Bimetallic Bi/Cu\(^0\)-catalyzed persulfate-based advanced oxidation processes towards clofibric acid degradation in wastewater

Jibran Iqbal\(^a\)*, Noor S. Shah\(^b\)**, Javed Ali Khan\(^c\), Mohamed A. Habila\(^d\), Grzegorz Boczkaj\(^e,f\), Asam Shad\(^g\), Yousef Nazzal\(^h\), Ahmed A. Al-Taani\(^h,i\), Fares Howari\(^j\)

\(^a\) College of Interdisciplinary Studies, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
\(^b\) Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
\(^c\) Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
\(^d\) Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
\(^e\) Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza 11/12 Str, 80-233, Gdańsk, Poland
\(^f\) EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
\(^g\) Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan
\(^h\) College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
\(^i\) Department of Earth and Environmental Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
\(^j\) College of Arts and Sciences, Fort Valley State University, Fort Valley, GA, 31030, USA

ARTICLE INFO

Keywords:
Pharmaceuticals
Contaminants of emerging concern
Bimetallic zerovalent metals
Advanced oxidation processes
Water treatment
Ecotoxicity investigation

ABSTRACT

Clofibric acid (CFA), an important blood-lipid regulatory drug is an emerging organic pollutant and widely reported in water resources. A novel bimetallic, bismuth/zero valent cupper (Bi/Cu\(^0\)) catalyst was prepared which showed better physiological, structural, and catalytic properties than Cu\(^0\). The Bi/Cu\(^0\) effectively catalyzed persulfate (S\(_2\)O\(_8^2\)) and caused 85% degradation of CFA. The Bi coupling improved reusability and stability of Cu\(^0\). The use of alcoholic and anionic radical scavengers and analyzing change in [S\(_2\)O\(_8^2\)]\(_0\) proved that Bi/Cu\(^0\)/S\(_2\)O\(_8^2\) yield hydroxyl radicals (\(\text{HO}^\bullet\)) and sulfate radicals (SO\(_4^\bullet\)). The \(\text{HO}^\bullet\) and SO\(_4^\bullet\) showed faster reaction with CFA, i.e., 4.65 \(\times\) 10\(^9\) and 3.82 \(\times\) 10\(^9\) M\(^{-1}\) s\(^{-1}\) and degraded CFA into four degradation products. Under optimal conditions of [Bi/Cu\(^0\)]\(_0\) = 1.0 g/L and [S\(_2\)O\(_8^2\)]\(_0\) = 40 mg/L, 99.5% degradation of the 10 mg/L of CFA was achieved at 65 min. Temperature showed promising effects on the removal of CFA by Bi/Cu\(^0\)/S\(_2\)O\(_8^2\) and caused 98% removal at 323 K than 75% at 298 K at 32 min. The temperature effects were used to calculate activation energy, enthalpy, and rate constant of CFA degradation. The Bi/Cu\(^0\)/S\(_2\)O\(_8^2\) showed effective removal of CFA in real water samples also. The ecotoxicity study confirmed non-toxic product formation which suggests high capability of the proposed technology in the treatment of CFA.
1. Introduction

Water is a fundamental component of life and used in many sectors, i.e., as a precursor of industrial products, cooling, transportation, agriculture, constructions, and energy production etc. [1,2]. The rapid pollution of water resources by different pollutants lead to increase stress on the available freshwater resources [3-5]. The different water polluters include heavy metals, dyes, pesticides, and pharmaceutical products [6–12]. Pharmaceuticals products which are produced and used in large quantities contribute greatly into water pollution [13–17]. The pharmaceutical products and their metabolites are detected at lower concentrations in aquatic environment, however, their continuous discharge pose serious health and environment issues [13,14,18,19]. The pharmaceuticals are classified into different types in accordance with their functions, such as blood-lipid regulators, antibiotics, analgesic, and steroids etc. [13,14,20–22]. The pharmaceutical, clofibric acid (CFA, (p-Chlorophenenoxy)-2-methylpropionic acid, C_{10}H_{12}ClO_{2}) is an important and active component of blood-lipid regulatory drugs. The CFA is widely used as a medication and reported to greatly contaminate aquatic environment [20,21,23]. The CFA is found to be highly persistent and causes endocrine disruption and numerous other health and environmental disturbances [20,21,23–25]. The ubiquitous presence in aquatic environment and greater toxicity, high persistency, and complex structure makes the use of conventional treatment technologies less effective in the treatment of CFA [22,24]. The CFA due to its high toxicity and persistency is resistant to biodegradation [22]. Adsorption technologies which involve only changing the physical form of the pollutant is also disfavored in treating CFA [22].

Alternatively, advanced oxidation processes (AOPs) which produces hydroxyl radical (•OH) and sulfate radical (SO_{4}^{2–}) and effectively degrade toxic organic pollutants are receiving interests [11,26–30]. The activated persulfate (PS, S_{2}O_{8}^{2–}) is used as the source of •OH and SO_{4}^{2–}. Among the different activators, zerovalent metals, such as zerovalent copper (ZVCu, Cu^{0}) consistently provide metal ion for activating S_{2}O_{8}^{2–} into •OH and SO_{4}^{2–} and are preferably used (reaction (1) to (8)) [29,31–33]. Besides, the zerovalent metal-based activation process is recyclable as the metal ion is regenerated as shown in reaction (8). Contrary, in the metal ion activation of S_{2}O_{8}^{2–}, the metal ion need to be supplied continuously and could not be recycled [34].

\[
2\text{Cu}^{0} + 2\text{H}_2\text{O} \rightarrow 2\text{Cu}^{2+} + 2\text{OH}^{–} + \text{H}_2
\] (1)

\[
2\text{Cu}^{2+} + 2\text{H}_2\text{O} \rightarrow 2\text{Cu}^{2+} + 2\text{OH}^{–} + \text{H}_2
\] (2)

\[
2\text{Cu}^{0} + S_{2}\text{O}_{8}^{2–} \rightarrow 2\text{Cu}^{2+} + 2\text{OH}^{–} + 2\text{SO}_{4}^{2–}
\] (3)

\[
\text{Cu}^{2+} + S_{2}\text{O}_{8}^{2–} \rightarrow \text{Cu}^{3+} + \text{SO}_{4}^{2–} + \text{SO}_{4}^{2–}
\] (4)

\[
\text{Cu}^{2+} + S_{2}\text{O}_{8}^{2–} \rightarrow \text{Cu}^{3+} + S_{2}\text{O}_{4}^{2–}
\] (5)

\[
\text{SO}_{4}^{2–} + \text{H}_2\text{O} \rightarrow \text{SO}_{4}^{2–} + \text{OH}^{–} + \text{H}^{+}
\] (6)

\[
\text{SO}_{4}^{2–} + \text{OH}^{–} \rightarrow \text{SO}_{4}^{2–} + \text{OH}
\] (7)

\[
\text{Cu}^{0} + \text{Cu}^{2+} \rightarrow \text{Cu}^{2+}
\] (8)

The zerovalent metals, e.g., Cu^{0} possess distinctive properties, e.g., low cost, high redox potential, greater recovery, high surface reactivity, and multiple treatment mechanisms [14,35–39]. These distinctive properties prefer the use of Cu^{0} for activation of S_{2}O_{8}^{2–} and treatment of large number of different organic and inorganic water contaminants [14,35–37]. However, bare Cu^{0} is likely to undergo agglomeration, formation of passive layer, and leaching of metal ion which consequently could influence the formation of reactive radicals and treatment of contaminants [14]. These flaws are controlled by coupling Cu^{0} with bismuth metal (Bi) and form bimetallic Bi/Cu^{0}. The Bi possess exceptional properties and reported in previous studies to pose significant impacts on improving distinct properties and catalytic activity of zerovalent metals [40–42].

This study was aimed to improve the physiological characteristics, reusability, stability, and catalytic activity of Cu^{0} by coupling it with Bi. The prompt reactivity of bimetallic Bi/Cu^{0} was suggested to accelerate the decomposition of S_{2}O_{8}^{2–} into •OH and SO_{4}^{2–}, and degradation of CFA. Different studies were performed to assess the impacts of Bi on the reactivity and stability of Cu^{0}, yield of •OH and SO_{4}^{2–}, and degradation of CFA. The study of competition kinetic was used to calculate rate constants of •OH and SO_{4}^{2–} with CFA. The oxidative degradation products of CFA were determined by mass spectrometric analysis to identify participation of •OH and SO_{4}^{2–} into degradation of CFA. Other objectives of this study were to investigate the effects of different [CFA]_{0}, [S_{2}O_{8}^{2–}]_{0}, and [Bi/Cu^{0}]_{0}, different pH, inorganic ions, and temperature to optimize the treatment conditions. The effect of temperature was used to study different thermodynamic parameters, e.g., entropy and enthalpy of the treatment of CFA. The copper ion leaching into solution and cyclic treatment of CFA was done to investigate stability and reusability of the prepared materials. The Bi/Cu^{0} was employed to treat CFA in real water samples with an aim to extend its potential practical applications. Besides, toxicities of CIP and its DPs, kinetics of degradation, and proposed degradation pathways were studied.
2. **Material and method**

2.1. **Materials**

CFA (C_{6}H_{12}ClO_{4}, 99%), sodium persulfate (Na_{2}S_{2}O_{8}, 98%), copper sulfate pentahydrate (CuSO_{5}5H_{2}O, 98%), para-chlorobenzoic acid (p-CBA, 99%), meta-toluic acid (m-TA, 99%), and sodium borohydride (98%) were bought from Sigma-Aldrich. Other chemicals that include bismuth nitrate, perchloric acid (HClO_{4}), sodium hydroxide (NaOH), ethanol, tert-butyl alcohol (TBA), isopropyl alcohol (IPA), potassium chloride (KCl), sodium nitrite (NaNO_{2}), sodium carbonate (Na_{2}CO_{3}) and sodium bicarbonate (NaHCO_{3}), sodium nitrate (NaNO_{3}), cuprous chloride (CuCl), zinc nitrate (Zn(NO_{3})_{2}), ferric chloride (FeCl_{3}), bismuth nitrate (Bi(NO_{3})_{3}), ferrous sulfate (FeSO_{4}), and manganese chloride (MnCl_{2}) were purchased from Daejung, Korea. High purity deionized water (DI) prepared in the laboratory was used for preparing reaction solution.

2.2. **Synthesis of zerovalent Bi/Cu^{0} and Cu^{0}**

The synthesis of Cu^{0} was carried out by a simple titration method against the reductant, borohydride (BH_{4}) as presented in reaction (9).

\[
Cu^{2+} + 2BH_{4}^{-} + 6H_{2}O \rightarrow Cu^{0} + 2B(OH)_{3} + 7H_{2}
\]

In the synthesis of Cu^{0}, the reaction solutions used were CuSO_{5}5H_{2}O (titrate) and sodium borohydride (titrant). Two 250 mL airtight conical flask were taken and used to prepare copper sulfate (CuSO_{4}) and sodium borohydride (NaBH_{4}) solutions separately. The copper sulfate solution (70 mL) was made by dissolving 4.0 g of copper sulfate in DI water and ethanol mixture (60:10). Ethanol was added to minimize access of air into the solution. Further, the copper solution was purged with N\textsubscript{2} gas for 20 min to eliminate any dissolved oxygen. The borohydride solution was prepared by dissolving 3.0 g of NaBH\textsubscript{4} in 80 mL DI water and transferred into burette for titrating copper solution. The NaBH\textsubscript{4} solution was started to add drop-wise into the copper solution which resulted into simultaneous formation of Cu^{0} precipitate. The precipitate of Cu^{0} was transferred to petri-dish and dried in oven at 65 °C for 7 h. The dried materials were kept in N\textsubscript{2} gas purged airtight glass vial.

The synthesis of Bi/Cu^{0} was prepared by the same procedure used for Cu^{0}, except added 2.0 g bismuth nitrate (Bi precursor) with CuSO_{5}5H_{2}O and titrated the mixture of Bi and Cu solutions with borohydride. The precipitate of Bi/Cu^{0} was transferred to petri-dish and dried in oven at 80 °C for 7 h.

2.3. **Characterization**

Different instruments were used to study the surface, structural, morphological, elemental characteristics as well as thermal stability of the Cu^{0} and Bi/Cu^{0}. Scanning electron microscope and x-ray electron spectroscopy (SEM-EDX, TESCAN VEGA (LMU)/SEM), INCAx-act (Oxford Instruments)/EDX) instruments were utilized to identify morphology of Cu^{0} and Bi/Cu^{0} and dispersion of different elements on their surfaces. The identification of different functional groups in the prepared Cu^{0} and Bi/Cu^{0} were identified by x-ray diffractometer (XRD/Rigaku Ultima III) and thermal gravimetric analyzer (TGA/PerkinElmer/STA 6000), respectively.

2.4. **Catalytic performance of Cu^{0} and Bi/Cu^{0} and analysis of CFA**

The catalytic activities of Cu^{0} and Bi/Cu^{0} were investigated in the absence and presence of S\textsubscript{2}O\textsubscript{8}^{2-} using CFA as the target contaminant. A 100 mL of CFA solution was prepared in airtight conical flask using 10 mg/L of [CFA]_{0}, 500 mg/L of [Cu^{0}]_{0} and [Bi/Cu^{0}]_{0}, and 80 mg/L of of S\textsubscript{2}O\textsubscript{8}^{2-}_{0} and treated for 0–65 min using stirring. A 250 µL of solution was taken at each treatment interval and analyzed with high performance liquid chromatography (HPLC, Agilent Technologies/1200 Series) using quaternary pump. A C18 column (XDB, particle size 5 µm, 150 × 4.6 mm (i.d.)) and a UV-Vis detector fixed at 230 nm wavelength was used for analysis. Acetonitrile/0.05 M oxalic acid (40: 60) mixture (isocratic mode) was used as a mobile phase (at 1.0 mL/min flow rate). From the treated solution, 20 µL of sample was injected into the HPLC.

Gas-chromatography/mass spectrometry (GC/MS, Agilent-8890/5977) was used to determine degradation products of CFA. The carrier gas was helium (purity 99.99%) and the capillary column (30 m, internal diameter 0.25 µm) was HP-5 (5%-phenyl methyl siloxane). The injector was set at 250 °C and in splitless mode while oven temperature programmed as: 60 °C (hold for 4 min) and increased to 160 °C at a ramp rate of 10 °C/min (hold for 2 min) and finally increased to 250 °C at 10 °C/min (hold for 7 min).

For pH studies, a 0.05 M of HClO\textsubscript{4} or NaOH was added for adjusting desired pH. The lower reactivity of ClO\textsubscript{4} with OH- and SO2- prefer using HClO\textsubscript{4}.

The effects of the process parameters, e.g., initial concentrations of CFA, Cu^{0}, and S\textsubscript{2}O\textsubscript{8}^{2-}, and inorganic ions (anions and cations) were checked in separate experiments using each of these species. The hot plat magnetic stirrer was used for treatment of CFA at different temperatures (T), i.e., 298, 303, 313, and 323 K. The temperature effect was used to calculate thermodynamic parameters, e.g., activation energy (E\textsubscript{a}) and enthalpy of (∆H) of CFA treatment using Arrhenius equations (equation (10)) and transition state theory (equation (11)), respectively.
\[-\ln k_{\text{obs}} = \frac{E_a}{RT} - \ln A \]
\[\Delta H = E_a - RT \]

In the above equations, A is Arrhenius constant, R is gas constant = 8.31 J/mol/K and \(k_{\text{obs}}\) is observed degradation constant.

The change in \([S_2O_8^{2-}]_0\) was checked according to the procedure described by Liang et al. [43] calorimetric method to reveal decomposition of \(S_2O_8^{2-}\) into reactive radicals. The competition kinetic studies were performed in the presence of \(p\)-CBA and \(m\)-TA to measure rate constants of CFA with \(^{\bullet}\)OH and \(\text{SO}_4^{\bullet-}\) which is discussed in detail our previous study [39,44]. The competitors, \(p\)-CBA and \(m\)-TA were used at identical concentration as CFA and analyzed by HPLC method from He et al. [45] study.

For studying reusability, the prepared Cu\(^0\) and Bi/Cu\(^0\) were separated from treated solution, washed three times with water using centrifuge and reused for treatment of the target pollutant. The level of leached Cu ions in treated solutions at each cycle was monitored by atomic absorption spectrophotometry at 324.8 nm wavelength.

The CFA was treated in two real water samples collected from Canal View Vehari (Sample 1) and Sharqi Colony Vehari (Sample 2). The physical and chemical properties of these real water samples are presented in our published study [28].

2.5. Ecotoxicological study

For identifying the ecotoxicological effects of CFA and its products, the computerized structural-based toxicity evaluation program, ECOSAR (Ecological Structure Activity Relationship) was used. ECOSAR was used to identify acute and chronic toxicities toward three different aquatic organisms, fish, daphnia, and green algae [46]. The acute toxicities denoted as \(LC_{50}\) and \(EC_{50}\) were monitored by short- or long-time exposure of organisms to chemicals while chronic toxicities denoted as \(ChV\) were determined from long-term exposure to chemicals [47,48]. The \(LC_{50}\) depicts the chemicals level that can stop growth of 50% daphnia and fish after 48 and 96 h exposure times, respectively. On contrary, \(EC_{50}\) depict the level of toxin that can decline 50% green algae growth after 96 h exposure time [47,48].

3. Results and discussions

3.1. Structural characteristics of Bi/Cu\(^0\) and Cu\(^0\)

The data obtained from IR analysis of Cu\(^0\) and Bi/Cu\(^0\) (in the 4000 to 400 cm\(^{-1}\) wavelength range) is shown in Fig. 1a. The bands at 670 and 1150–1270 cm\(^{-1}\) were ascribed to Cu–O and C–O stretching vibrations, respectively. The spectra showed band at 960 cm\(^{-1}\) which was ascribed to B–O bonds in \(\nu_1\) (BO\(_3\)) and found to arise due to reducing agent, BH\(_4^-\) [39]. In addition, spectra of Bi/Cu\(^0\) showed bands at 500 and 1000 cm\(^{-1}\) due to Bi–O bonds and suggest Bi pairing with Cu\(^0\) [49]. In the IR spectra, the band observed at 3300 cm\(^{-1}\) was assigned to O–H stretching vibration.

The data obtained from XRD analysis of Cu\(^0\) and Bi/Cu\(^0\) (at 2\(\theta\) degree range of 10–80) is presented in Fig. 1b. The XRD graph
showed peaks at 2θ of 37, 43 and 50.5° due to Cu₀ (JCPDS 89-2838)). The peaks found at 43 and 50.5° signifies the (111) and (200) planes of Cu₀. The Cu₀ peaks identified in XRD analysis suggest successful formation of Cu₀ and Bi/Cu₀. The XRD data showed peaks at 2 theta values of 35.5, 62.5, and 73.5° which were ascribed to Cu₂O. The Bi/Cu₀ crystal showed one peak of Cu₂O which suggest inhibited corrosion of Cu₀ by Bi. Contrary to Cu₀, XRD data of Bi/Cu₀ showed peak of Bi at a 2θ of 27.5 which portrayed successful Bi coupling with Cu₀ and formation of Bi/Cu₀ [41]. This XRD data was used to calculate the degree of crystallinity (DOC%) and crystallite size (D) of the Cu₀ and Bi/Cu₀ using the following equations (12) and (13) [5,13,50].

\[
DOC\% = \frac{A_c - A_a}{A_c} \times 100
\]

(12)

\[
D = \frac{K \lambda}{\beta \cos \theta}
\]

(13)

In equation (12), the total area under crystalline phase (Ac) and amorphous phase (Aa) were measured and DOC% was calculated as 72 and 74 for Cu₀ and Bi/Cu₀, respectively. The Scherrer equation (13) was used to calculate the crystallite size D (nm) using the values of K = 0.89, λ = 0.154 nm, β = difference in 2θ at half maximum, and cos of θ. The D values for Cu₀ and Bi/Cu₀ were calculated as 3.6 and 3.1 nm respectively. The high degree of crystallinity and small crystallite size suggest high catalytic activity of Bi/Cu₀ than Cu₀ [51].

Fig. 1c depicts the morphological characteristics of Cu₀ and Bi/Cu₀obtained from SEM analysis. The Cu₀ particles showed highly agglomerated hollow channels consisting of porous layers (Fig. 1c (A)). However, the SEM result showed particle of Bi/Cu₀ to be less agglomerated and rough clusters with irregular quasi-spherical geometry (Fig. 1c (B)). The less agglomerated structure of Bi/Cu₀ could be due to the coupled Bi. Further, the presence of coupled Bi and formation of bimetallic Bi/Cu₀ was determined by EDX analysis. The EDX results of Cu₀ and Bi/Cu₀ are presented in Fig. 1d (A) and 1d (B), respectively. The elemental composition from EDX analysis of
Cu\(^0\) given in Fig. 1d (A) depict the presence of Cu, S, Na, and O peaks. On contrary, the EDX analysis of Bi/Cu\(^0\) depict the presence of Cu, Bi, O, and Na peaks (Fig. 1d (B)). The Cu peaks in the EDX spectra of both Cu\(^0\) and Bi/Cu\(^0\) illustrate successful formation of zerovalent copper by the borohydride-based reduction method. The N and S peaks looked to arise from the sodium borohydride and copper sulfate salts used as precursor salts. The Bi peak found only in Bi/Cu\(^0\) depicts successful coupling of Bi with Cu\(^0\).

Results from thermogravimetric analyses of Cu\(^0\) and Bi/Cu\(^0\) are shown in Fig. 1e which illustrate high weight (\%) loss to heat treatment in Cu\(^0\) than Bi/Cu\(^0\) till 690 °C. The weight (\%) loss was sharp initially in both Cu\(^0\) and Bi/Cu\(^0\) possibly due to the loss of adsorbed moisture and water on the surface of the catalysts. At later stage, the Cu\(^0\) showed a dramatic increase in the weigh (\%) loss which is reported due to oxidation of the bare zerovalent metal at later stage of heat treatment [42].

3.2. Catalytic degradation of CFA

The activities of Cu\(^0\) and Bi/Cu\(^0\) combined with S\(_2\)O\(_8\)\(^2\) were checked for degradation of CFA and compared the results with control experiments using only S\(_2\)O\(_8\)\(^2\), Cu\(^0\), and Bi/Cu\(^0\). The results obtained are presented in Fig. 2 which showed 9, 36, 50, 67, and 85% loss of CFA by S\(_2\)O\(_8\)\(^2\), Cu\(^0\), Bi/Cu\(^0\), Cu\(^0\)/S\(_2\)O\(_8\)\(^2\), and Bi/Cu\(^0\)/S\(_2\)O\(_8\)\(^2\), respectively, at 65 min. The high CFA removal by the Cu\(^0\) and Bi/Cu\(^0\)-catalyzed S\(_2\)O\(_8\)\(^2\) process could be due to the \(\bullet\)OH and SO\(_4\)\(^–\) formed as shown in reactions (1) to (7). It is found that Cu metal loss electrons which are taken by S\(_2\)O\(_8\)\(^2\) and decomposed into \(\bullet\)OH and SO\(_4\)\(^–\) (reactions 3 to 4) [28,29,39,52]. The \(\bullet\)OH and SO\(_4\)\(^–\) quickly react with CFA and initiate its degradation into products. In the case of Bi/Cu\(^0\), the coupled Bi form Bi–Cu bond which facilitate transfer of electron to S\(_2\)O\(_8\)\(^2\) and possibly increase the formation rate of \(\bullet\)OH and SO\(_4\)\(^–\) [53,54]. This rapid formation of \(\bullet\)OH and SO\(_4\)\(^–\) consequently trigger higher CFA degradation in Bi/Cu\(^0\) than Cu\(^0\). In addition, in Bi/Cu\(^0\), both metals could cause decomposition of S\(_2\)O\(_8\)\(^2\). Other possibility looked that the coupled Bi could increase surface area of Bi/Cu\(^0\) and accommodate more S\(_2\)O\(_8\)\(^2\) and CFA than only Cu\(^0\). Besides, in bimetallic zerovalent metals, the second metal is reported to prevent corrosion and improve surface roughness which looked as the possible reasons for high performance of Bi/Cu\(^0\) than Cu\(^0\) [55]. The considerable removal of CFA by Cu\(^0\) and Bi/Cu\(^0\) alone could be due to adsorption of CFA and reduction reactions (due to loss of electrons) [39,56]. The zerovalent metals are
reported to be strong reductant and reportedly cause rapid dehalogenation of halogenated compounds, like CFA \cite{39,56}.

The reactions involving catalytic activation of $\text{S}_2\text{O}_8^{2–}$ into $\bullet \text{OH}$ and $\text{SO}_4^{–}$ and degradation of CFA occur on the surface of the catalyst.

Different processes, e.g., competition kinetics, use of radical scavengers, and monitoring change in concentration of $\text{S}_2\text{O}_8^{2–}$ were performed to elucidate (1 $\bullet \text{OH}$ and $\text{SO}_4^{–}$ formation from the Cu0 and Bi/Cu0-mediated $\text{S}_2\text{O}_8^{2–}$ processes and (2 contribution of $\bullet \text{OH}$ and $\text{SO}_4^{–}$ in CFA degradation. The study of competition kinetics was used to calculate rate constants of $\bullet \text{OH}$ and $\text{SO}_4^{–}$ with CFA using the method reported by Shah et al. \cite{39}. The results obtained showed high-rate constants values of $\bullet \text{OH}$ and $\text{SO}_4^{–}$ with CFA, e.g., $k_{\bullet \text{OH}/\text{CFA}} = 4.65 \times 10^9$ and $k_{\text{SO}_4^{–}/\text{CFA}} = 3.82 \times 10^7$ L/mol/s. The study of radical scavenging was performed with iso-propyl alcohol (IPA) as both $\bullet \text{OH}$ ($k_{\bullet \text{OH}/\text{IPA}} = 1.9 \times 10^9$ L/mol/s) and $\text{SO}_4^{–}$ ($k_{\text{SO}_4^{–}/\text{IPA}} = 8.2 \times 10^7$ L/mol/s) scavenger while tert-butyl alcohol (TBA) for only $\bullet \text{OH}$, i.e., ($k_{\bullet \text{OH}/\text{TBA}} = 6.0 \times 10^8$ L/mol/s) scavenging. The removal of CFA by the IPA and TBA with Cu0 and Bi/Cu0-mediated $\text{S}_2\text{O}_8^{2–}$ processes, i.e., Cu0/S$_2$O$_8^{2–}$/IPA, Cu0/S$_2$O$_8^{2–}$/TBA, Bi/Cu0/S$_2$O$_8^{2–}$/IPA, and Bi/Cu0/S$_2$O$_8^{2–}$/TBA was obtained as 27, 37, 34, and 47\%, respectively (Fig. 3). The diminished removal of CFA using IPA and TBA demonstrate that Cu0-and Bi/Cu0 catalyze $\text{S}_2\text{O}_8^{2–}$ into $\bullet \text{OH}$ and $\text{SO}_4^{–}$ that subsequently facilitated CFA abatement. Further studies utilizing different concentrations of IPA and TBA, 100,
200, 400, and 800 mg/L on the removal of CFA by Cu0/S$_{2}$O$_{8}^{2-}$ and Bi/Cu0/S$_{2}$O$_{8}^{2-}$ were investigated to accurately ensure the yield of •OH and SO$_{4}^{●}$ and their contribution in the removal of CFA. The results obtained under these conditions are illustrated in Table 1 which show strong inhibition of CFA degradation efficiency at elevated level IPA and TBA. Reactivities depend on the product of second order rate constant and concentration, the use of high concentration of scavenger than CFA shift the probability of reaction of reactive radicals more towards scavengers [57].

The %decomposition as a function of change in initial concentrations of S$_{2}$O$_{8}^{2-}$ was calculated as 52 and 76% by Cu0 and Bi/Cu0 at 65 min, respectively (Data not shown). The high degree of %decomposition also illustrates Cu0-and Bi/Cu0-catalyzed S$_{2}$O$_{8}^{2-}$ reaction into •OH and SO$_{4}^{●}$. The study by Wang et al. [33] utilizing radical scavengers and electron spin resonance (ESR) studies also revealed both •OH and SO$_{4}^{●}$ formation in the zerovalent metal-mediated S$_{2}$O$_{8}^{2-}$ process.

Further experiments based on the analysis of oxidative degradation products of CFA by GC-MS analysis were carried out to elucidate initiation of CFA degradation by •OH and SO$_{4}^{●}$. The Cu0-and Bi/Cu0-catalyze S$_{2}$O$_{8}^{2-}$ into •OH and SO$_{4}^{●}$ (reactions (1) to (7)) and the latter cause oxidative degradation of CFA. In the present study, the reactions of •OH and SO$_{4}^{●}$ gave four degradation products of CFA (Scheme 1). Due to identical pathways caused by •OH and SO$_{4}^{●}$, the products found were ascribed to both radicals. The formation of 2-(4-hydroxyphenoxy)-isobutyric acid occurred through •OH and SO$_{4}^{●}$ reaction at the C$_{4}$–Cl bond (enclosed in bracket) of CFA as given in reaction (14). The Cl group is substituted by OH group and form hydroxylated product (2-(4-hydroxyphenoxy)-isobutyric acid). This product is reported in previous AOPs-based degradation of CFA also [17,58]. The formation of 4-chlorophenol was produced due to reaction of •OH and SO$_{4}^{●}$ at the C$_{1}$–O bond (reaction (15)) which subsequently undergo cleavage of C$_{1}$–O bond, hydrolysis and loss of 2-hydroxy isobutyric acid [17,25]. The product, chlorobenzene was formed by •OH and SO$_{4}^{●}$ reactions at the C$_{1}$–O bond with subsequent loss of 2-hydroxy isobutyric acid (reaction (16)). The product identified as hydroquinone was found form the degradation of both 2-(4-hydroxyphenoxy)-isobutyric acid and 4-chlorophenol through the losses of 2-hydroxy isobutyric acid and chlorine group, respectively (reaction (17) and (18)). It has been stated in previous studies that these small intermediates are mineralized by •OH and SO$_{4}^{●}$ into non-toxic organic acids, acetate etc. and even CO$_{2}$ and H$_{2}$O [17,29].

![Diagram of oxidative degradation products of CFA](image)

Table 1

Impacts of doses of IPA and TBA on degradation of CFA by Cu0/S$_{2}$O$_{8}^{2-}$ and Bi/Cu0/S$_{2}$O$_{8}^{2-}$. [CFA]$_{0}$ = 10 mg/L, [S$_{2}$O$_{8}^{2-}$]$_{0}$ = 40 mg/L, [Cu0]$_{0}$ = [Bi/Cu0] = 0.5 g/L, pH = 5.6.

<table>
<thead>
<tr>
<th>Scavengers</th>
<th>Concentration of Scavengers (mg/L)</th>
<th>Removal efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cu0/S${2}$O${8}^{2-}$</td>
</tr>
<tr>
<td>IPA</td>
<td>800</td>
<td>5</td>
</tr>
<tr>
<td>IPA</td>
<td>400</td>
<td>12</td>
</tr>
<tr>
<td>IPA</td>
<td>200</td>
<td>27</td>
</tr>
<tr>
<td>IPA</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>IPA</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>IPA</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>TBA</td>
<td>800</td>
<td>10</td>
</tr>
<tr>
<td>TBA</td>
<td>400</td>
<td>22</td>
</tr>
<tr>
<td>TBA</td>
<td>200</td>
<td>37</td>
</tr>
<tr>
<td>TBA</td>
<td>100</td>
<td>46</td>
</tr>
<tr>
<td>No scavenger</td>
<td></td>
<td>67</td>
</tr>
</tbody>
</table>
Scheme 1. Schematic presentation of \(\cdot \)OH and \(\text{SO}_4^{2-} \)-based degradation pathways of clofibric acid.

Fig. 4. Reusability efficiency and leaching of Cu ions analysis of the \(\text{Cu}^0/\text{S}_2\text{O}_8^{2-} \) and \(\text{Bi}/\text{Cu}^0/\text{S}_2\text{O}_8^{2-} \) processes: [CFA]_0 = 10 mg/L, [S\(_2\)O\(_8\)^{2-}\]_0 = 40 mg/L, [Cu\(^0\)]_0 = [Bi/Cu\(^0\)] = 0.5 g/L, pH = 5.6.
3.3. Reusability and leaching studies

Reusability and leaching of metal ions are key factors to evaluate practical applicability and environmentally friendly nature of any metallic nanoparticles. The reusability of Cu0- and Bi/Cu0-catalyzed S$_2$O$_8^{2-}$ process was assessed to degrade CFA for six consecutive cycles. The materials were recovered at each cycle and used for treating CFA in the presence of S$_2$O$_8^{2-}$. The degree of percent degradation was calculated at each cycle and given in Fig. 4. The percent degradation profile depict that Cu0 and Bi/Cu0 caused CFA degradation of 67 and 85% at first cycle while 30 and 58% at sixth cycle, respectively. These findings illustrate a drop of 55 and 30% in the performance of Cu0– and Bi/Cu0-catalyzed S$_2$O$_8^{2-}$ processes, respectively. The high %degradation achieved by Bi/Cu0 at sixth cycle suggest its high reusability potential than Cu0.

The leaching of Cu ions in the Cu0 and Bi/Cu0-treated CFA solutions were analyzed to assess their stability. The level of leached Cu ions analyzed in the Cu0 and Bi/Cu0-treated solutions was found as 0.20 and 0.12 mg/L, respectively. The smaller level of Cu ions leaching observed in Bi/Cu0 imply its substantial stability than Cu0.

3.4. Influence of S$_2$O$_8^{2-}$ dosage on the CFA degradation

In this study, different dosages of S$_2$O$_8^{2-}$, i.e., 20, 40, and 80 mg/L were combined with Bi/Cu0 (0.5 g/L) and applied for degradation of 10 mg/L of CFA. The results given in Fig. 5 display accelerated degradation of CFA at high dose of S$_2$O$_8^{2-}$ and vice versa. The degradation efficiency (%) of CFA was obtained to be 63, 85, and 98.4% at 20, 40, and 80 mg/L dosages of S$_2$O$_8^{2-}$, respectively. The same trend of synergistic role of high [S$_2$O$_8^{2-}$] on degradation is witnessed in earlier studies [29,59,60]. The high dosages of S$_2$O$_8^{2-}$ increase its contact with the catalyst and consequently led to accelerated decomposition of S$_2$O$_8^{2-}$ into \cdotOH and SO$_4^{\cdot-}$ [60]. The accelerated formation of \cdotOH and SO$_4^{\cdot-}$ consequently led to their rapid collision with CFA molecules and cause high degree of CFA degradation.

![Fig. 5. Impacts of [S$_2$O$_8^{2-}$] on the treatment of CFA by Bi/Cu0/S$_2$O$_8^{2-}$. [CFA]$_0$ = 10 mg/L, [S$_2$O$_8^{2-}$]$_0$ = 20–80 mg/L, [Bi/Cu0] = 0.5 g/L, pH = 5.6.](image-url)
degradation. The kinetics of CFA degradation at different dosages of $S_2O_8^{2-}$ were investigated and found pseudo-first-order as presented in equation (19).

$$\frac{-d[CFA]}{dt} = k\ [CFA]_0$$

(19)

The high dosage of $S_2O_8^{2-}$ resulted in high degradation rate constant, k which could be because of accelerated rate of OH and SO_4^{2-} formation and rapid collision of the later with CFA molecules.

3.5. Influence of dosages of Bi/Cu0

Fig. 6 display the degradation pattern of CFA at different dosages of the catalyst, Bi/Cu0 using fix concentrations of $S_2O_8^{2-}$ and CFA, e.g., 10 and 40 mg/L, respectively. The removal efficiency of CFA was 69, 85, and 99.5% for three different dosages of Bi/Cu0, i.e., 0.25, 0.50, and 1.0 g/L, respectively, at 65 min. The catalyst accelerates $S_2O_8^{2-}$ into OH and SO_4^{2-} and the later initiate degradation of CFA. Thus, high dose of Bi/Cu0 is expected to decompose $S_2O_8^{2-}$ violently and significantly accelerate yield of OH and SO_4^{2-}. The accelerated formation of OH and SO_4^{2-} at high dosage of Bi/Cu0 was monitored from change in concentration of $S_2O_8^{2-}$. The result (data not shown) showed synergistic effects of the dosage Bi/Cu0 on the decomposition of $S_2O_8^{2-}$.

The increasing level of Bi/Cu0 could provide more space for the accumulation of CFA molecules and consequently led to high CFA removal at 1.0 g/L in our study. Besides, the high level of Bi/Cu0 can accumulate maximum number of $S_2O_8^{2-}$ that consequently undergo rapid reactions with the catalyst and consequently rapidly decompose into OH and SO_4^{2-}.

3.6. Influence of different operational parameters on CFA degradation

In this study, degradation of CFA by Bi/Cu0-catalyzed $S_2O_8^{2-}$ based process was assessed under different conditions of $[CFA]_0$, pH of aqueous solutions, temperature, and commonly found inorganic ions in water. The purpose of these studies was to optimize the catalytic activity and potential of the Bi/Cu0-catalyzed $S_2O_8^{2-}$ process for the treatment of CFA under different conditions.

Impact of initial CFA concentration: The change in concentrations of target contaminants is reported to exhibit different competition towards OH and SO_4^{2-} and adsorption sites [28,29,61]. As a result, different degradation efficiency of CFA is expected at different $[CFA]_0$ under fixed dosages of the catalyst and $S_2O_8^{2-}$. This phenomenon was studied by treating different concentrations of CFA, i.e., 5, 10, and 20 mg/L with Bi/Cu0-catalyzed $S_2O_8^{2-}$ process. The results obtained are presented in Fig. 7a which showed non-linear relationship between $[CFA]_0$ and degradation efficiency. As discussed in section 3.2, the Bi/Cu0-catalyzed $S_2O_8^{2-}$ degrade CFA into several degradation products which also reacts with OH and SO_4^{2-}. Thus, the CFA undergo competition with its products for OH and SO_4^{2-} and rate of this competition increases with increasing target contaminant concentration [28,29]. At constant $[S_2O_8^{2-}]_0$, the high $[CFA]_0$ sink the ratio of OH and SO_4^{2-} to target contaminant molecules and subsequently decrease degradation efficiency of CFA [61]. Besides, degradation of high $[CFA]_0$ increase yield of degradation products and the later undergo high competition with parent compound for adsorption sites.

The kinetics of CFA degradation by Bi/Cu0-catalyzed $S_2O_8^{2-}$ was found to best fit pseudo-first-order kinetic. The pseudo-first-order degradation rate constants, k were estimated from equation (19) for different $[CFA]_0$ and exhibited decreasing trend with increasing $[CFA]_0$. The reasons for the low k at high $[CFA]_0$ are stated to be high degree of competition between CFA molecules and its products for OH and SO_4^{2-} and adsorption sites [28,29,61].

![Fig. 6. Impacts of [Bi/Cu0]$_0$ on the treatment of CFA by Bi/Cu0/$S_2O_8^{2-}$. $[CFA]_0 = 10 \text{ mg/L}, [S_2O_8^{2-}]_0 = 40 \text{ mg/L}, [\text{Bi/Cu}^0] = 0.25-1.0 \text{ g/L, pH} = 5.6.$](image-url)
Impact of pH change: pH is an important parameter which influence catalytic activation of peroxides, yield of reactive radicals, and chemical nature of catalyst and target pollutant [62, 63]. To look into these facts, the treatment of CFA by Bi/Cu\(^0\)-catalyzed \(\text{S}_2\text{O}_8^{2-}\) process was investigated at different pH conditions, i.e., 2.5, 5.6, 8.5, and 10.6. The results presented in Fig. 7b depict high degree of CFA removal [68, 69]. Among the inorganic anions, the low degree of inhibition by NO\(_3^-\) [29, 68]. To check the consequences of inorganic ions, the removal of CFA by Bi/Cu\(^0\) was studied in the presence of some inorganic anions, e.g., NO\(_3^-\), CO\(_3^{2-}\), HCO\(_3^-\), and NO\(_2^-\) and inorganic cations, e.g., Cu\(^{2+}\), Fe\(^{3+}\), Fe\(^{2+}\), Zn\(^{2+}\), and Mn\(^{2+}\). Fig. 7c display the effects of inorganic anions which illustrate greater degree of inhibition by NO\(_3^-\) followed by CO\(_3^{2-}\) and HCO\(_3^-\) while NO\(_2^-\) exhibited insignificant influence. Among the mentioned inorganic anions, NO\(_2^-\) as shown in reactions (20) and (21) demonstrate faster kinetics with OH\(^-\) and SO\(_4^{2-}\) and consequently impede highly the reactivities of the reactive radicals with CFA molecules [68, 69]. The CO\(_3^{2-}\) and HCO\(_3^-\) also exhibit high kinetics with OH\(^-\) and SO\(_4^{2-}\) as presented in reactions (22) to (25) and consequently led to low degree of CFA removal [68, 69]. Among the inorganic anions, the low degree of inhibition by NO\(_3^-\) could be because of the smaller reactivity between NO\(_3^-\) and SO\(_4^{2-}\) as shown in reaction (26).

Additionally, the inorganic anions with negative charge could hinder accumulation of the negatively charged \(\text{S}_2\text{O}_8^{2-}\) on the surface of the catalyst and consequently retard removal efficiency of CFA.

\[
\begin{align*}
\text{OH}^- + \text{NO}_2^- & \rightarrow \text{OH}^- + \text{NO}_2^+ \quad (k_{30} = 8.0 \times 10^8 \text{ M}^{-1} \text{s}^{-1}) \\
\text{SO}_4^{2-} + \text{NO}_2^- & \rightarrow \text{SO}_4^{2-} + \text{NO}_2^+ \quad (k_{31} = 8.8 \times 10^8 \text{ M}^{-1} \text{s}^{-1}) \\
\text{OH}^- + \text{CO}_3^{2-} & \rightarrow \text{OH}^- + \text{CO}_3^+ \quad (k_{32} = 4.0 \times 10^8 \text{ M}^{-1} \text{s}^{-1}) \\
\text{SO}_4^{2-} + \text{CO}_3^{2-} & \rightarrow \text{SO}_4^{2-} + \text{CO}_3^+ \quad (k_{33} = 4.1 \times 10^8 \text{ M}^{-1} \text{s}^{-1}) \\
\text{OH}^- + \text{HCO}_3^- & \rightarrow \text{CO}_3^+ + \text{H}_2\text{O} \quad (k_{34} = 8.5 \times 10^8 \text{ M}^{-1} \text{s}^{-1}) \\
\text{SO}_4^{2-} + \text{HCO}_3^- & \rightarrow \text{SO}_4^{2-} + \text{CO}_3^+ + \text{H}^+ \quad (k_{35} = 3.5 \times 10^8 \text{ M}^{-1} \text{s}^{-1})
\end{align*}
\]
\[
\text{SO}_4^{2-} + \text{NO}_3^- \rightarrow \text{SO}_4^{2-} + \text{NO}_3^+ + (k_{26} = 5.0 \times 10^4 \text{ M}^{-1}\text{s}^{-1})
\] (26)

The inorganic cations, Cu\(^{+}\), Fe\(^{3+}\), Fe\(^{2+}\), Zn\(^{2+}\), and Mn\(^{2+}\) were added individually into the CFA solution and treated with Bi/Cu\(^{0}\)-catalyzed S\(_2\)O\(_8\)^{2-}. The results in Fig. 7d illustrate that cations Fe\(^{2+}\), Zn\(^{2+}\), and Mn\(^{2+}\) showed more pronounced effect on the degradation of CFA than Cu\(^{+}\) and Fe\(^{3+}\). It is shown that transition metals catalyze S\(_2\)O\(_8\)^{2-} into \textcolor{red}{\bullet}OH and SO\(_4^\bullet\) [70,71]. The additional activation of S\(_2\)O\(_8\)^{2-} by these metals in addition to Bi/Cu\(^{0}\) could be the possible reason for the enhanced removal of CFA. Due to positive charge, these metals facilitate binding and accumulation of negatively charged S\(_2\)O\(_8\)^{2-} on the surface of Bi/Cu\(^{0}\) and could promote the yield of reactive radicals. The smaller facilitation by Cu\(^{+}\) looked to be due to its greater scavenging of reactive \textcolor{red}{\bullet}OH as shown in reaction (27) [68]. The Fe\(^{3+}\) is reported to yield less reactive radical from the activated S\(_2\)O\(_8\)^{2-} and might be the cause of its less facilitation of CFA degradation [71].

\[
\textcolor{red}{\bullet} \text{OH} + \text{Cu}^+ \rightarrow \text{OH} + \text{Cu}^{2+} (k_{27} = 3.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1})
\] (27)

Impacts of temperature: The increasing temperature is reported to promote the degree of degradation of target pollutants [5, 72,
Thus, degradation of CFA by Bi/Cu0-catalyzed S\textsubscript{2}O\textsubscript{8}2- was analyzed at four different temperatures, i.e., 298, 303, 313, and 323 K. The results achieved (Fig. 7e) showed promising effects of temperature on the degree of degradation of CFA. The rise in temperature was found to shorten treatment time and at 32 min time, the use of Bi/Cu0/S\textsubscript{2}O\textsubscript{8}2- resulted into 75, 82, 92, and 98% removal efficiency of CFA at 298, 303, 313, and 323 K, respectively (Fig. 7e). The rise in temperature reportedly lowered the reaction activation energy which subsequently led to faster collision between Bi/Cu0 and S\textsubscript{2}O\textsubscript{8}2- and promote the yield of reactive radicals [73]. The lower activation energy with increasing temperature could result into more molecules of CFA to cross the energy barrier and react with reactive radicals as well as accumulate on the surface of the catalyst [73].

The degradation of CFA at different temperatures was investigated by different kinetic models and found to best fit pseudo-first-order. The k values obtained were significantly increased from 0.003 to 0.012 min-1 with elevating temperature from 298 to 323 K. The prompt activation of S\textsubscript{2}O\textsubscript{8}2-, rapid rate of \textbullet{OH} and SO\textbullet{4}2- formation, and consequently more collision of \textbullet{OH} and SO\textbullet{4}2- with CFA molecules looked to be the possibility of increasing k values with elevating temperature [73]. The values of –ln k versus \frac{1}{T} from Arrhenius equation (equation (10)) were plotted and showed linear relationship with \(R^2 = 0.99 \). The plot of –ln k versus \frac{1}{T} was used to calculate the activation energy (Ea) of the degradation of CFA which come out to be 45.5 kJ/mol. This value of Ea was used to calculate enthalpy, \(\Delta H \) of CFA removal by the Bi/Cu0-catalyzed S\textsubscript{2}O\textsubscript{8}2- process at different temperatures used. The values of \(\Delta H \) at 298, 303, 313, and 323 K were obtained as 43.1, 43.0, 42.9, and 42.8 kJ/mol, respectively.
3.7. Treatment of CFA in real water samples

The Cu0-and Bi/Cu0-catalyzed S$_2$O$_8^{2-}$ processes were used to treat CFA in real water samples, Sample 1 and Sample 2 collected from two different location in District Vehari, Pakistan. The Sample 1 and Sample 2 characteristics are presented in our previous published work [28]. The results obtained from the treatment of CFA in Sample 1 and Sample 2 were compared with that in deionized water (DIW) and shown in Fig. 8. The Cu0-catalyzed S$_2$O$_8^{2-}$ process gave CFA removal efficiency of 52, 47, and 67% in Sample 1, Sample 2, and DIW, respectively, at 65 min. The removal efficiency of CFA caused by the Bi/Cu0-catalyzed S$_2$O$_8^{2-}$ process in Sample 1, Sample 2, and DIW was 72, 64, and 85%, respectively, at 65 min. These results illustrate high potential of both Cu0-catalyzed S$_2$O$_8^{2-}$ and Bi/Cu0-catalyzed S$_2$O$_8^{2-}$ processes in the treatment of CFA in real water samples. Since the collected real water samples contain both cations and anions, the anions scavenge reactive radicals and at the same time, cations facilitate activation of S$_2$O$_8^{2-}$ into reactive radicals. The study is helpful to extend applications of the Cu0 and Bi/Cu0 in treatment of CFA and other organic pollutants in real water.

3.8. Ecotoxicity assessment studies

The identification of the ecotoxicities level of CFA and its degradation products were determined to evaluate potential and greenness of the Cu0-and Bi/Cu0-catalyzed S$_2$O$_8^{2-}$ processes. The acute and/or chronic toxicities of CFA and its products were determined at three levels of aquatic organisms, i.e., fish, green algae and daphnia following the criteria discussed in our previous published studies [29,74]. The results from the ecotoxicities evaluation are given in Table 2 which illustrates low toxicities level of the CFA and its two products (2-(4-hydroxyphenoxy)-isobutyric acid and hydroquinone) towards all aquatic organisms. The products, 4-chlorophenol and chlorobenzene showed harmful effects at all levels. The hydroquinone which proved to be non-toxic is reported to be degraded into further non-toxic smaller fragments, e.g., acetate. The harmful products evolved from the treatment of emerging pollutants provide bases for future studies to consider toxicities of degradation products along with parent compound.

3.9. Comparison of Bi/Cu0 efficiency

The performance of the prepared material, Bi/Cu0 used in the present study for activation of S$_2$O$_8^{2-}$ and degradation of CFA was compared with other catalyzed-S$_2$O$_8^{2-}$ processes for treatment of other organic pollutants. The comparative efficiency of different processes with detailed experimental conditions is given in Table 3. The results illustrate that Bi/Cu0 exhibit significantly high performance in the treatment of CFA at a lower dose of S$_2$O$_8^{2-}$ and treatment time.

4. Conclusions

The Bi coupling showed fruitful results and effectively enhanced the structural characteristics, stability, and catalytic activity of Cu0. The Bi/Cu0 proved to effectively decompose S$_2$O$_8^{2-}$ and showed high reusability, leading to 59% degradation of CFA at six cycles of treatment as compared to 85% at first cycle. The Bi/Cu0/S$_2$O$_8^{2-}$ proved to be effective in treating high concentration of CFA and led to 63% removal of 20 mg/L CFA versus 85% of 10 mg/L CFA. The Bi/Cu0/S$_2$O$_8^{2-}$ was effective in treating CFA in real water samples, in the presence of counter ions and at different pH. The use of high temperature (323 K), high concentration of Bi/Cu0 (1.0 g/L), and high

Fig. 8. Treatment of CFA by Cu0/S$_2$O$_8^{2-}$ and Bi/Cu0/S$_2$O$_8^{2-}$ in real water samples. [CFA]$_0$ = 10 mg/L, [S$_2$O$_8^{2-}$]$_0$ = 40 mg/L, [Bi/Cu0] = 0.5 g/L.
A dose of S_2O_8^2 (80 mg/L) caused 100%, 99.5, and 99% removal of CFA, respectively, at 65 min. The use of cations scavengers facilitated efficiency of Bi/Cu$_0$/S$_2$O$_8^2$ while anions inhibited its efficiency. The different scavenging experiments revealed that $\cdot \text{OH}$ and SO$_4^{\cdot}$ were formed in the catalyzed S_2O_8^2-based process and reacted fast with CFA. The increasing concentrations of IPA and TBA greatly restrained removal of CFA. The low leaching of Cu ions (0.12 mg/L) from Bi/Cu$_0$ at sixth cycle suggest its high fruitfulness and environmentally friendly nature. The degradation products analysis revealed the formation of different $\cdot \text{OH}$ and SO$_4^{\cdot}$-based products of CFA whose toxicities were evaluated and found the final product hydroquinone as non-toxic.

Declaration of generative AI in scientific writing

During the preparation of this work the author(s) did not use AI and AI-assisted technologies in writing process.

Authorship contribution

1. Jibran Iqbal: Funding acquisition, Methodology, Analysis, and Writing original draft.
2. Noor S. Shah: Resources, Supervision, writing original draft.
5. Grzegorz Boczkał: Writing - Review & Editing.
6. Asam Shad: Analysis, Review & Editing.
7. Yousef Nazzal: Data visualization, Analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

The study was supported by Zayed University, Abu Dhabi, UAE under the RIF Grant R22166 (to Jibran Iqbal). The authors also thank the Researchers Supporting Project number (RSP2023R441), King Saud University, Riyadh, Saudi Arabia for the financial support.

Table 2

Analysis of ecotoxicities of CFA and its products in the units of mg/L*.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Fish (LC$_{50}$)</th>
<th>Daphnia (LC$_{50}$)</th>
<th>Green Algae (EC$_{50}$)</th>
<th>Fish (ChV)</th>
<th>Daphnia (ChV)</th>
<th>Green Algae (ChV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clofibric acid</td>
<td>307.9</td>
<td>189.03</td>
<td>194.3</td>
<td>33.0</td>
<td>22.8</td>
<td>60.5</td>
</tr>
<tr>
<td>2-(4-hydroxyphenoxo)-isobutyric acid</td>
<td>557.2</td>
<td>148.04</td>
<td>699.7</td>
<td>53.9</td>
<td>28.1</td>
<td>329.9</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>24.7</td>
<td>14.9</td>
<td>14.1</td>
<td>2.6</td>
<td>1.7</td>
<td>4.2</td>
</tr>
<tr>
<td>4-chlorophenol</td>
<td>76.2</td>
<td>43.9</td>
<td>34.7</td>
<td>7.5</td>
<td>4.4</td>
<td>9.4</td>
</tr>
<tr>
<td>Hydroquinone</td>
<td>668.7</td>
<td>347.2</td>
<td>178.8</td>
<td>58.8</td>
<td>26.4</td>
<td>38.3</td>
</tr>
</tbody>
</table>

*Acute toxicities were determined using European Union guidelines (Annex VI/Directive 67/548/EEC), i.e., LC$_{50}$ and EC$_{50} > 100$ (Not harmful), 100 $>$ LC$_{50} > 10$ or 100 $>$ EC$_{50} > 10$ (Harmful), 10 $>$ LC$_{50} > 1$ or 10 $>$ EC$_{50} > 1$ (Toxic), EC$_{50}$ and LC$_{50} < 1$ (Very toxic). Chronic toxicities were estimated using Chinese guidelines for new hazard chemical substances (HJ/T154-2004), e.g., ChV $>$10 (Not harmful), 10 $>$ ChV $>$1 (Harmful), 1 $>$ ChV $>$0.1 (Toxic), and ChV $<$0.1 (Very toxic).

Table 3

Comparative study of the efficiency of Bi/Cu$_0$-catalyzed S$_2$O$_8^2$ process with other catalyzed S$_2$O$_8^2$ based processes.

<table>
<thead>
<tr>
<th>[Catalyst]$_0$ mg/L</th>
<th>[Pollutant]$_0$ mg/L</th>
<th>pH</th>
<th>$[\text{S}_2\text{O}_8^2]$$_0$ mg/L</th>
<th>%Removal efficiency/time</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBC = 200</td>
<td>TC = 20</td>
<td>3.0</td>
<td>1536</td>
<td>93/180 min</td>
<td>[27]</td>
</tr>
<tr>
<td>MRSB = 1000</td>
<td>TCH = 20</td>
<td>5.68</td>
<td>1536</td>
<td>98/120 min</td>
<td>[75]</td>
</tr>
<tr>
<td>PVP/nZVI-Cu = 400</td>
<td>TCE = 20</td>
<td>6.5</td>
<td>1152</td>
<td>99.5/60 min</td>
<td>[76]</td>
</tr>
<tr>
<td>MNP = 300</td>
<td>NOR = 5</td>
<td>4.0</td>
<td>960</td>
<td>90/60 min</td>
<td>[26]</td>
</tr>
<tr>
<td>nZVCe/PB = 200</td>
<td>NOR = 10</td>
<td>6.7</td>
<td>80</td>
<td>84/70 min</td>
<td>[28]</td>
</tr>
<tr>
<td>ZVCu = 500</td>
<td>BFAF = 6.7</td>
<td>4.0</td>
<td>192</td>
<td>60/60 min</td>
<td>[77]</td>
</tr>
<tr>
<td>Bi/Cu$_0$ = 500</td>
<td>CFA</td>
<td>4.6</td>
<td>40</td>
<td>85/65</td>
<td>Present work</td>
</tr>
</tbody>
</table>

Table 3
References

J. Iqbal et al., Water Resources and Industry 30 (2023) 100226

18
