2: neural
network (xi)

relation
vectors

(a) Training

bargaining
set

M2: generate
pairs of offers

pairs N2: neural
network (xi)

relation vector

M3: relations
into a sequence

sequence
M4: predict

contract based
on sequence

contract

(b) Classification

Figure 5: Device preferences recognition modules

(a)

bargaining

set

M2: generate
pairs of offers

pairs N2: neural
network (xi)

relation vector

M3: relations
into a sequence

sequence
M4: predict

contract based
on sequence

contract

(b)

4.3 Intelligent offer selection

Based on the content of a bargaining set, a document
equipped with functional modules outlined in Figure 4(b)
and Figure 5(b), should be able to recognise a device class
before starting the actual negotiation, as well as predict
preferred ordering of all offers a device may want to
submit. This knowledge is utilised by a document to make a
decision, in each respective round of the negotiation, which
offer not submitted yet would be the most promising one
to conclude negotiation with a device in the next round.
Recall that in Algorithm 3 this decision was based on
estimation how much the opposing device may be willing to
concede by accepting a new offer submitted by a document,
based on the belief of the latter – modelled with the λ
factor defined by formula (8). Instead of that, Algorithm 4
takes advantage of knowing the preferred sequence of offers
reconstructed by module M3 to imitate continuation of the
game using two sequences made of offers that remained
in CN : the opponent’s one reconstructed by Pi, and its
own, sorted according to its utility function Ui; this concept
is outlined schematically in Figure 6 and implemented
formally by Algorithm 4.

Figure 6 Intelligent best offer selection

CB:
CS CR CN

o’ o’’

Imitation of the game implemented by the ’repeat-until’
loop in lines 5–11 assumes conclusion factor λ ≈ 1 in

Bilateral multi-issue negotiation of execution contexts by proactive document agents 189

each move n and fine stepping through offers. With
lower values of λ, reflecting less confidence of Pi that
offer õi would be concluding, slightly coarser stepping
might be considered, e.g., by assuming ∆(λ,CN) = ⌈(1−
λ)(|CN | − 1)⌉ and modifying line 10 of Algorithm 4 to
n← n+ 1 +∆(λ,CN). With that modification, the closer
conclusion factor λ gets to 0 in each iteration of the loop,
the more candidate offers from CN would be skipped by
Pi when imitating the game. It however does not preclude
the skipped offers from being selected in a next negotiation
round. In the experiments, reported further in the paper fine
stepping (∆ = 0) through the imitation loop of Algorithm 4
was assumed.

Algorithm 4 submitOffer() – intelligent selection

10 J. Kaczorek and B. Wiszniewski

Algorithm 4 submitOffer() – intelligent selection
Input: bargaining set (CB), reconstructed sequence of

opponent’s offers (C̃−i), past received (CR) and
submitted (CS) offers, incoming offer (or), players’
discount factor (δi), move number (k).

Output: offer to be submitted in return (os).
1: CR ← CR ∪ {or};
2: CN ← CB − (CR ∪ CS);
3: C̃i ← sort(CN , Ui);
4: o′ ← argmaxo∈CR πi(o, k);
5: repeat

Imitate the game using player’s and opponent’s
sequences of offers [module M4 in Figure 5(b)]:

6: C̃Si ← ∅; C̃Ri ← ∅; n← 0;
7: õ−i ← C̃−i[n];
8: õi ← C̃i[n];
9: C̃Ri ← C̃Ri ∪ {õ−i}; C̃Si ← C̃Si ∪ {õi};
10: n← n+ 1;
11: until õi ∈ C̃Ri || õ−i ∈ C̃Si

12: o′′ ← õi;
13: C̃−i ← C̃−i/{or, o′′}
14: if πi(o

′, k) > δi · πi(o
′′, k) then os ← o′ else os ← o′′;

15: CS ← CS ∪ {os};
16: return os;

could be based on data which represent recorded histories
of games. Training data may come from two sources:
document agents collecting ex post historical data on their
activities during repeatedly performed workflow processes
in a virtual organisation they belong to (when all agents
negotiated with their opponents using only Algorithm 3),
or ex ante generation of training data based on some
predefined set of generic device classes and their proximate
preference characteristics (to enable them to negotiate using
Algorithm 4).

In our original research we used the second approach,
and considered both stationary computers (workstations)
and mobile devices including laptops, tablets, smartphones
and cellphones, working in two modes (connected and
not connected to the network), i.e. ten generic classes
in total (Kaczorek, 2015). Owing to that we were able
to assess how effective SBG could be in resolving
conflicts between proactive documents and devices during
repeated encounters compared to single ones, and whether
acceptable payoff levels could be observed, well before
actually implementing workflow processes and virtual
organisations for concrete target domains. We were also
able to assess how well, and at what cost, proactive
document agents may be trained to take advantage of
Algorithm 4. In the experiments reported further in this
Section the neural network toolbox of Matlab 2012b was
used to experiment with alternative network architectures.
All algorithms presented before were also implemented
in Matlab, whereas training and test data generation
procedures were implemented in C++.

For brevity we present below results of our experiments
with just four classes of devices (workstations, laptops,

tablets and smartphones, by default always connected to
the network), which were representative enough to evaluate
Algorithms 3 and 4.

5.1 Preference of offers

As argued before, the content of a multi-issue offer implies
a concrete execution context that the receiving device could
provide to the arriving proactive document. Depending
on its purpose and design, each device would exhibit
various combinations of option flags for issues considered
in Section 2, as well as would have various preferences of
offers embedding these combinations.

Workstations (class x1 of execution devices) provide
potentially the most powerful execution context for
proactive documents. For that reason some preference
may be given to documents with embedded functionality
supporting advanced interaction with workers and services,
i.e., with options from the J and D groups, less often with
options from the W group. Because of their immobility,
workstations may either be located in the worker’s office
or at home. When in office, they are usually wired to
the organisation’s intranet (groups I and N of options), or
less often, connected directly to other networks (groups E
and N of options). When located at home, they may still
be wired to the collaborator’s organisation intranet through
a VPN tunnel (groups I and N of options), otherwise
they may use modem connections (options of the I or
E group combined with options of the A or M group).
Security would often involve options from the T group,
rarely options form the P group. Finally, reliability options
may be from any H , F , B, or L group, depending on the
particular software used to handle active documents.

Laptops (class x2 of execution devices) are not less
powerful than stationary workstations, and because of
their improved mobility are more flexible, owing to the
’performance’ attribute (A3) options related to the WiFi
capability; in fact their preference rules are the same as the
workstation ones, extended by rules involving options from
the R group, but with preference given to options from the
N group before the R group. Another difference is that
laptops are in general more “personal” than workstations,
so their users (owners) may want to have more control on
what proactive document-agents can do when performing
their activities. Therefore laptops may more prefer options
of the W group before options of the J and D groups.

Tablets (class x3 of execution devices) lack the
most classic components of a personal computer, namely
keyboard and mouse, but due to the advanced touch-up
screen technology, they can easily compensate for that
with other interaction paradigms. They also can, due to
their sufficient screen width, emulate a keyboard of a
size compared to a small laptop. In general they are
very “personal” devices, so their software systems may be
customised by users to the point that some local tools or
services commonly installed on workstations or laptops may
be unavailable to the arriving proactive document-agent.
Dominant contexts with regard to the ’performer’ attribute

5 Experiments

As mentioned at the beginning of Section 4, training of
document-agents to recognise device classes and predict
feasible solutions of the current encounter, given the
properly recognised class of the actual device and the
bargaining set it would like to share with the document,
could be based on data which represent recorded histories
of games. Training data may come from two sources:
document agents collecting ex post historical data on their
activities during repeatedly performed workflow processes
in a virtual organisation they belong to (when all agents
negotiated with their opponents using only Algorithm 3),
or ex ante generation of training data based on some
predefined set of generic device classes and their proximate
preference characteristics (to enable them to negotiate using
Algorithm 4).

In our original research we used the second approach,
and considered both stationary computers (workstations)

and mobile devices including laptops, tablets, smartphones
and cellphones, working in two modes (connected and
not connected to the network), i.e., ten generic classes
in total (Kaczorek, 2015). Owing to that we were able
to assess how effective SBG could be in resolving
conflicts between proactive documents and devices during
repeated encounters compared to single ones, and whether
acceptable payoff levels could be observed, well before
actually implementing workflow processes and virtual
organisations for concrete target domains. We were also
able to assess how well, and at what cost, proactive
document agents may be trained to take advantage of
Algorithm 4. In the experiments reported further in this
section the neural network toolbox of MATLAB 2012b was
used to experiment with alternative network architectures.
All algorithms presented before were also implemented
in MATLAB, whereas training and test data generation
procedures were implemented in C++.

For brevity we present below results of our experiments
with just four classes of devices (workstations, laptops,
tablets and smartphones, by default always connected to
the network), which were representative enough to evaluate
Algorithms 3 and 4.

5.1 Preference of offers

As argued before, the content of a multi-issue offer implies
a concrete execution context that the receiving device could
provide to the arriving proactive document. Depending
on its purpose and design, each device would exhibit
various combinations of option flags for issues considered
in Section 2, as well as would have various preferences of
offers embedding these combinations.

Workstations (class x1 of execution devices) provide
potentially the most powerful execution context for
proactive documents. For that reason some preference
may be given to documents with embedded functionality
supporting advanced interaction with workers and services,
i.e., with options from the J and D groups, less often with
options from the W group. Because of their immobility,
workstations may either be located in the worker’s office
or at home. When in office, they are usually wired to
the organisation’s intranet (groups I and N of options), or
less often, connected directly to other networks (groups E
and N of options). When located at home, they may still
be wired to the collaborator’s organisation intranet through
a VPN tunnel (groups I and N of options), otherwise
they may use modem connections (options of the I or
E group combined with options of the A or M group).
Security would often involve options from the T group,
rarely options form the P group. Finally, reliability options
may be from any H , F , B, or L group, depending on the
particular software used to handle active documents.

Laptops (class x2 of execution devices) are not less
powerful than stationary workstations, and because of
their improved mobility are more flexible, owing to
the ’performance’ attribute (A3) options related to the
WiFi capability; in fact their preference rules are the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

190 J. Kaczorek and B. Wiszniewski

same as the workstation ones, extended by rules involving
options from the R group, but with preference given to
options from the N group before the R group. Another
difference is that laptops are in general more ‘personal’
than workstations, so their users (owners) may want to
have more control on what proactive document-agents can
do when performing their activities. Therefore laptops may
more prefer options of the W group before options of the
J and D groups.

Tablets (class x3 of execution devices) lack the
most classic components of a personal computer, namely
keyboard and mouse, but due to the advanced touch-up
screen technology, they can easily compensate for that
with other interaction paradigms. They also can, due to
their sufficient screen width, emulate a keyboard of a
size compared to a small laptop. In general they are
very ‘personal’ devices, so their software systems may be
customised by users to the point that some local tools or
services commonly installed on workstations or laptops may
be unavailable to the arriving proactive document-agent.
Dominant contexts with regard to the ’performer’ attribute
would than have options of the W group, giving the
worker full control over a document content. If, however,
proactive documents could reduce their expectations to the
less demanding set of services, or can complete a simpler
activity on their own, options of the D and J groups
would probably be accepted by the tablet device. Because
of their highly customised local systems, tablets can provide
most often only substitutes of specific tools required by the
document, therefore a smaller subset of combinations of
option flags from the I and E groups (compared to their
workstation and laptop counterparts) should be considered.
Another issue may be the available networking hardware;
for tablets we have assumed in the experiments only the
WiFi and 4G/LTE connectivity, i.e., combinations of option
flags from the R and A groups.

Contexts provided by smartphones (class x4 of
execution devices) differ significantly when compared
to their tablet counterparts. Their touch-up screens
can still enable interaction almost to the same extent
as the former (including keyboard emulation), but
due to their yet more customised functionality, many
tools and services may in practice never be provided
to the worker or to the document-agent when performing
a specific activity. Therefore even less combinations
of option flags from the I and E groups are possible
compared to tablets, whereas preference of options
related to the ’performer’ attribute could be the same
as for tablets, i.e., combinations of option flags from the
W group would be more preferred than the ones from
the D and J groups. For the same reason options related
to interaction reliability would realistically be limited to
combinations of option flags from the L group only.
Networking hardware of smartphone devices enable access
to wireless and cellular networks alike, however preference
shall be given to the ones from the R group before the M
group, due to the relatively higher cost of using cellular
networks.

5.2 Option trees

Preference rules of each class of agents have been formally
specified by us as policies (Kaczorek, 2015). However, each
agent may implement the policy of its class individually,
with specific combinations of option flags for each issue
discussed in Section 2. In consequence, each party may
view the shared bargaining set CB as a differently sorted
set of offers. Each particular view can be represented with
an option tree, which constitutes specific implementation of
the policy. As explained further in Subsection 5.3, we used
the technique of implementing policies with option trees to
generate training and test datasets for modules shown in
Figures 4 and 5.

Document and option trees for the bargaining set
CB = {o1, o2, o3, o4, o5} negotiated in the example shown
in Figure 1 are shown in Figure 7. Nodes of the option tree
are labelled with option values defined before, while utility
of each single attribute value for the given party is indicated
by the integer superscript.

Figure 7 Option trees of negotiating partners, (a) device
options (b) document options

24 J. Kaczorek and B. Wiszniewski

1.00U1 : 0.93 0.79 0.71 0.64

o2 o1 o3 o4 o5

H31A5 : H31 F12 H12 H43

T43A4 : T43 K41 C43 T43

M46A3 : A45 R24 R41 N41

E13A2 : I11

D31A1 :

(a) Device options

1.00U2 : 0.87 0.67 0.60 0.53

o5 o3 o4 o1 o2

H44A5 : F11 H11 H33 H33

T41A4 : K46 C45 T41 T41

N43A3 : R23 R41 A42 M41

I15A2 : E12

D31A1 :

(b) Document options

Figure 7: Option trees of negotiating partners

(a)

24 J. Kaczorek and B. Wiszniewski

1.00U1 : 0.93 0.79 0.71 0.64

o2 o1 o3 o4 o5

H31A5 : H31 F12 H12 H43

T43A4 : T43 K41 C43 T43

M46A3 : A45 R24 R41 N41

E13A2 : I11

D31A1 :

(a) Device options

1.00U2 : 0.87 0.67 0.60 0.53

o5 o3 o4 o1 o2

H44A5 : F11 H11 H33 H33

T41A4 : K46 C45 T41 T41

N43A3 : R23 R41 A42 M41

I15A2 : E12

D31A1 :

(b) Document options

Figure 7: Option trees of negotiating partners

(b)

5.3 Negotiation effectiveness

Two network architectures N1 and N2 were tested to
determine how many layers and neurones would suffice,
and would not consume too much memory of a proactive

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bilateral multi-issue negotiation of execution contexts by proactive document agents 191

document agent with all modules shown in Figure 4(b) and
Figure 5(b) embedded in its code. For each device class, a
significant number of random bargaining sets was created,
each one with multi-issue offers generated by a procedure
specially implemented for that; the uniform distribution of
attribute values was assumed, so each single bargaining
set could be considered a statistically valid representative
of all bargaining sets of the given execution device class.
A resource of 2,000 such datasets was created in total.
Another generation procedure combined possible options
for each respective device class policy and generated a rich
set of their implementations (option trees). Each negotiation
experiment involved both, estimated (Algorithm 3) and
intelligent (Algorithm 4) selection of offers and the total
number of exercises reached 1,600.

We compared payoffs reached by proactive documents
that did not take advantage of machine learning with those
that did. They were also compared with payoff values that
could be calculated directly from formula (6), when U1 and
U2 were known beforehand – considered an ideal case and
called a fair payoff; it represented a situation, when parties
could reach agreement in the first negotiation round.

Moreover, four conceptual types of proactive document
agents with reasonably diversified preference rules were
introduced. The rationale behind that was to check if
the lack of specific options in the bargaining set may
affect a number of negotiation rounds. In that regard
protected documents have been distinguished from open
ones – by taking into account whether they need any
secure connection to perform their activity or not, and heavy
documents from light ones – by considering whether they
require CPU power and the amount of RAM above or
below some average levels. In consequence, a protected
document would not consider combinations of option flags
of the P group for the ’security’ issue, whereas a heavy
document would consider only a few selected combinations
of option flags of the U , R, M , A and N groups for the
’performance’ issue.

Results of experiments, when negotiations between
documents of four different types and execution devices
of four different classes were simulated are summarised
in Figure 8(a). Each party used Algorithm 3 for estimated
selection of offers in each round. It may be seen that
payoff levels for each respective pair of players are strongly
diversified, most notably for laptop devices. This is because
offers negotiated by laptops involved a much richer set of
options than tablets or smartphones.

Results obtained for untrained documents have been
contrasted next to payoff levels that were got by trained
documents. In this series of simulation experiments trained
documents used Algorithm 4 for intelligent selection of
offers in each round, whereas devices used estimated
selection as before. Payoff levels obtained by just one
out of all 16 tested pairs (protected and heavy type
trained documents negotiating with laptops) are illustrated
in Figure 8(b). It also illustrates how quality of training
documents to classify devices can affect their capability
to reach agreements in a lesser number of rounds. A
fitness level value indicates the ratio of devices of a

given class correctly recognised by a document. So, the
0% fitness level in Figure 8(b) indicates a document
that is not trained at all to recognise devices [like all
documents shown in Figure 8(a)], whereas respectively the
100% level indicates that all laptop devices were correctly
recognised by documents during all tests. It may be seen
that payoffs got by even incompletely trained documents
were significantly better than the ones got by documents
not trained at all.

Figure 8 Payoff levels for selected device and document
classes, (a) document not trained (b) documents
trained

workstation laptop tablet smartphone
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

A
ve

ra
g

e
 p

a y
o

ff
s

protected & heavy protected & light open & heavy open & light

Device classes

 0
.0

13

(a)

Fair 100% 91% 86% 80% 59% 0%
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45 0,
43

5

0,
28

2

0,
26

2

0,
23

7

0,
21

0

0,
15

4

0,
01

3

protected & heavy document connected laptop

A
ve

ra
g

e
p

ay
o

ff
s

Fitness level

(b)

Figure 9 illustrates results of negotiation experiments with
documents of all four types trained adequately, i.e., each
with the 100% fitness level, to recognise the relevant
device classes and their sequences of offers. In that series
of experiments bargaining sets of a moderate size were
used, for which negotiation involved 20–25 rounds, and
option trees of the respective negotiating parties were sorted
opposite to one another to possibly maximise a number
of rounds in each exercise. Documents implemented
alternately Algorithms 3 and 4, whereas devices used only
Algorithm 3. For each device class, documents that could
recognise sequences of offers returned by devices were also
able to get close to the fair result in a significantly smaller
number of rounds.

5.4 Training effectiveness

Recognition of device preferences by a proactive document
enables it to guess a contract faster than by negotiating a

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

192 J. Kaczorek and B. Wiszniewski

larger content of the respective bargaining set. As described
before in Figure 4(b) and Figure 5(b), it is a two-step
process: first a device class is classified by neural network
N1, and next a sequence of offers from that set is generated
by module M3, based on relations between offers in CB ,
recognised by neural network N2. A proactive document
would have rather limited computational resources when
executing on the device, therefore experiments were aimed
at finding acceptably small-sized network architectures that
could effectively classify devices and sequences within
domains determined by attribute value options specified
before.

In a series of experiments it was found that a 3-layer
network N1, with 20 neurones in each of the first two layers
and nine neurones in the output layer sufficed to recognise
device classes, whereas a 2-layer network N2, with ten
neurones in the first layer and 1 neurone in the output layer
sufficed to recognise preferences of a device from a single
class. Networks N1 and N2 had respectively 82 and 174
inputs.

Two characteristics of intelligent proactive documents
were determined in these experiments: fitness level
mentioned before, and hit rate, measuring the ratio
of sequences of offers reconstructed correctly from the
negotiated bargaining sets. Results are shown in Figure 10.

For the experiments with networks N2 trained to
recognise preferences of devices, output produced only by
adequately trained networks N1 was used, i.e., recognising
device classes with a 100% fitness level (called perfect for
brevity). It allowed us to eliminate unnecessary cumulation
of errors.

It may be seen in Figure 10(a) that N1, trained with at
least 50 example sequences containing all offers specified
by the respective option tree, was able to reach a perfect
fitness level. In other words, a proactive document using
such a network would properly recognise each device
class defined in Subsection 5.1. Sequences generated from
the experimental bargaining sets were used next to train
each respective N2 network capable of recognising device
preferences. It may be seen in Figure 10(b) that for
the workstation and laptop classes, already ten sequences
were sufficient to train the relevant N2 network to
recognise device preferences, whereas above 20 sequences
preferences of devices from each class considered in the
paper could be recognised.

5.5 Performance testing

The experiments reported above allowed us to realistically
assess costs of implementing the proposed intelligent
bargaining mechanism in terms of the time needed to train
a document and the additional memory load that it will
have to carry to support five neural networks needed to
recognise four device classes and their preferences. Training
a document to recognise device classes varied from 1.27 to
3.36 seconds, when performed on a moderately equipped
laptop. Furthermore, training a document to recognise
preferences of a given device class varied from 3.03 to

12.45 seconds on the same laptop, respective to the lengths
of example sequences used. It implies that actual training
may be performed directly on one of the available execution
devices in the system.

Figure 9 Intelligent vs. estimated offer selection in four
document classes, (a) protected and heavy
(b) protected and light (c) open and heavy (d) open
and light

A
v

e
ra

g
e

 n
o

 o
f

ro
u

n
d

s

intelligent bargaining estimated bargaining

workstation laptop tablet smartphone
0
2
4
6
8

10
12
14
16
18
20
22
24

2

4
3

2

20

13

11

8

(a)

 workstation laptop tablet smartphone
0
2
4
6
8

10
12
14
16
18
20
22
24

3
4

3 3

16
17

18

13

A
v

e
ra

g
e

 n
o

 o
f

ro
u

n
d

s

intelligent bargaining estimated bargaining

(b)

A
v

e
ra

g
e

 n
o

 o
f

ro
u

n
d

s

intelligent bargaining estimated bargaining

workstation laptop tablet smartphone
0
2
4
6
8

10
12
14
16
18
20
22
24

3
2 2 2

14

21

15

11

(c)

A
v

e
ra

g
e

 n
o

 o
f

ro
u

n
d

s

intelligent bargaining estimated bargaining

workstation laptop tablet smartphone
0
2
4
6
8

10
12
14
16
18
20
22
24

2
3 3

2

17

22

13

10

(d)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bilateral multi-issue negotiation of execution contexts by proactive document agents 193

Figure 10 Document training capability characteristics,
(a) network N1 for device classes (b) network N2

for device preferences

10 20 40 50 100 200
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

99% 100% 100% 100%

fi
tn

es
s

le
ve

l

number of training sequences

55%

74%

(a)

10 20 40 50 100 200
96,50%

97,00%

97,50%

98,00%

98,50%

99,00%

99,50%

100,00%
100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

99.30%

97.04%

99.98%

h
it

 r
at

e

number of training sequences

workstation laptop tablet smartphone

(b)

5.6 Volume testing

Moderately sized bargaining sets, which were used in the
experiments reported before, resulted in relatively short
training sequences; after converting them to the relational
form, as explained in Subsection 4.2, they provided a
teaching material of a lesser volume. Such a setting could
make training exercises more difficult compared to a
richer set of relations. However, larger bargaining sets (of
about 1,000 offers) were also tested, over which various
documents negotiated with a laptop device. With estimated
selection of offers (Algorithm 3), a proactive document
was able to conclude negotiation with its execution device
in about 100 rounds, with respective average payoffs for
each party π1 = 0.95 · 10−10 and π2 = 0.75 · 10−10, and
δ1 = δ2 = 0.8. Network N2 trained with a set of precedence
relations generated on the basis of this exercise was able
to recognise about 85% pairs, which upon reconstruction
of sequences of offers in the order preferred by a device,
allowed documents to reach agreements with devices in
about three rounds, like in the experiments with smaller
bargaining sets described before. The average payoffs were
respectively π1 = 0.26 and π2 = 0.22. Average time of
training N2 was, however, nearly eight hours – on the

same laptop used earlier during experiments with bargaining
sets of a lesser size. That may be considered a long
time, but as mentioned at the beginning of Section 4,
training of the network can be performed offline in the
agency, in between document-agent missions. Moreover,
the agency may use a more powerful server provided by
the organisation implementing its workflow processes with
document-agents proposed in this paper.

5.7 Implementability considerations

Intelligent selection of offers implemented by Algorithm 4
requires each proactive document to carry code enabling it
to perform five different classification tasks. These tasks,
however, may be accomplished with just two network
architectures N1 and N2 specified before.

In our implementation a document would have to carry
five different sets of weights to set up just two networks to
work, whereas execution of the network would be delegated
to the dedicated e-mail client installed on a device, as
mentioned in Section 1.

Additional load of documents capable of recognising
device classes and device preferences could be estimated
for three layers of network N1 as:

1 20 neurones, 82 inputs each; 82 weights and 1 bias
for each neurone requires 20 · (82 + 1) = 1,660
floating point numbers

2 20 neurones, 20 inputs each; 20 weights and 1 bias
for each neurone requires 20 · (20 + 1) = 420 floating
point numbers

3 9 neurones, 20 inputs each; 20 weights and 1 bias for
each neurone requires 9 · (20 + 1) = 189 floating
point numbers.

and two layers of N2 as

1 10 neurones, 174 inputs each; 174 weights and 1 bias
for each neurone requires 10 · (174 + 1) = 1,750
floating point numbers

2 1 neurone, 10 inputs; 10 weights and 1 bias requires
1 · (10 + 1) = 11 floating point numbers.

Based on the above it can be calculated that networks
N1 and N2 required respectively 2,269 and 1,761 floating
point numbers to set them up, therefore for handling four
classes considered in the paper the total of 9,313 floating
point numbers were required. In Java single-precision 32-bit
IEEE 754 floating point representation (IEEE, 2008) that
amount of data required a document to carry just 37.2KB
of extra load.

These figures are very promising and provide a good
indicator for our current implementation effort aimed at
incorporating N1 and N2 network architectures in the
dedicated e-mail client mentioned before.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

194 J. Kaczorek and B. Wiszniewski

6 Related work

A negotiation model considered in the paper involves
exchange of multi-issue offers by two players, with no
information about preferences known to one another,
nor any assumption made on the class of functions
used to calculate utility of offers. The only assumption
on the negotiation process has been that parties start
with the offer of their highest utility and make gradual
concessions by selecting consecutive offers from their
individually sorted option trees. One advantage of the
simple negotiation model proposed in the paper is that
SBG can be played by proactive documents and execution
devices without support of any external negotiation service.
Of course, solutions based on external services may be
considered to aid the negotiating party in that respect,
such as negotiation-as-a-service (NaaS) proposed in Bala
et al. (2013), but it may work only when the proactive
document-agent has (or the device’s options file allows it
to) access the network from its current execution device.

6.1 Multi-issue negotiation

Although a generic approach to the problem of multi-issue
negotiation with no information about the opponent has
been proposed in the literature (Lai and Sycara, 2009),
a formal mathematical proof of the convergence of the
monotonic concession strategy, which SBG implements
with option trees, was not provided until (Zheng et al.,
2013). The only property of utility functions of negotiating
parties assumed there was that they had to be concave,
due to a specific geometric interpretation of the space of
offers AT . It was shown that the distance between offers
of the two negotiating parties decreases in each round until
a contract could be agreed. This geometrical interpretation
may be applied to SBG played by proactive documents and
devices negotiating over option trees. Recall the example
negotiation in Figure 1 and note that utility values of offers
and counteroffers selected by each party according to the
amount of concession, which either one can accept in the
current round, are getting closer in the space of offers until
contract o3 is agreed. Two observations could be made
on the model proposed in this paper with regard to the
above. One is that bargaining sets are discrete and option
trees provide strictly monotonic ordering of complete offers
for each respective negotiating party. Another is that the
utility values assigned to each issue in the option tree may
be calculated by parties arbitrarily. Therefore no specific
assumptions have to be made on the class nor properties of
utility functions used by players to evaluate offers in their
respective option trees – except to be injective, to enable
sorting of the tree and ensure monotonicity of preferences.

6.2 Intelligent negotiation

Augmenting proactive documents with learning capability
to speed-up bargaining, is an important feature for
negotiation with mobile execution devices – as their

capabilities may dynamically degrade between encounters
because of unstable network connections or low battery
load, among others.

A major problem for negotiation parties is the lack
of a detailed knowledge on the opponent and its tactics,
making negotiating behaviour of the latter hard to predict.
That knowledge could be discovered by analysing historical
data on previous encounters, or when no negotiation history
is available – by implementing mechanisms enabling
dynamic adaptation of the negotiation agent to its opponent
behaviour during the actual encounter (Baarslag et al.,
2016).

Modelling specific opponent’s characteristics by a
negotiation agent to enable it to adapt to the behaviour
of the former, and generate offers leading to agreements
faster, may be represented as the optimisation problem.
For example, in Wang and Wang (2013), the best offer
in each round is searched in the set of possible offers
using the particle swarm optimisation (PSO) method
(Kennedy and Eberhart, 1995). PSO was used to maximise
a specially defined objective function parametrised by
time pressure and eagerness factors; the latter aggregated
history success-or-failure of the last few transactions.
Another example of modelling generation of offers as the
optimisation problem could be found in Brzostowski and
Kowalczyk (2006), where negotiation was modelled as a
multi-state control process, so the intelligent agent’s task
was to determine a sequence of optimal controls, i.e., to
predict future offers.

Using neural networks to aggregate history of past offers
and assist a negotiation agent in selecting appropriate tactics
have been demonstrated in Roussaki et al. (2011). Authors
assumed that no a-priori knowledge on opponents existed,
thus proper offline training of the network with historical
data was not possible; instead they proposed online training
during the actual encounter. In consequence, their research
concentrated on predicting offers that would faster lead to
the contract – based on the offers submitted by the opponent
during some initial series of rounds of the actual encounter.
Two problems with this approach exist, namely how many
rounds are needed to train a network during the current
encounter in order to enable it to generate a concluding
offer, and what are computational costs of achieving that,
i.e., what minimum size of the network would suffice. Some
hints were given in Roussaki et al. (2006), presenting results
of experiments with neural networks of various sizes in
a single issue bilateral negotiation; encounters of 100–200
rounds required just three neurones in its hidden layer and
one in its output layer to predict a contract.

When compared to the above, our approach also relies
on neural networks, but prefers training of document agents
before, rather then during the encounter. In general, neural
networks are supposed to perform better when they are
trained offline, owing to a much richer set of offers that
could be used to train a network (Wilson and Martinez,
2003). Two observations could be made on the model
proposed in this paper with regard to the above. One is
that content of option trees is predetermined by a set of
classes of execution devices that a proactive document

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Bilateral multi-issue negotiation of execution contexts by proactive document agents 195

could encounter during its workflow. Another is that each
execution device has some inherent preferences imposed
by rules specific to its class. With our experiments we
were able to show that if only the training set includes
sufficiently many offers from bargaining sets of each
respective device class, the network may be effectively
trained to recognise device classes based on the offers in
the respective bargaining sets they share with their actual
oponnents. Moreover, solution of the problem of predicting
the exact sequence of offers leading to the agreed contract
by a negotiation agent, addressed before in Brzostowski and
Kowalczyk (2006), may be based on generalising orderings
of offers observed during its past encounters with devices
of the same, properly recognised class.

7 Conclusions

Main contribution of the paper is threefold. One is
document engineering, which uses a document-centric
modelling perspective to view documents as both
interaction and information units (Glushko and McGrath,
2008). Owing to the negotiation mechanism, a proactive
document’s code brought to the receiving device can
be seamlessly adjusted and incorporated in the actual
execution context to become an integral component of
its system. Another is knowledge driven BPM systems,
which could be set-up ad hoc by collaborators to support
human decision-making by leveraging knowledge about
processes and their contexts in an automated and proactive
manner (Motahari Nezhad and Akkiraju, 2015). Finally,
augmenting e-mail messages with proactive document
attachments, which can combine their passive content with
active services, and interact on their own with devices
and their users, allowed converting an ordinary e-mail
system into a sort of multi-agent system, introducing to
e-mail based exchange of documents self-organisation and
self-steering (Bellotti et al., 2005).

The primary goal of the research reported in the paper
has been to show that conflicting requirements on execution
contexts can be resolved by a proactive document-agent
and a device-agent in a responsive way in a game-theoretic
fashion and without any external service support. This could
be particularly useful when devices operate in uncertain or
insecure network environments or under pressure of time or
low battery load, among others.

Another goal has been to assure concluding negotiation
in a possibly small number of rounds. One solution
for that could be just reducing a document’s discount
factor. It, however, would weaken negotiation position
of a document, as devices could use discount factors of
higher values, leading to contracts of lesser payoffs to the
document. Instead, an estimated selection of offers was
used, which allowed parties to explore bargaining sets for
a concluding offer in fewer number of rounds, compared
to the naive version, not suitable for larger bargaining
sets. Experiments indicated that estimated selection lead to
reasonable payoffs, close to the fair one.

Finally, it has been demonstrated that if negotiation
histories from previous encounters with devices exist, i.e.,
documents had a chance to meet representatives of certain
device classes during their past missions, machine learning
using really simple neural networks could be adopted by
a document in a cost effective way to improve selection
of offers during negotiation. Such an improvement would
not imply that documents might be willing to accept offers
submitted by the opposing device faster, but by discovering
its preferences to save a number of rounds for negotiating
a contract that would be agreed anyway.

As the extension of this work, we plan to investigate
further how proactive document-agents could learn classes
of execution devices and their preferences not included
initially in the classification proposed in Section 2 –
such as smartwatches, devices which already exist but
their functionality evolves in time, or devices yet to
be invented for the growing IoT ecosystem. Besides,
a dedicated application involving negotiating proactive
document-agents may use a more specialised definition
of its space of offers – to narrow the target specific
options and fit better to the given application class or
document semantics, e.g., security for banking documents,
performance for authoring documents with multimedia
content, or reliability for documents exchanged in crisis
management systems. Definitions of specific spaces of
offers could be based on existing specification standards,
e.g., the common information model (CIM) (DMTF, 2005).
These applications may, however, require more advanced
machine learning schemes, e.g., a social learning approach
proposed in Hao et al. (2014) – where documents could
collect more information about the population of devices by
interacting with their peers rather then working alone.

Acknowledgements

This work was supported in part by the National Science
Center in Poland under grant DEC1-2011/01/B/ST6/06500

References

Baarslag, T., Hendrikx, M.J.C., Hindriks, K.V. and Jonker, C.M.
(2016) ‘Learning about the opponent in automated
bilateral negotiation: a comprehensive survey of opponent
modeling techniques’, Autonomous Agents and Multi-Agent
Systems, September, Vol. 30, No. 5, pp.849–898,
DOI: 10.1007/s10458-015-9309-1.

Bala, M.I., Vij, S. and Mukhopadhyay, D. (2013) ‘Intelligent agent
for prediction in e-negotiation: an approach’, in Proceedings of
the International Conference on Cloud Ubiquitous Computing
Emerging Technologies, CUBE 2013, November, pp.183–187,
DOI: 10.1109/CUBE.2013.41.

Bellifemine, F.L., Caire, G. and Greenwood, D. (2007) Developing
Multi-Agent Systems with JADE, Wiley.

Bellotti, V., Ducheneaut, N., Howard, M., Smith, I. and Grinter, R.E.
(2005) ‘Quality versus quantity: e-mail-centric task management
and its relation with overload’, Human–Computer Interaction,
Vol. 20, Nos. 1–2, pp.89–138.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

196 J. Kaczorek and B. Wiszniewski

Binmore, K. (1994) Game Theory and the Social Contract, Playing
Fair Edition, Vol. 1, MIT Press, Cambridge, MA.

Brzostowski, J. and Kowalczyk, R. (2006) ‘Predicting partner’s
behaviour in agent negotiation’, in Proceedings of the 5th
International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS’06, ACM, New York, NY, USA,
May, pp.355–361, DOI: 10.1145/1160633.1160697.

Cotton, D., Eggert, L., Touch, J., Westerlund, M. and Cheshire, S.
(2011) Internet Assigned Numbers Authority (IANA) Procedures
for the Management of the Service Name and Transport
Protocol Port Number Registry, RFC 6335, RFC Editor, August
[online] https://www.rfc-editor.org/info/rfc6335 (accessed 19 Oct
2018).

DMTF (2005) Common Information Model [online]
http://www.dmtf.org/standards/cim (accessed 19 Oct 2018).

Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen, K.,
Salisbury, M., Terry, D.B. and Thornton, J. (2000) ‘Extending
document management systems with user-specific active
properties’, ACM Trans. Inf. Syst., April, Vol. 18, No. 2,
pp.140–170, DOI: 10.1145/348751.348758.

Faratin, P., Sierra, C. and Jennings, N.R. (1998) ‘Negotiation
decision functions for autonomous agents’, Robotics and
Autonomous Systems, Vol. 24, No. 3, pp.159–182 [online]
https://doi.org/10.1016/S0921-8890(98)00029-3 (accessed 19 Oct
2018).

Freed, N. and Borenstein, N. (1996) Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC 2045, RFC Editor, November [online]
https://www.rfc-editor.org/info/rfc2045 (accessed 19 Oct 2018).

Glushko, R.J. and McGrath, T. (2008) Document Engineering –
Analyzing and Designing Documents for Business Informatics
and Web Services, MIT Press.

Hao, J., Leung, H-F. and Ming, Z. (2014) ‘Multiagent reinforcement
social learning toward coordination in cooperative multiagent
systems’, ACM Trans. Auton. Adapt. Syst., December, Vol. 9,
No. 4, pp.20:1–20:20, DOI: 10.1145/2644819.

IEEE (2008) IEEE Standard for Floating-Point Arithmetic,
IEEE Std 754-2008, August, pp.1–70, DOI: 10.1109/
IEEESTD.2008.4610935.

Kaczorek, J. (2015) Automated Negotiations over
Collaboration Protocol Agreemens, PhD thesis, Gdańsk
University of Technology [online] http://pbc.gda.pl/
Content/55656/phd kaczorek jerzy.pdf.

Kennedy, J. and Eberhart, R. (1995) ‘Particle swarm optimization’,
in Proceedings of the IEEE International Conference on Neural
Networks, IEEE, Los Alamitos, CA, USA, November, Vol. 4,
pp.1942–1948, DOI: 10.1109/ICNN.1995.488968.

Lai, G. and Sycara, K. (2009) ‘A generic framework for automated
multi-attribute negotiation’, Group Decision and Negotiation,
Vol. 18, No. 2, pp.169–187, DOI: 10.1007/s10726-008-9119-9.

MacCrimmon, K.R. and Messick, D.M. (1976) ‘A framework for
social motives’, Behavioral Science, Vol. 21, No. 2, pp.86–100,
DOI: 10.1002/bs.3830210203.

Motahari Nezhad, H.R. and Akkiraju, R. (2015) Towards
Cognitive BPM as the Next Generation BPM Platform for
Analytics-Driven Business Processes, pp.158–164, Springer
International Publishing.

Nash, J. (1950) ‘The bargaining problem’, Econometrica, Vol. 18,
No. 2, pp.155–162.

Roussaki, I., Papaioannou, I.V. and Anagnostou, M.E. (2006)
‘Employing neural networks to assist negotiating intelligent
agents’, in Proceedings of the 2nd IET International Conference
on Intelligent Environments, IE’06, IEEE, Los Alamitos, CA,
USA, July, Vol. 1, pp.101–110, DOI: 10.1145/1160633.1160697.

Roussaki, I., Papaioannou, I.V. and Anagnostou, M.E. (2011) ‘Using
neural networks for early detection of unsuccessful negotiation
threads’, International Journal on Artificial Intelligence Tools,
Vol. 20, No. 3, pp.457–487, DOI: 10.1142/S0218213011000231.

Schimkat, R. and Küchlin, W. (2002) ‘Living documents – micro
servers for documents’, in XML-Based Data Management
and Multimedia Engineering – EDBT 2002 Workshops, EDBT
2002 Workshops XMLDM, MDDE, and YRWS, Prague, Czech
Republic, 24–28 March, pp.512–525.

Triantaphyllou, E. (2013) ‘Multi-criteria decision making methods:
a comparative study’, Applied Optimization, Springer, USA,
ISBN: 9781475731576.

Wang, Z. and Wang, L. (2013) ‘Adaptive negotiation agent for
facilitating bi-directional energy trading between smart building
and utility grid’, IEEE Transactions on Smart Grid, Vol. 4,
No. 2, pp.702–710, DOI: 10.1109/TSG.2013.2237794.

Wilson, D.R. and Martinez, T.R. (2003) ‘The general inefficiency
of batch training for gradient descent learning’, Neural
Networks, Vol. 16, No. 10, pp.1429–1451, DOI: 10.1016/
S0893-6080(03)00138-2.

Zheng, R., Chakraborty, N., Dai, T., Sycara, K. and Lewis, M.
(2013) ‘Automated bilateral multiple-issue negotiation with
no informatio about opponent’, in Proceedings of the
47th Hawaii International Conference o System Sciences,
HICSS 2013, IEEE, Los Alamitos, CA, USA, pp.520–527,
DOI: 10.1109/HICSS.2013.626.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

