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A B S T R A C T   

Biomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. 
The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue 
engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained 
from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series of 
specific functions. We review different types of biopolymers and their composites, besides their interactions with 
specific cells and tissues. Specific cellular mechanisms in tissue regeneration are also considered to elucidate the 
effects of biopolymers on controlling cellular mechanisms given their advantages and challenging aspects. 
Furthermore, the modifications required to mimic the properties of neural, cardiac, bone, and skin tissues are 
discussed. Utilization of biopolymer-based composites in tissue engineering requires additional improvements, 
where several challenges should be overcome. This work is mainly focused on biopolymers used in tissue en-
gineering, providing support for engineering of future biocomposites for the same purpose. Some examples of 
biocomposites are also provided, a general guide for selection of biopolymers and the secondary component 
(biopolymers as complements, additives, or nano-scale biomaterials) to develop biocomposites.   

1. Introduction 

Almost every ten minutes, one person is added to the national 
transplant waiting list in the United States as a consequence of disease- 

and injury-associated organ/tissue damages. Since organ donation still 
seems to be rare, about twenty Americans die every day due to the 
shortage of transplant organs. Tissue engineering and regenerative 
medicine provide biomedical engineers and doctors with appropriate 
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strategies for replacing dysfunctional tissues/organs with biomaterials. 
Due to their unique properties, polymers play an essential role in tissue 
engineering applications. Polymers can be engineered in different ways 
and formed into various microstructures to achieve the desired perfor-
mance. They are usually utilized as a supporting substrate in tissue en-
gineering, which can carry the cell and the therapeutic agent to the 
targeted zone [1–6]. Among different forms of polymers used in tissue 
engineering are films, nanofibers, and hydrogels [7–16]. Since mini-
mally invasive methods are prioritized in medicine due to the possibility 
of eliminating surgical processes, injectable hydrogels have been 
achieving significant clinical attention [17,18]. To attain maximum 
regeneration of dysfunctional tissues, a selected polymer should exhibit 
biocompatibility and controlled degradation rate. Accordingly, various 
biopolymers have been designed, and some of them commercialized as 
substrates for tissue regeneration [19–23]. 

Biopolymers have various uses and can generally be classified into 

agro-, microorganism-, and semi-synthetic polymers. The first genera-
tion of biopolymers were developed from agricultural feedstock 
including potato, corn, and other carbohydrate-containing resources. 
Natural polymers as a big clan of biopolymers’ family are abundant in 
nature, mainly in the forms of polysaccharides or proteins. Biopolymers 
can also be categorized based on the processes through which they are 
obtained as of natural biopolymers obtained with some modifications (e. 
g. starch) [24–28], biomonomers obtained by fermentation, followed by 
polymerization (e.g. polylactic acid, PLA) [29–33], and biopolymers 
produced using bacteria, such as bacterial-cellulose and poly-
hydroxyalkanoates (PHA) [34,35]. Biopolymers exhibit excellent tissue 
biocompatibility and can be degraded within the body with minimum 
toxicity. These characteristics are attributed to natural sources from 
which they are taken. However, biopolymers cannot solely mimic spe-
cific tissue behavior, therefore, they have to be modified [36,37]. For 
instance, an injectable conductive chitosan was synthesized to deliver 

Fig. 1. Comparison of behavior of tissue as a function of the type of biomaterial. For example, brain is a soft tissue, whereas the bone is besy known as a hard tissue. 
Biomaterials selection for such opposed tissues should be considered in terms of mechanical strength of biomaterials. From conductivity point of view, brain has a 
conductivity similar to that of semiconducting materials. The chemistry of the utilized biomaterial should also be considered carefully, to make it able to resemble 
native extracellular matrix (ECM) needed for required level of tissue mimicking performance. Reprinted with permission from Ref. [38]. 
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growth factors for hippocampus regeneration. Oligoaniline has been 
used to endow conductivity to chitosan so as to accelerate cellular ac-
tivity and action potentials of neurons [38]. Nerve guidance channel 
conductive materials have been used to facilitate neural regeneration in 
view of higher activity of neural cells towards conductive substrates [39, 
40]. Fig. 1 shows the windows of tissue mechanical properties and 
conductivity. To mimic behavior of a tissue, polymers should be modi-
fied to afford adequate level of regeneration. Different functionalities 
can be endowed to biopolymers using synthetic polymers and different 
types of additives as well as nanoparticles to develop biocomposites [41, 
42]. For instance, hydroxyapatite has been added to biopolymer-based 
scaffolds to mimic bone structures and properties [43,44]. Magnetic 
nanoparticles have also been used in chitosan to achieve stimulus and 
controlled drug release [45]. Thus, targeted tissue features should be 
understood before designing a scaffold capable of mimicking the tissue 
behavior. Evidently, a conductive substrate is preferred for neural tissue 
engineering, while a conductive elastomer would be a better choice for 
cardiac tissue engineering [46]. 

In teh light of above examples, tissue engineering with biopolymers 
necessitates modification of biopolymers in the form of biocomposites. 
We hereby elucidate main strategies frequently considered for appro-
priate biopolymer selection for tissue engineering, and summarize 
recent advancements made in relation to the most frequently used bio-
polymers. Moreover, the main tissue-specific regeneration mechanisms 
underlying the performance of biopolymers in tissue engineering are 
generally discussed. Biopolymers developed for different tissue scaffolds 
such as neural, cardiac, skin, and bone are separately discussed to 
highlight the performance window and other details related to func-
tional biopolymers. Biocomposites based on natural polymers are par-
ticulalrly stressed. 

2. Biopolymers 

Biopolymers are mainly categorized into three main groups: 1) Those 
obtained from agro-resources like starch; 2) Those obtained from mi-
crobial activities like polyhydroxyalkanoate, and 3) Those obtained via 
biotechnology assistance, like PLA (Fig. 2) [47]. 

Agro-based biopolymers can themselves be categorized into poly-
saccharides and proteins. Polysaccharides are the most abundant mac-
romolecules in the biosphere. They are composed of glycosidic bonds, 
which are one of the key structural elements of plants and animal exo-
skeletons [48,49]. The most well-known polysaccharides are chitosan, 
alginate, pectin, starch, and agarose [50–53]. Proteins are a family 

member of agro-polymers that can be renewably produced by animals, 
plants, and bacteria. Most proteins contain linear polymers constructed 
from a sequence of up to 20 various amino acids. Protein-based bio-
polymers that are used as constitutes for tissue engineering scaffolds 
include soybean proteins, corn proteins, casein, and gelatin [54–56]. 
Table 1 summarizes the most important biopolymers used for tissue 
engineering. 

3. Biopolymer-cell interactions 

Cells are complex chemical systems in which various activities are 
orchestrated through a plethora of chemicals (e.g., proteins, RNAs, and 
small molecules) and molecular machines [68]. In addition, cells are 
continually interacting with their native microenvironment (e.g., nu-
trients, signaling molecules, ECM, and other cells) through a dense forest 
of biomolecules (e.g., glycoconjugates and glycoRNA) harboring on 
cells’ surface [69]. The chemical identity and concentration of sur-
rounding molecules, and also physicochemical and mechanical proper-
ties together with the microstructure of ECM/scaffolds affect the cells’ 
behavior. Mechanistically saying, cells continuously collect various in-
formation (e.g., chemicals, temperature fluctuations, and mechanical 
clues) from their surrounding environment and respond to them 
accordingly. Indeed, any fluctuation in cells’ microenvironment can 
result in altering the delicate equilibrium between the cells and their 
environment followed by cellular responses like proteins expression. 

Various factors such as physicochemical and mechanical properties 
of the substrate can affect/change the functions and/or morphology of 
the cells [70]. Mechano-sensing mechanism in cells, which is usually 
mediated by the transmembrane proteins known as integrins, can detect 
mechanical cues in cells’ microenvironment and transduce them inter-
cellular, thereby creating biochemical signals. During the last few de-
cades, extensive research studies have enhanced our understanding 
about cells-biomaterials interactions. These finding has enabled 
designing and fabricating more appropriate tissue engineering scaffolds 
and hydrogels with tailored mechanical properties, that can affect 
cellular behavior in a controlled and on-demand fashion [71]. The 
mechanisms underpinning the importance of physicochemical and me-
chanical properties of constructing biomaterials, particularly bio-
polymers are grounded on the degree of cellular interactions. 
Understanding the cellular interactions of biopolymers is the key for 
achieving the desired tissue regeneration. Therefore, this section pro-
vides the reader with a general overview on how biomaterials affect cell 
functions. We generally deal with some basic information, then specific 

Fig. 2. A brief view of the most common classes of biopolymers in terms of their source or route of synthesis.  
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cellular interactions are discussed in terms of biopolymer-protein mo-
lecular interactions. For instance, Bueter et al. showed that in macro-
phage cells, the NLRP3 inflammasome (which has an essential role in 
Interleukin 1β (IL-1β) release) can be triggered by chitosan in a 
phagocytosis-dependent manner [72]. Yaun et al. observed that the 
megalin receptor on renal proximal tubule cells exerts significant effects 
on receptor-mediated endocytosis of chitosan [73]. 

Cell interactions with substrates and microenvironments such as cell 
adhesion exert important effects on tissue regeneration. Cell attachment 
processes include various biological actions, including cytoskeleton 
reorganization. Cell adhesion molecules (CAMs) that facilitate cell 
adhesion processes can be categorized into five main subcategories 
based on their structural and functional characteristics: cadherins, 
selectins (E, P, L), integrins, immunoglobulins, and other molecules [74, 
75]. These molecules interact with substrates and thereby affect the 
regeneration performance. For instance, the anti-inflammatory effects of 
fucoidan (natural polysaccharide) are associated with its interactions 
with scavenger receptors on the outer cell layer or selection [76,77]. 
Algal reduces the polymorphonucleated leukocytes (PMNs) attached to 
the autologous rabbit aortae. Anti-inflammatory and antithrombotic 
activities can be achieved using fucan sulfate, instead of heparin [78]. 
The astragalus polysaccharide has been shown to efficiently relieve 
cardiac ischemia-reperfusion injury (IRI). Human cardiac microvascular 
endothelial cells (HCMECs) were used to confirm the protective effects 
of astragalus under in vitro hypoxia-induced IRI conditions. Astragalus 
prevented the consistency between HCMECs and PMN in IRI by 
down-regulating the p38 MAPK signaling pathway and suppressing 
cohesive molecule expressions in HCMECs [79]. These examples suggest 
that cellular interaction can be engineered by the selection and combi-
nation of biopolymers altogether. As the most famous member of poly-
saccharides, chitosan has been vastly used in medicine. Fig. 3 shows 
different cell responses toward chitosan, which is best known as an 
attractive and favorable biopolymer for tissue engineering [80]. 

Scaffolds make direct contact with the inner sides of the body. When 
a substance gets into the body, an initial immune response is activated, 
and host ECM as well as plasma proteins join to contain, or wall off the 
injurious agent [81]. Such proteins accelerate cell attachments to 
facilitate tissue regeneration. Coating implants using bioactive sub-
stances increases protein adsorption, and fibrous capsule creation ac-
celerates the wound healing process (Fig. 4 shows the wound healing 

mechanisms), decreases the rejection risk, and improves reendothelial-
ization. After endothelium formation, the body is no longer unprotected 
against foreign substances and will halt immune response. Protein 
adhesion to foreign surfaces significantly impacts cell attachments to the 
scaffolds. This may adversely end in clotting factors adhesion, which 
induces thrombosis, causing stroke and other blockages. Some platforms 
interact with body microenvironments, such as biosensors or 
drug-delivery platforms, such that protein interactions with them inhibit 
their efficacy [82,83]. Protein-biopolymer interactions are mediated by 
hydrophobicity, intermolecular forces, surface energy, and ionic/elec-
trostatic interactions. By elucidating their mechanisms of action, bio-
materials can be controlled by machining, alloying, and other methods 
to yield their best performance for biomedical engineering [84–86]. 

4. Biopolymers targeted at tissue scaffolds 

Tissue engineering substrates should be able to provide the tissue 
with a proper microenvironment facilitating cellular activity, growth, 
adhesion, differentiation, and proliferation; therefore, such substrates 
should mimic targeted tissue behavior. Depending on tissue, the type, 
chemistry, and cellular interactions of biopolymers vary, which should 
be considered in design and implementation of tissue repair and 
regeneration. Moreover, different sorts of diseases are arising from tis-
sue and cellular responsiveness to biopolymers. Since selection of bio-
materials is mainly based on target tissue, we deal with biopolymer 
selection for a given tissue engineering purpose. 

4.1. Neural tissue engineering 

The neural system is comprised of two parts: the central nervous 
system (CNS) and the peripheral nervous system (PNS). Due to the 
limited capacity for self-regeneration by neural organs, the neural sys-
tem regeneration is a challenging issue in tissue engineering. Neural 
damage can occur as a consequence of accidents or neurodegenerative 
diseases such as Alzheimer’s, multiple sclerosis, or Parkinson’s [88–90]. 
In the CNS, reactive astrocytes and the formation of inhibitory glia scars 
inhibit damaged tissue repair. Nerve regeneration is supported by the 
Schwann cells (SCs) myelinating the axons in PNS, which assists axon 
digestion (phagocytosis) during the injury. After the injury, SCs support 
regeneration by targeting neurons to create a tunnel known as the 

Table 1 
Classification of the main biopolymers widely used in tissue engineering together with their main characteristics.  

Biopolymers Source biopolymer Properties Ref.  

Agro-resources Starch Composed of α-d-glucopyranose homopolymer units, the amylose and the amylopectin and hydrophilic 
structures. 

[57] 

Chitin The second most abundant polysaccharide after cellulose, also known as the most abundant 
aminopolysaccharide polymer. Chitin is the building block of the crustacean’s exoskeletons, insects, and 
the cell walls of fungi macrofibrils. 

[58] 

Chitosan Chitosan is the deacetylated form of chitin, which supports formation of polyoxysalts. It is known for its 
ability to form films, biocompatibility, biodegradability, non-toxicity, and molecular adsorption properties. 

[59] 

Gelatin Gelatin is achieved via collagen hydrolysis. The conversion degree of such a transformation is related to the 
pretreatment, process time, pH, and temperature. 

[60] 

Alginate Alginate is a linear polysaccharide, plentiful in the nature. Sodium alginate contains α-l-guluronic acid 
residues (G blocks) and β-d-mannuronic acid residues (M blocks), like changing guluronic and mannuronic 
acids. 

[61] 

Agarose Agarose is obtained from red algae, it is comprising agarobiose (disaccharide of d-galactose and 3,6- 
anhydro-l-galactopyranose) repeating units, and is a self-gelling polysaccharide. 

[62] 

Cellulose Most plentiful agro-polymer in the nature is cellulose, which has a crystalline structure. The main 
derivatives of cellulose are cellulose acetate and cellulose esters. 

[63] 

Collagen Collagen is the major ECM element of most connective tissues within the mammalian body, including one- 
third of all proteins available within the tissues. 

[64] 

Hyaluronic acid Hyaluronic acid is a linear polysaccharide without branches isolated from bovine vitreous humor. It is one 
of the vital elements of ECM. 

[65] 

Micro-organisms Polyhydroxyalkanoates PHA is of polyesters family synthesized via bacterial fermentation. Polyhydroxybutyrate (PHB) is the 
simplest and yet the most famous member of PHA. 

[66] 

From 
biotechnology 

Polylactic acid PLA is an aliphatic polyester with lactic acid units produced via bacterial fermentation from renewable 
sources. It is synthesized from lactic acid polycondensation or ring-opening polymerization of lactide 
monomer. 

[67]  
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’’bands of Büngner’’, a guidance path for repairing axons, acting as an 
endoneurial tube. Studies have aimed at developing suitable approaches 
to avoid extra damage and meanwhile stabilize the injured area. Nerve 
damage impacts the quality of life. Sensory and motor function deficits 
of the PNS result in paralysis of the affected limb and excruciating 
neuropathic pain through the mechanism shown in Fig. 5 [90,91]. Glia 
cells, neurons, inflammatory cells, and SCs are involved in PNS regen-
eration. Under proper conditions, the PNS can repair itself when small 
defects occur. After nerve injury, Wallerian degeneration is initiated via 
a sequence of cellular/molecular actions from distal sections of the 
damaged nerves to proximal sections. This phenomenon causes the 
axoplasmic disintegration of microtubules and microfilaments within 
one week [92]. During this period, the nucleus of damaged nerves is 
eccentrically located inside the cell bodies, while the nucleolus is pro-
tuberant. Additional proteins are synthesized to stimulate axonal repair, 
which alter neuronal performance. Variations in SCs proliferative genes, 
like growth-associated protein-43(GAP-43) enhance the rates of SCs 
proliferation to induce Wallerian degeneration. After damage, SCs alter 
their function from myelination to a more plastic and regenerative 
phenotype to break the myelin [93]. Thus, the introduction of lyso-
phosphatidylcholine into the SCs is necessary for phospholipase ex-
pressions [94]. Moreover, SCs secrete cytokines that are essential for 
phagocytosis and macrophage recruitment to distal parts of damaged 
nerves [95]. Macrophages remove most of the myelin debris and remain 
in situ for more than 30 days [96]. Then, SCs growth is accelerated by 

mitogen factor inducement and alignment of endoneurial tubes to shape 
the structure of Band of Büngner for axonal guidance [97]. The bands of 
Büngner act as platforms for guiding axonal development in the time 
span of repair process. In the final repair stages, the sprouting cones 
lengthen (1–3 mm/day) via bands of Büngner to finalize axonal out-
growths and functional recovery [98]. Table 2 shows the most essential 
molecules involved in PNS regeneration. 

For PNS damages smaller than 1 cm in size, end-to-end neurorrhaphy 
is the gold standard for treatment, whereas for damages having a size 
larger than 1 cm it is essential to use autologous nerve grafting for 
treatment. However, the lack of sufficient nerve grafts, neuroma growth, 
and immunological responses are challenging issues in autologous 
grafting. Therefore, the development of new strategies for neural 
treatment is of clinical significance. Polymers play an essential role in 
neural tissue engineering. Novel approaches have been proposed for 
CNS/PNS injury treatment including cell/therapeutic agent delivery, 
scaffold, hydrogel, and nerve conduits. Conductive substrates enhance 
cellular activity especially those of neural and cardiac cells [110]. 
Table 3 also covers neural conduits based on biopolymers. Atoufi et al. 
[111] synthesized a conductive alginate/agarose scaffold for tissue en-
gineering. Agarose endows self-gelling properties to the system, thereby 
negating the use of toxic cross-linking agents [111]. In another study, 
agarose was coupled with conductive segments (oligoaniline). It was 
observed that PC12 cell attachment and proliferation were enhanced by 
the addition of the conductive segment [112]. Agarose should be used in 

Fig. 3. Various cellular responses toward chitosan-family biopolymers (up arrow: enhance; down arrow: reduce; star: initiate).  
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the form of blend with other biopolymers or modified forms to support 
appropriate cell adhesion properties [113]. Wen et al. embedded nylon 
microfibers within the agarose matrix and found that subcellular fila-
ments with diameters in the range of 5-30 μm can lead to the formation 
of aligned and neurite outgrowths in sympathetic neurons [114]. Ali-
zadeh et al. used polysaccharide blends (agarose/alginate/chitosan) for 
neural disorder therapy. Aniline oligomer was used as the conductive 
segment to recapitulate neural behaviors and achieve electro-responsive 
drug release. The resulting hydrogel enhanced the differentiation of 
mesenchymal stem cells to dopaminergic neuron-like cells for dopamine 
supply in the CNS [115]. Agarose/gelatin/chitosan-aniline pentamers 
have also been used to differentiate human olfactory ecto-mesenchymal 
stem cells to promote motor neuron-like cells [116]. Schwann cell pro-
liferation in damaged PNS enhances the axonal repair. It is also vital for 
damaged nerve repair. He et al. reported that chitosan promotes the 
proliferation and production of proliferating cell nuclear antigens 
(PCNA). Moreover, chitosan induced the mitogen-activated protein 
kinase/extracellular signal-regulated kinase (MEK/ERK) and 
phosphatidylinositil-3 kinase (PI3K)/Akt signaling pathways in SCs of 
rat models [117]. 

Nerve regeneration is a complicated process requiring several fac-
tors, signaling cues, and design factors to be effective (Table 4). PNS 
regeneration is aimed at inducing regenerative responses of proximal 
nerves to develop across the distal part and to improve functionality via 
synapsing with its original output [124]. 

4.2. Cardiac tissue engineering 

A mature human heart has poor regeneration abilities. Car-
diomyocytes (CMs) can be damaged by apoptosis, necrosis, and oncosis 
(ischemic cell death) leading to cardiac malfunctions. Necrosis (cell 
death due to injury) and apoptosis (automated cell death) are involved 
in pathological conditions of hearts. During cardiac pathogenesis, 
myocardial infarctions lead to the exchange of scar tissues and CMs 
sections with fibrillar collagen and fibroblast-like cells. Oncosis differs 
from necrosis in which the cell swells instead of being shrunk, yet in both 
cases, cells are damaged. While cardiac tissue engineering has not 
reached the clinical research stage, stem cell transplantation has 
exhibited satisfactory outcomes in clinical cardiac trials. Stem cell 
transplantation using polymeric-based scaffolds along external 

stimulation to repair damaged cardiac tissues has gained the attention of 
researchers [126]. Cardiovascular disorders are highly attributed to 
enhanced oxidative injuries to vascular endothelial cells. Reactive oxy-
gen species (ROS) synthesis by vascular endothelial cells has a critical 
effect on the growth of several crucial clinical disorders, such as 
atherosclerosis and hypocholesteremia. Elevated ROS concentration in 
cells results in permanent damage via various mechanisms, such as the 
deactivation of vital enzymes, membrane lipids oxidation, and apoptosis 
initiation. Therefore, materials with the ability to lower free radical 
levels can protect cells from oxidative stress. Chitosan is a biopolymer 
with the ability to inhibit oxidative stress-associated damage [127]. In 
previous studies, 100–200 μg/ml chitosan significantly suppressed ROS 
concentrations to levels that were comparable to those of endogenous 
antioxidants (like SOD and GSH-Px), and inhibited lipid oxidation [128, 
129]. Moreover, chitosan affects cytokine secretions by endothelial 
cells. The chitosan oligosaccharide (50–200 μg/ml) inhibited 
LPS-induced IL-8 production in endothelial cells by suppressing the 
p38/MAPK as well as PI3k/Akt signaling pathways [130], and 
down-regulated ICAM-1 (at 50–200 μg/ml) and E-selectin (at 200 
μg/ml) expressions in endothelial cells by suppressing MAPK phos-
phorylation and NF-ƘB activation [80]. 

Mimicking tissue properties is essential in tissue engineering, 
therefore, cardiac tissue engineering scaffolds should be elastic and 
conductive [131–137]. Table 5 summarizes biopolymers used in cardiac 
tissue engineering. Sodian et al. synthesized polyhydroxyalkanoate with 
required elastomeric properties as a trileaflet heart valve. The synthe-
sized scaffold exhibited biocompatibility, biodegradability, and elastic-
ity properties, making it an excellent candidate for heart-valve scaffolds 
[138]. Ahadian et al. fabricated a conducive and elastomeric scaffold for 
cardiac tissue engineering. The used carbon nanotubes (CNT) as efficient 
nano-scale conductive materilas and intruded CNT into the biopolyester 
to develop a moldable elastomeric conductive scaffold [139]. Minimally 
invasive methods have been used in tissue engineering to reduce the side 
effects of surgical processes and costs. Injectable polymers have ach-
ieved this purpose. Huang et al. used collagen, matrigel, and fibrin glue 
(which are liquid at room temperature and solidify after injection at 
elevated temperatures) as injectable biopolymers. They found that the 
biopolymers enhanced angiogenesis and myofibroblast influx. More-
over, such biopolymers can be used for cell delivery and cell therapy 
[140]. Landa et al. synthesized injectable alginate for cardiac tissue 

Fig. 4. Different phases of wound healing by using biopolymers. Reproduced with permission from Ref. [87].  
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engineering. The injected hydrogel had the ability to cover the damaged 
sections and within 6 weeks it was replaced by the connective tissues 
[141]. Variations in temperature, pH, and shear can cause polymeric 
phase transitions. Biopolymers can be used as injectable polymers either 
alone or by coupling them with other synthetic polymers, such as poly 
(N-isopropyl acrylamide). Collagen type I is normally dissolved in dilute 
acidic media, and at physiological conditions, it self-assembles to create 
a hydrogel. By neutralizing the acidic solution (pH = 7–7.4), collagen 
starts to cross-link within 30/60 min at 37 ◦C [142]. Chitosan is soluble 
in dilute acidic environments and forms hydrogels when the solution is 
neutralized. To achieve thermosensitive chitosan, β-glycerol phosphate 
endows thermosensitivity to chitosan [143]. Agarose, a self-gelling 
biopolymer, is widely used as a self-gelling hydrogel in tissue engi-
neering [144]. For proper regeneration, such hydrogels are loaded with 
drugs, growth factors, or cells [145]. Dong et al. synthesized electro-
active injectable biomaterials based on chitosan-aniline oligomer/di-
benzaldehyde-terminated poly(ethylene glycol) (PEG-DA) and loaded 
the hydrogels with cells for cardiac cell therapy. Due to the dynamic 
covalent Schiff-base linkage between the amine group of chitosan and 
benzaldehyde groups of PEG-DA chains, such hydrogels exhibited 
injectability and self-healing properties [146]. Injectable hydrogel can 
also be prepared by oxidizing biopolymers, such as dextran or alginate, 
and also blending them with chitosan such that the oxidized group could 
react with the amine group to form a Schiff base. Based on this strategy, 
Zhao et al. synthesized the injectable hydrogel using oxidized dextran 

and chitosan [147]. 

4.3. Skin tissue engineering 

The skin is the protective layer of the body against exogenous in-
fections and diseases. It has two major layers, (i) the outer layer, the 
epidermis functions as an obstacle to the outer milieu, and (ii) the inner 
layer, also called dermis, which is comprised of the connective tissue 
[154,155]. Skin wounds can be categorized into different groups 
including superficial (just the epidermis), partial thickness (most of the 
dermis are healthy), full-thickness (the whole dermis, containing sweat 
glands and hair follicles are damaged), and complex (all layers are 
injured). Acute wounds such as chemical, burns, and surgical operation 
wounds repair within 2–3 months. However, chronic wounds including 
diabetic, infected wounds, and bedsores cannot heal within the normal 
duration. The delayed healing process and recurrence influence the 
sublayers, such as muscles and bones and causes tissue loss. Any factor 
that delays the switch from inflammation to proliferation, including 
systemic inflammatory disease, diabetes, and infections causes chronic 
wounds [156–158]. 

In skin wound repair, the skin healing process involves various cell 
activities, such as growth, migration, differentiation, and apoptosis. The 
typical wound healing process involves four overlapping stages: hemo-
stasis, inflammation, proliferation, and remodeling (Fig. 6) [159,160]. 
Following damage, injured vessels are blocked by blood clots (which 

Fig. 5. The cortical synaptic connectivity evaluations; on (A) Different types of stimulations including electrical, photochemical, and paired recording. (B) The 
cortical columnar connectivity, which is the main feature for the integration and segregation of the sensory applications. (C) An overview of the final excitatory 
neurons for their potential monosynaptic intracortical applications. Reproduced with permission from Ref. [99]. 
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occur in the hemostasis stage), and phagocytes like neutrophils and 
macrophages migrate into wounded areas to remove the residues and to 
provide GFs to facilitate the proliferation stage. Different types of cells, 
such as keratinocytes, MSCs, endothelial progenitors, and fibroblasts 
migrate to the injury site, differentiate, and proliferate to heal the 
wounds, re-epithelialize, repair vascular systems, and develop granula-
tion. Physical tension failure and contact inhibition in keratinocytes 
initiate signaling pathways facilitated by desmosomes and 
hemi-desmosomes, and then cytoskeleton reformation and keratinocytes 
migration/proliferation, particularly from the bottom layers of the 
wound margin. Moreover, re-epithelialization is facilitated by epithelial 
SCs of adjacent hair follicles and sweat glands. Keratinocytes secrete GFs 
and cytokines, including EGF, KGF, VEGF, and TGFβ to facilitate wound 
healing. At the initial proliferation stage, fibroblasts grow and secrete 
collagen type III to create new ECM at the wounded area [161,162]. In 

the remodeling stage, cells that are no longer necessary are removed 
from the wounded area and the ECM is remodeled to create the normal 
skin shape. In this stage, collagen III is replaced by collagen I by 
matrix-remodeling enzymes, such as matrix metalloproteinases. 
Collagen I has a higher tensile strength, relative to collagen III. A 
reduction in amounts of newly synthesized vessels is detected in the 
remodeling stage [163,164]. These processes occur at different stages of 
healing within the first-month post-injury (Fig. 6). 

Effective wound healing necessitates the synchronization of various 
cells, cytokines, GFs, and ECM components. Interleukins (IL-1β, 6, 8, 
10), tumor necrosis factor-α (TNF-α), transforming GFs, epidermal 
growth factor (EGF), VEGF, and the platelet-derived growth factor 
family altogether play important roles in healing process [166,167]. 
Neutrophils synthesize the pro-inflammatory cytokine (IL-1β), which 
enhances monocyte recruitment, increases the secretion of adhesion 
molecules in blood vessels, and promotes the endurance as well as 
retention of macrophages at injury sites. Macrophages secrete IL-10 (an 
anti-inflammatory cytokine) has a vital function in treatment. Basically, 
IL-10 regulates ECM synthesis, endothelial progenitor cell proliferation, 
inflammatory responses, and fibroblast cellular functions [168,169]. 
Important signaling pathways, including Wnt/β-catenin, Hedgehog, 
Notch, and several GFs/cytokine pathways are initiated in embryonic 
skin growth, and are triggered in postnatal cutaneous wound healing. 
ECM elements, like Extra-Domain-A (EDA) fibronectin, are produced in 
the postnatal wound healing process. Significant variations between 
molecular mechanisms that control postnatal cutaneous wound healing 
and embryonic skin development cause the repair of damaged skin to be 
unable to achieve its original state [170]. Wnt signaling has marked 
effects on different phases of cutaneous wound healing, e.g., hemostasis 
[171]. Wnt signaling is activated by injury and is involved in all healing 
stages, from controlling inflammation and apoptosis to the mobilization 

Table 2 
Molecules participate in PNS regeneration, their responsibility and target cells 
[100].  

Molecules Responsibility Related cell Ref 

Lysophosphatidylcholine 
(LPC) 

Myelin breakdown 
activation 

Schwann 
cells 

[94] 

Interleukin 10 (IL-10) Anti-inflammation Macrophages [101] 
Growth-associated protein- 

43 (GAP-43) 
Schwann cells 
proliferation and 
differentiation 

Schwann 
cells 

[102] 

Nerve growth factor (NGF) 
Cell adhesion molecules 

(CAM) 
Neural cell adhesion 

molecules (NCAM) 
Glial fibrillary acidic protein 

(GFAP) 
Brain-derived neurotrophic 

factor (BDNF) 
Glial-derived neurotrophic 

factor (GDNF) 
Basic fibroblast growth 

factor (βFGF) 
Basic fibroblast growth 

factor (NT-3) 
Neuregulin’s Schwann cells 

proliferation and 
differentiation, axon 
remyelination 

Injured nerve [103] 

Axon-derived calcitonin 
gene-related peptide 
(CGRP) 

Formation of Bands 
of Büngner 

Schwann 
cells 

[104–106] 

Neuregulin 
IL-1α/β 
Tubulin Formation of 

Neuronal growth 
cones 

Injured nerve [107,108] 
Actin 
GAP43 
Monocyte chemoattractant 

protein-1 (MCP-1) 
Macrophage 
recruitment 

Schwann 
cells 

[109] 

Monocyte chemo attractant 
protein-1α (MIP-1α)  

Table 3 
Neural conduits based on biopolymers, their biological response, advantages and limitations.  

Conduit Loaded substances/cells Biological assessment Pros Cons Ref. 

Chitosan Alpha-lipoic acid The sciatic nerve of Wistar rats 
with a 10 mm gap 

alpha-lipoic acid improves the nerve repair 
process 

limited mechanical strength, without 
conductivity 

[118] 

Bone marrow Goat peroneal nerve with 30 mm strong potential in bridging the long gaps limited depo period, limited mechanical 
strength 

[119] 

Gelatin Tricalcium Phosphate The sciatic nerve of Wistar rats 
with a 10 mm gap 

ECM-mimetic structure crosslinking agent displays cytotoxicity, 
limited mechanical properties 

[120] 

Collagen Cerebrospinal Fluid Male rats with a 10 mm gap ECM-mimetic structure, improved regeneration, 
and functional recovery 

Expensive [121] 

Cellulose SCs and pyrroloquinoline 
quinone 

Sprague–Dawley male rats with 
a 10 mm gap 

increased restoration of motor function limited mechanical strength [122] 

PLA SCs Lewis rats with a 10 mm gap SCs secrete bioactive biomolecules and offer an 
improvement in the migration of axons. 

fragile [123]  

Table 4 
Strategies applied in designing Nerve Conduits [125].  

Properties Description 

Biocompatibility A scaffold should be compatible with surrounding 
tissues. 

Degradability The scaffold degradation should be accompanied by 
the nerve regeneration rate; the conduit structure 
should be designed to permit nutrient transition and 
reduce scar tissue infiltration. 

Anisotropy The inner structure of the scaffold causes an improved 
regeneration. 

Modification with active 
molecules 

Laminin and fibronectin coatings increase the cellular 
adhesion. 

Physical fit The conduit should fit with the nerve to prevent the 
nerve from squeezing. 

Support cells Schwann cells and stem cells enable to secrete 
neurotrophic factors, which enhances the 
regeneration. 

Electrically conducting A conductive substrate increases the regeneration and 
stimulates the nerve cells.  
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of stem cell reservoirs within wounded areas [172]. As a transcriptional 
co-activator, β-Catenin signaling and T cell factors/lymphoid enhancer 
factors regulate gene expressions to affect the healing process [173]. 
Various cytokines and growth factors, including epidermal GFs (EGFs), 
TGF-βs, vascular endothelial GFs (VEGFs), PDGFs, fibroblast GFs (FGFs), 
and various pro-inflammatory cytokines such as interleukins, play vital 
roles in the wound healing process [174]. Macrophages and fibroblasts 
secret TGF-βs, which bind serine/threonine kinase TGF-β receptor I and 
TGF-β-receptor II heterodimers to trigger the Smads. These molecules 
play different roles in healing processes. TGF-β1 and TGF-β2 affect 
postnatal healing and skin formation (hair follicle development) [175]. 
The Notch signaling pathway is involved in epidermal differentiation, 
vascular angiogenesis, and in crosstalks with Wnt/β-catenin and 
Hedgehog pathways [176,177]. Finally, the Hedgehog signaling 
pathway has significant effects on different phases of embryonic 
development, including skin morphogenesis and angiogenesis, and skin 
and hair follicles development (Fig. 7) [178]. 

Elucidation of the effects of the skin tissue engineering scaffolds on 
healing processes is important to achieve skin regeneration and wound 
healing [179]. Chitosan enhances PMN cell migration and wound 
healing. Two probable mechanisms are proposed: (1) Stimulation of IL-8 
excretion from neutrophils and, (2) Complement activation. Chitosan 
leads to overexpression of IL-8 (chemotactic agent for neutrophils) by 
neutrophils, and such expressions are directly correlated with acetyla-
tion degree. Moreover, the acetylation degree affects hydrophobicity 
and chitosan interactions with PMNs [80,180]. During tissue regenera-
tion, chitosan enhances macrophage functions in inflammatory re-
sponses, antigen presentation, phagocytosis, synthesis of various 
cytokines as well as active ingredients (TNF-α, IL-1β and nitric oxide 
(NO)) and the secretion of growth factors [181,182]. Calcium alginate 
exerted satisfactory effects on skin ulcer healing and collagen synthesis 

[183]. Drug addition to the biopolymers exhibited synergistic effects on 
wound healing. Simvastatin was loaded in the alginate dressing for 
wound healing, promoted Akt and Erk signaling to participate in 
angiogenesis, and upregulated HIF-1a and HIF-1a-mediated VEGF ex-
pressions [184]. As a natural fibrous protein, silk fibroin (SF) from 
Bombyx mori is an attractive biopolymer that has been used in wound 
healing. SF improves cellular activities such as proliferation, differen-
tiation, as well as adhesion [185] and accelerates the healing process via 
NF-kB signaling, which mediates IKKα, IKKβ, and p65 expression, as well 
as IκBα degradation [186]. In normal skin, fibroblasts facilitate con-
nective tissue repair and tissue remodeling [187,188]. Peptides from 
trypsin SF digestion enhance fibroblast proliferation [185]. SF supports 
fibroblast adhesion and proliferation [189]. Moreover, collagen addi-
tion to silk enhances fibroblast proliferation, which is important for 
healing (Fig. 8) [190]. 

Due to proper biocompatibility, affordable cost, hemostatic perfor-
mance (SF interaction with fibrinogen and blood platelets), improve-
ment of cell migration and cell recruitment, exudate absorbing 
performance, proper mechanical properties and elasticity, enhancement 
of cell attachment, migration, proliferation and differentiation, SF has 
been widely used for wound healing [193]. Other biopolymers, such as 
keratin, have been shown to accelerate the healing process. Wang et al. 
used keratin as a wound dressing, which facilitated the healing process 
[194]. Alginate has also been widely used in wound dressing applica-
tions. Commercial alginate for wound dressing is available. Wang et al. 
reported that alginate facilitates the healing process of diabetic wounds 
by up-regulating the ratio of collagen types I/III [183]. Biopolymers 
have the potential for wound dressing [195,196]. Table 6 shows 
biopolymer usage in wound healing. 

4.4. Bone tissue engineering 

Autologous bone as a highly efficient technique for bone regenera-
tion is known as the “gold standard” clinical method. This method en-
hances bone development by osteoconduction (direct bone bonding) 
and osteoinduction (SCs differentiation into bone cells) and does not 
activate any immune responses [207]. About two million bones are 
grafted each year and are associated with various challenges, such as 
supply shortage, donor morbidity, and a 50% failure rate [208]. Hence, 
there is a need to establish suitable bone scaffolds based on biomaterials 
to enhance bone repair [209,210]. Polymers exhibited good biocom-
patibility, degradability, adjustable structural feature, and acceptable 
mechanical properties. To prevent the challenges associated with full 
bone regeneration, biodegradable polymers are vital for these kinds of 
repairs. The most common polymers in bone tissue engineering are 
collagen, chitosan, alginate, and silk as natural polymer as well as poly 
(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), PLA, poly-
dioxanone (PDS), and polyglycolic acid (PGA) as synthetic polymers 
[211–214]. 

Bone remodeling is a dynamic process that preserves the bone 
structure, regulated by osteoblast development and osteoclast-mediated 
bone resorption (Fig. 9). Perturbation in bone remodeling inhibits bone 
healing and causes bone disorders, such as osteoporosis and bone de-
fects. Bone fractures and osteoporosis cause major disabilities. 
Following fractures, healing occurs spontaneously to regain the natural 
physical/mechanical characteristics of bones. Fracture healing involves 
the initial inflammatory phase, the repair phase, and the late remodeling 
phase. Osteogenesis, an outcome of osteoprogenitor proliferation, and 
matrix/osteoblast maturation have important roles in fracture healing. 
Drug therapy cannot fulfill the regeneration process. Therefore, 
designing suitable biomaterials to improve osteogenesis is essential for 
bone fracture and defect repair [215–217]. 

Various molecular and cellular actions are involved in bone devel-
opment and fracture healing [219]. The involved mechanisms are 
associated with expressions of genes for osteoblast differentiation. As an 
essential transcription factor, Runt-related transcription factor 2 

Table 5 
Biopolymers applied in cardiac tissue engineering together with their advan-
tages and disadvantages.  

Biopolymer Advantage Disadvantage Ref. 

Chitosan Biodegradability, non- 
immunogenicity, 
mucoadhesiveness, 
antimicrobial properties, 
cytocompatibility, hemostatic 
feature 

Limited solubility at 
physiological pH, 
limited mechanical 
properties 

[148] 

Alginate Proper biocompatibility, 
biodegradation, non- 
thrombogenic feature, 
affordable cost, moderate and 
ionic gelling mechanism, non- 
antigenicity, and chelating 
capability 

Minimal protein 
interaction, limited 
mechanical properties 

[149] 

Gelatin High biocompatibility and 
biodegradation 

Low melting point, 
easily dissolving in 
water, Limited 
mechanical strength 

[150] 

Collagen Excellent biocompatibility, 
biodegradability, 
hyposensitivity, low 
immunogenicity 

Limited mechanical 
strength and non- 
conductive 

[151] 

Fibrin Biocompatible degradation 
residue, high elasticity, high 
biocompatibility, adjustable 
degradation rate, enhance cell 
attachment 

Tend to shrink, low 
mechanical 

[152] 

Performance susceptible 
to transmitting disease, 
Poor mechanical and 
electrical properties 
The low melting 
temperature, rapid 
dissolving 
In-water low protein 
adsorption 

PLA Proper Biocompatibility, 
suitable biodegradability, 
nontoxicity 

Low mechanical 
performance, brittle 

[153]  
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(Runx2) has a role in osteoblast differentiation and mineralization 
[220]. During osteogenesis and bone remodeling, osteocalcin (OCN) and 
alkaline phosphatase (ALP), as two standard osteoblast biomarkers, are 
involved in controlling osteoblast action and mineralization of the ECM. 
Upregulating of such biomarkers in osteoblasts is associated with cell 
differentiation and maturation [221]. In bone regeneration, natural 
polymers because of their biocompatibility and biodegradability have 
attracted more attention, compared to synthetic polymers. Such poly-
mers offer well-designed structures by acting as ligands to attach to cell 
surface receptors and provide enzymatic degradation spots [222]. For 
instance, as a biodegradable, biocompatible, and low immunogenic 
natural polymer, silk fibroin (SF) is suitable for tissue regeneration. 
Moreover, SF has a remarkable ability to induce bone repair due to 
structural similarity of the fibrous structure of SF to collagen I. Chitosan 
is another biopolymer that facilitates bone remodeling. It is preferred for 
bone regeneration because of its good biocompatibility, degradability, 
and antibacterial properties. Since chitosan does not have inherent 
osteoconductive properties, chitosan-based composite scaffolds have 
been synthesized to mimic bone performance. Chitosan biocomposites, 
along with hydroxyapatite or calcium phosphate, exerted proper effects 
on bone healing [223]. Nanofibers of chitosan-activated Runx2 mRNA 
and protein were fabricated, and the ALP, alizarin red, and von 
Kossa-staining examinations revealed that such fibers increased miner-
alization of osteoblast and stimulated proliferation of osteoblast and 
maturation via Runx2-mediated regulation of osteoblast-associated 
osteopontin, osteocalcin, and ALP gene expression [224,225]. 

The combination of particles with biopolymers enhances their me-
chanical behaviors and adjusts the structural characteristics of the 
platform to emulate bone structures [226–229]. Biomineralization is an 
effective procedure for developing nano-featured structures. In this 
process, porous scaffolds can be soaked in SBF, which provides Ca2+ and 
PO4

3− which the in vitro apatite formation on scaffolds in SBF can be 
utilized for calculating the in vivo bone formation. The mineralization 

process on biopolymers facilitates because of the charged pendant 
groups on biopolymers which tend to nucleate apatite. Functionalizing 
using negatively charged groups such as carboxylate and phosphate 
groups as well as nucleation agents such as calcium phosphates (CaPs) 
and anionic proteins has been widely used for electrostatic inducement 
of mineralization. In this regard, various biopolymer/CaPs scaffolds 
have been used for bone regeneration [230]. Hydroxyapatite (HAp) as 
the steadiest CaPs in biological fluids that mimic bone properties, has 
been widely used in the polymeric matrix as a proper bioceramic. It is 
osteoconductive, biocompatible, low immunogenic, and has the ability 
to directly bind to hard tissues. Such ceramics are normally developed 
using phosphates from fluids in the vertebrate’s body at a pH range of 
between 7.2 and 7.4. Due to its high bon affinity, HAp is a suitable 
candidate for bone allograft and metal-based implants [230–232]. 
Table 7 summarized the properties of biopolymer/CaP composites. For 
instance, culturing cells on the framework and/or scaffolds of 
chitosan-based nanomaterials with different compositions of polymers 
and natural components revealed different cellular densities and also 
morphologies (Fig. 10) [233]. 

4.5. Cartilage tissue engineering 

Osteochondral defects (OCD) and anterior cruciate ligament (ACL) 
are prevalent articular cartilage diseases (ACD). It is anticipated that in 
the near future, OCD will affect 35% of the population to become the 
main cause of disability. Incidences of OCD are associated with age, sex, 
and loaded stress. While surgical OCD treatment is helpful, post-surgical 
regeneration of the cartilage remains a challenge that is correlated with 
low metabolic functioning of the cartilage. Moreover, the long healing 
time of internal articular cartilage necessitates innovative approaches 
for restoring the cartilage, not including surgery [250]. As a soft flexible 
tissue covering the bone ends at the joints, the cartilage preserves the 
bone from mechanical loading. Cartilages are categorized into three 

Fig. 6. Formation of the wound and healing process. 
(A) Healing stages: hemostasis, inflammation, prolif-
eration, and remodeling; (B) Large wounded-area can 
be contaminated by bacteria that require proper 
antibiotic treatment. Inflammatory cells transfer to 
the damaged area by enhancing the penetrability of 
the capillaries. By enhancing the bloodstream, vital 
factors and cells go across the intravascular area 
within the extravascular area. Macrophages and 
neutrophils have an essential role in cleaning patho-
gens at the injured site. Reprinted with permission 
from Ref. [165]. Graph in the bottom demonstrates 
normal healing procedure stages in the first month 
after wound appeared. Reprinted with permission 
from Ref. [156].   
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Fig. 7. Schamatic regeneration of cutaneous wound 
healing. (a) Cutaneous wound in the period of the 
proliferative stage of healing. Repairing dermis is 
augmented with a superior amount of fibroblasts and 
macrophages in comparison to normal skin. (b) The 
impact of the signaling path on keratinocyte perfor-
mance in epidermal closing, fibroblast actions, and 
matrix deposition in dermal reorganization. Red signs 
show a progressive impact on a cell type/outcome. 
Blue signs show a negative impact. Solid lines declare 
the proven in vivo impact. Dotted lines are based on 
in vitro studies. Gray dotted lines with a question sign 
show undetermined outcomes. Colored and gray di-
agrams are based on in vivo and in vitro studies, 
respectively. Reprinted with permission from 
Ref. [170]. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the Web version of this article.)   

Fig. 8. (A) SF in the healing process using NF-κB signaling pathway. Reprinted with permission from Ref. [186]. (B) fibroblasts Viability on silk/collagen scaffolds 
after day 11. (a) silk with 7.4% collagen, and (b) silk with 20% collagen. Reprinted with permission from Ref. [190]. (C) Morphology of the wound healing process 
within 21 d using SF. Reprinted with permission from Ref. [191]. (D) Patient with a hand burn treated with silk-based wound dressing after 1 month [192]. 
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main groups, including articular (hyaline), fibro, and elastic. Hetero-
typic collagen fibrils and proteoglycan–glycosaminoglycan webs of 
aggrecan and hyaluronan are the main components of cartilage ECM. As 
a wear-resistant and flexible tissue, hyaline is present within the joint to 
carry and distribute the load. Cartilages of the larynx, ear, and epiglottis 
are more elastic than the hyaline. Fibrocartilage as an inflexible one is 
present in the knee between the vertebrae. Limited cartilage restoration 
is attributed to blood vessels and neural system shortage in cartilage 
tissues, resulting in rheumatoid arthritis, inflammatory disease, and 
joint deterioration. Collagen II and hyaluronan are the main elements of 
cartilage ECM. Cartilage injuries are associated with ECM degradation 
and recruitment of joint chondrocytes from near areas with reduced 
infiltrations and inflammatory cell vascularization [251,252]. 

Biopolymers applied practically for cartilage tissue engineering are 
summarized in Table 8. According to this table, various types of scaffolds 
can be used in cartilage regeneration. However, signal paths and bio-
logical signs should be considered in cartilage regeneration. Several 
factors are involved in chondrogenesis including transforming GF β 
(TGFβ), parathyroid hormone-related protein (PTHrP), Wnts, Indian 
hedgehog, thyroid hormone, bone morphogenetic protein (BMP) su-
perfamily, platelet-derived factors (PDGFs), insulin-like GFs (IGFs), 

Table 6 
Biopolymers used in skin tissue engineering, together with their mechanism of 
action, properties and dressing suited to them.  

Biopolymers Healing 
Mechanism 

Properties Wound 
dressing Type 

Ref. 

Chitosan Through the 
initial healing 
cascade, chitosan 
exhibits 
hemostatic 
performance and 
promotes 
neutrophil 
infiltration/ 
migration, 
macrophage, and 
increase 
fibroblast 
migration also 
conducts 
collagen 
deposition, as 
experienced in 
the case of 
diabetic mice. 

Proper 
biocompatibility, 
biodegradability, 
antibacterial 
performance, and 
mucoadhesive 
feature. 

Hydrogel, 
hydrocolloid, 
film, porous 
scaffolds, 
Nanofibrous 
mats 

[197] 

Alginate Alginate 
maintains the 
moisture of the 
wound, reduces 
the bacterial 
activity, and 
facilitates the 
healing process. 
Calcium 
alginates 
improve cellular 
activities. 

Proper 
biocompatibility, 
and adjustable 
biodegradability. 
improve cell 
growth and 
survival. 

Hydrocolloid, 
nanofiber, 
hydrofiber, 
hydrogel 

[198] 

Silk Silk facilitates 
collagen 
synthesis and 
deposition in the 
wounded area, it 
also increases 
epithelialization. 

Promote the 
proliferation of 
fibroblasts, and 
keratinocytes 

Films, 
scaffolds, 
ointments 

[165] 

Gelatin Gelatin promotes 
signal 
transmission and 
adhesion of cell. 

Biocompatible, 
non- 
immunogenic, 
biodegradable. 

Hydrogels, 
microgels, 
sponges 

[199] 

Fibrin and 
fibrinogen 

Fibrin and 
fibrinogen 
facilitate the 
hemostasis stage 
of wound 
cascade, promote 
the migration, 
attraction, 
proliferation, 
and adhesion of a 
cells. 

Biodegradable, 
biocompatibility 
with low toxicity. 

Scaffolds, 
nanoparticles, 
bandages 

[200] 

Cellulose Cellulose 
promotes wound 
healing at an 
early stage and 
regulates trans 
epidermal water 
loss. It also 
decreases 
moisture loss 
without extreme. 

High swelling 
ratio, enhanced 
biocompatibility 
with mucous 
membranes, non- 
toxic, and cost- 
effective. 

Hydro fibers, 
films 
Hydrogel, 
sponges 

[201] 

Collagen promotes ECM 
deposition and 
cell adhesion, 
nutrients 
transportation, 
acts as a 
regulatory factor 
and enhances 

Biocompatible, 
and crosslinkable 
at elevated 
temperatures. 

3D scaffolds, 
Hydrogel 
Films, sponges 

[202]  

Table 6 (continued ) 

Biopolymers Healing 
Mechanism 

Properties Wound 
dressing Type 

Ref. 

gaseous 
exchange to 
allow the 
survival of cells. 

Chondroitin 
sulfate 

Chondroitin 
sulfate promotes 
wound healing, 
increases 
fibroblasts 
expression, 
activates wound 
healing cascade, 
stimulates 
wound repair. 

Biodegradable, 
biocompatible, 
with low toxicity. 

Nanofibers, 
Scaffolds, 
transdermal 
patches 

[203] 

Hyaluronic 
acid 

Hyaluronic acid 
facilitates wound 
healing cascade 
in all stages 
including 
inflammation, 
reepithelization, 
granulation 
tissue formation, 
proliferation, 
and remodeling. 

High swelling 
ratio and water 
uptake, non- 
immunogenic and 
biodegradable 

Films, 
injectable 
scaffolds, 
sponges, 
Hydrogels 

[204] 

Keratin Keratin activates 
SCs, which is 
beneficial to 
repair the nerve. 
It also inhibits 
microbial 
burden. 

Proper aeration, 
and exchange of 
the wound fluid/ 
exudates. 

Films, dermal 
patches 

[205] 

Pectin Anti- 
inflammatory 
properties (due 
to the esters and 
galacturonic 
acid) and 
suppression of 
the enzyme i.e., 
COX-2 and iNOS 
are possible with 
pectin. 
Functionalized 
pectin shows 
anti- 
thrombogenic 
effects. 

Biodegradable, 
biocompatible. 

Films, 
Hydrogel 

[206]  
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fibroblast GFs (FGFs), and various vitamins [253,254]. TGFβs synchro-
nize chondrocyte proliferation differentiation, and induces the expres-
sions of RY-box, resulting in collagen II and aggrecan formation. Wnt 

and β-catenin-dependent signaling play important roles in improving 
chondrocytes. The β-catenin-dependent pathway promotes endochon-
dral ossification and axial growth [255]. 

Fig. 9. Bone tissue structure: (top) bone cells, and (bottom) bone structure. The different structural elements are represented, ranging from the mesostructures (i.e., 
osteons/lamellar packets) to the sub-nanostructures (i.e., collagen molecule). Reprinted with permission from Ref. [218]. 

Table 7 
Biopolymer/CaP green composites or biocomposites together with the type of biopolymer and resulting platform, and also their fabrication route.  

Incorporation 
procedure 

Biopolymer platform type Fabrication route Ref. 

Physically 
incorporation 

Collagen Porous scaffold, Nanofibrous Freeze-drying after the crosslinking of collagen/HAp mixture, using the Electrospinning 
method polyvinyl alcohol was added to achieve the better electrospun mat 

[234–236] 

Chitosan Porous, Macroporous, scaffold Freeze-drying the chitosan–nHAp Dispersion [237] 
Gelatin Porous scaffold Crosslinking after lyophilization [238] 
Alginate Porous scaffold Gelation occurred by releasing the calcium ions from HAp, Salt leaching [239] 
Silk Knitted scaffolds Silk was soaked in HAp slurry followed by freeze-drying [240] 

Chemical 
deposition 

Collagen Sponge; fibrous scaffold Immediate titration precipitation technique [241] 
Chitosan Scaffold Double-diffusion method to create nHAp followed by freeze-drying [242] 
Silk Micro-porous scaffold Silk was soaked in CaCl2 and Na2HPO4 solution [243] 
Alginate Beads Soaking the Na-alginate solution including phosphate into the calcium including gelling 

bath 
[244] 

Biomimetic 
mineralization 

Collagen Hydrogels, Fibrous, 
unidirectional lamellar 
structure 

Mineralized enzymatically by the inclusion of alkaline phosphatase, Biomimetic 
hierarchical nanoapatite assembly using polyvinylphosphonic acid as a biomimetic 
analog of matrix phosphoproteins, inclusion of SF-derived polypeptide to emulate the 
character of anionic non-collagenous proteins in mineralization procedure 

[245] 

Chitosan Porous scaffold Nanocrystals stimulate the biomineralization process [246] 
Alginate Porous scaffold Incubating in an SBF solution [247] 
Collagen/ 
Chitosan 

Hydrogel Utilizing modified culture media to increase the mineralization [248] 

Cellulose Pellicles/tubes Functionalized by carboxymethyl group as a negative spot to start the nucleation. [249]  
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Compared to scaffold-free methods, cartilage regeneration using 
biopolymers has many advantages, including proper filling of the 
damaged site, low difficulties at donor sites, few implantation- 
associated challenges, and accelerated healing. Furthermore, fabri-
cating a 3D scaffold suppresses chondrocyte dedifferentiation and en-
hances the synthesis of hyaline-like cartilage. An effective cartilage- 
based tissue construction produces liquid and solid phases of the con-
nective tissue, biomimetic zone, and regional cartilage structures that 
integrate with underlying native tissues. Therefore, proper biomaterials 
should be selected in order to facilitate cartilage regeneration. Suitable 
substrates for efficient tissue regeneration should mimic normal tissue 
properties. Collagen II and glycosaminoglycan (GAG) play a vital role in 
maintaining chondrocytic phenotypes and chondrogenesis stimulation. 

Otherwise, chondrocytes de-differentiate or produce fibrocartilaginous 
matrices enriched with collagen I that cause failure in hyaline formation. 
Table 8 suggest that blending biopolymers together or with a sustainable 
complement among nano-scale bio-based materials would be a solution 
in view of sustainability perspective. 

5. Conclusion and future direction 

In clinical settings, tissue engineering is bast known for its ability to 
improve the life quality of patients by providing the damaged organ with 
the possibility of repair through functional contructs. Therefore, 
designing biomaterials with the required biocompatibility and tissue- 
mimic performances has attracted significant attention over the last 

Fig. 10. Confocal images of the actin cytoskeleton 
organization of the BMSCs cultured of a rat after three 
days of treatment on the genipin- and chitosan-based 
framework (a and e); on the genipin- and chitosan- 
reinforced with HAp framework (b and f); on the 
HAp-based genipin-conjugated chitosan scaffold (c 
and g). These images were taken after acridine orange 
and Alexa Fluor nuclei and F-actin staining. Repro-
duced with permission from Ref. [233]. (For inter-
pretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Table 8 
Biopolymers applied for cartilage tissue engineering, together with fabrication route, structural shape, and biological responses.  

Biopolymer Fabrication method Structure Biological assessments Ref. 

Collagen Phase separation, 
Temperature variation 

Random, 
Oriented 

Good MCSs proliferation, oriented scaffold acted better than random. Along with SDF-1 encourages 
osteochondral repair by simplifying cell homing 

[256] 

Gelatin Electrospinning Nanofibers enhance spreading, proliferation, and attachment of chondrocytes [257] 
Fibrin Gelation Hydrogel Can be easily functionalized using ECM which induces the cartilage repair [258] 
Agarose Self-gelling Hydrogel stabilize the chondrocyte phenotype and increase the proteoglycan and precipitation of the 

glycosaminoglycans 
[250] 

Cellulose Gelation Hydrogel proper development of new cartilage along with ECM elements like collagen and glycosaminoglycan [259] 
Alginate Gelation Hydrogel Collagen II and Sox-9 expression increased later than one-month post-differentiation, Development of 

ectopic cartilage healing within and around the implanted region 
[260] 

Chitosan Gelation Hydrogel Higher spreading of cells, appropriate regeneration of defected cartilage by scaffolds implanting after 6 
months, no inflammation was observed later than implanting allogenic chondrocytes 

[261] 

Elastin – Hydrogel Increased Hyaluronic acid formation, enhanced cartilage gene markers expression, increased sGAG 
deposition and decreased undesired fibrocartilage phenotype 

[262]  
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decades. Since characteristics of biomaterials are limited to their me-
chanical strength, degree of biocompatibility, and ability to mimicking 
native ECM architecture, there has been need for blending biomaterials 
together of incorporation of reinforcing agents to biomaterilas. Bio-
polymers are similalrly reinfirced with the secondary biopolymer as the 
complement to the original one, or amalgamation of additives, partic-
ulalrly nanomaterials. Green polymer composites or briefly saying bio-
composites are a class of complex biopolymers which intengrate several 
fucntions into one biomaterial. They can be categorized based on their 
source, including biopolymers derived from agro-resources, micro-or-
ganisms, and biotechnology. Due to their proper biocompatibility and 
tunable properties, biocomposites of polymers exhibit acceptable per-
formances in tissue engineering and repair. Bearing in mind the 
importance and popularity of 3D and 4D printing machines nowadays, 
the importance of biocomposites is obvious to experts working in the 
filed. However, the complexity of biomaterials used for tissue repair 
necessitates designing multifucntional composite biopolymer compos-
ites mimicking tissue and organ behavior. In this sense, different stra-
tegies have been developed to rely on requirements of tissue engineering 
with the aid of advanced biocomposites. For instance, conductive ma-
terials have been added to biopolymer matrices in neural tissue engi-
neering to endow conductivity to biopolymers. Biocomposites are 
expected to play a more key role in the development of multifunctional 
scaffolds for tissue engineering and regenerative medicine in the future. 
This contribution provides support for future developments of bio-
composites, considering that biopolymers quilified for tissue engineer-
ing, together with their cellular interactions, properties, advantages and 
limitations are comprehensively reviewed and their mechanisms of ac-
tion are discussed. Classification of sustainable composites targeted at 
regenerative medicine and tissue engineering necessitates availability of 
adequate data, statistics, and more critically reliable reports, which 
seems to be a hot ongoing debate between materials scientists and 
biomedical engineers. Moreover, contiribution of machine learning al-
gorithms in designing and fabricating intelligent biocomposites should 
specifically be considered. 
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