Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(diethylamido- κN)(diethylamine- κN)bis(2,6-diisopropylphenylamido- κN)zirconium(IV)

Mateusz Zauliczny, Rafał Grubba, Łukasz Ponikiewski* and Jerzy Pikies

Chemical Faculty, Gdansk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdansk, Poland

Correspondence e-mail: lukasz.ponikiewski@pg.gda.pl

Received 4 December 2012; accepted 18 December 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.073; wR factor = 0.188; data-to-parameter ratio = 18.4.

In the title compound, $[Zr(C_{12}H_{18}N)_2(C_4H_{10}N)_2(C_4H_{11}N)]$ or $[Zr(HNC_6H_3^{i}Pr_2)_2(NEt_2)_2(HNEt_2)]$, which was obtained by the reaction of $Zr(NEt)_4$ with ${}^{i}Pr_2C_6H_3NH_2$, the Zr^{IV} atom is in a trigonal-bipiramidal geometry in which the N atoms from two ⁱPr₂C₆H₃NH and one NEt₂ ligand occupy the equatorial positions, and the N atoms of an NEt₂ and an Et₂NH ligand occupy the apical positions. An intramolecular N-H···N contact occurs. There are two independent molecules in the asymmetric unit.

Related literature

For related zirconium(IV) structures, see: Profilet et al. (1990); Blake et al. (1997); Porter & Danopoulos (2004); Ghesner et al. (2006). For related syntheses, see: Kempe (2000).

Crystal data

 $[Zr(C_{12}H_{18}N)_2(C_4H_{10}N)_2(C_4H_{11}N)]$ $M_r = 661.17$ Triclinic, $P\overline{1}$ a = 11.2079 (3) Å b = 13.1612(5) Å c = 14.3443 (6) Å $\alpha = 86.578 (3)^{\circ}$ $\beta = 70.484 (3)^{\circ}$

Data collection

Agilent Xcalibur (Sapphire2	11493 measured reflections
diffractometer	7412 independent reflections
Absorption correction: analytical	5867 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2010)	$R_{\rm int} = 0.035$
$T_{\min} = 0.889, T_{\max} = 0.928$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	H atoms treated by a mixture of
$wR(F^2) = 0.188$	independent and constrained
S = 1.12	refinement
7412 reflections	$\Delta \rho_{\rm max} = 1.82 \text{ e} \text{ Å}^{-3}$
402 parameters	$\Delta \rho_{\rm min} = -2.13 \text{ e} \text{ Å}^{-3}$
1 restraint	

 $\gamma = 71.232 \ (3)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.32 \text{ mm}^{-1}$

T = 293 K

Z = 2

 $V = 1885.61 (12) \text{ Å}^3$

 $0.58 \times 0.39 \times 0.34$ mm

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3-H3A\cdots N1$	0.84 (5)	2.56 (5)	2.983 (5)	112 (4)

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5310).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Blake, A. J., Nikonov, G. I. & Mountford, P. (1997). Acta Cryst. C53, 874-876. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Ghesner, I., Fenwick, A. & Stephen, D. W. (2006). Organometallics, 25, 4985-4995
- Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Porter, R. M. & Danopoulos, A. A. (2004). Dalton Trans. pp. 2556-2562.
- Profilet, R. D., Zabrano, C. H., Fanwick, P. E., Nash, J. J. & Rothwell, I. P. (1990). Inorg. Chem. 29, 4362-4364.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m72 [doi:10.1107/S160053681205115X]

Bis(diethylamido- κN)(diethylamine- κN)bis(2,6-diisopropylphenylamido- κN)zirconium(IV)

Mateusz Zauliczny, Rafał Grubba, Łukasz Ponikiewski and Jerzy Pikies

S1. Comment

Complex (I) was synthesized in the course of our studies on amido complexes of zirconium (Kempe, 2000). The compound was obtained in the reaction $Zr(NEt)_4$ with ${}^{i}Pr_2C_6H_3NH_2$ (molar ratio 1:2). Complex (I) contains four amido ligands (two NEt₂ and two ${}^{i}Pr_2C_6H_3NH$) and one amino ligand (HNEt₂). Analyzing bond lengths in title compound it is easily spotted that bond Zr—N3 is much longer than other bonds. It is caused by the fact, that ligand containing N1 is amine ligand. Difference between length of bonds Zr—N between NEt₂ and HNEt₂ is about 0.25 Å. Distances between N atoms of ${}^{i}Pr_2C_6H_3NH$ and Zr are both about 2.12 Å and very similar to related Zr(IV) amido complexes (Profilet *et al.*, 1990; Blake *et al.*, 1997). In case of two NEt₂ ligands distances Zr—N differ by about 0.12 Å but both are in the range typical for zirconium complexes with diethylamido ligands (Porter *et al.*, 2004; Ghesner *et al.*, 2006). Comparing angles between N1—Zr1—N2, N2—Zr1—N5 and N5—Zr1—N1 [table 1] it can be seen that they are roughly 120°, in addition the angle between N3—Zr1—N4 [table 1] indicates that molecular geometry is close to trigonal bipyramidal. Admittedly in perfect trigonal bipyramid first three angles would be equal to 120° and N3—Zr1—N4 would be equal to 180°, but actual angles are so close to said values that it is safe to say they resemble trigonal bipyramid.

The crystal packing diagram shows, that the compound crystallizes with two molecules in the unit cell in the triclinic space group. The crystal packing of the title compound is presented in Fig.2.

S2. Experimental

To a 100 ml Schlenk flask, equipped with a magnetic stirrer, charged with a solution of 4,8 g (4,44 ml) $Zr(NEt_2)_4$ in 30 ml of pentane, 5 g (4,76 ml) of 2,6-diisopropylaniline in 10 ml of pentane was added dropwise. The reaction was carried on in a room temperature in an argon atmosphere. Solution was left on a magnetic stirrer. Over a week of stirring, the mixture changed colour from yellow to brown. The solvent was removed under vacuum. After evaporating most of the solvent, dark solid was obtained which after keeping it longer under vacuum got darker and became oil. Residue was dissolved in 8 ml of pentane, and recrystallized at 4°C to obtain about 2 g of colorless X-ray-quality crystals. The total yield was 24%. Elemental analysis, found %: C 65.73, H 9.72, N 10.46; calc. % for $C_{30}H_{52}N_5Zr$: C 65.40, H 10.21, N 10.59.

S3. Refinement

The C—H H atoms were positioned with idealized geometry and were refined isotropically with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, methylene and methine H atoms (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å (aromatic H atoms), 0.96 Å (methyl H atoms), 0.97 Å (methylene H atoms) and 0.98 Å (methine H atoms). The amine hydrogen atoms were located in the difference Fourier map and refined using a ridnig model with $U_{iso}(H) = 1.2U_{eq}(N)$. The hydrogen atom H1A is located in the difference map and restrained, N1-H1A = 0.89 Å with $U_{iso}(H) = 1.2U_{eq}(N)$. The

highest residual electron density peaks are located within 1 Å from atom Zr1 and the deepest hole is located 0.78 Å from Zr1.

Figure 1

The molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level H atoms connected to C have been omitted.

Figure 2

A view of the packing of the title compound alond the a axix.

Bis(diethylamido-*kN*)(diethylamine-*kN*)bis(2,6- diisopropylphenylamido-*kN*)zirconium(IV)

Crystal data	
$[Zr(C_{12}H_{18}N)_2(C_4H_{10}N)_2(C_4H_{11}N)]$ $M_r = 661.17$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 11.2079 (3) Å b = 13.1612 (5) Å c = 14.3443 (6) Å a = 86.578 (3)° $\beta = 70.484$ (3)° $\gamma = 71.232$ (3)° V = 1885.61 (12) Å ³	Z = 2 F(000) = 716 $D_x = 1.164 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6954 reflections $\theta = 2.9-28.4^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.58 \times 0.39 \times 0.34 \text{ mm}$
Data collection Agilent Xcalibur (Sapphire2	11493 measured reflections
diffractometer Graphite monochromator Detector resolution: 8.1883 pixels mm ⁻¹ ω scans Absorption correction: analytical (<i>CrysAlis PRO</i> ; Agilent, 2010) $T_{min} = 0.889, T_{max} = 0.928$	7412 independent reflections 5867 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 26^\circ, \ \theta_{min} = 2.9^\circ$ $h = -13 \rightarrow 8$ $k = -16 \rightarrow 12$ $l = -17 \rightarrow 12$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0694P)^2 + 9.6553P]$
where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 1.82 \ m e \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -2.13 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

0.03188 (17) 0.0216 (8) 0.026* 0.0199 (8) 0.024* 0.0244 (8)
0.0216 (8) 0.026* 0.0199 (8) 0.024* 0.0244 (8)
0.026* 0.0199 (8) 0.024* 0.0244 (8)
0.0199 (8) 0.024* 0.0244 (8)
0.024* 0.0244 (8)
0.0244 (8)
0.029*
0.0277 (9)
0.0197 (7)
0.0196 (9)
0.0207 (9)
0.0285 (10)
0.034*
0.0320 (11)
0.038*
0.0306 (11)
0.037*
0.0248 (10)
0.0242 (9)
0.029*
0.0349 (12)
0.052*
0.052*
0.052*

С9	1.0102 (5)	1.0135 (5)	0.2538 (4)	0.0367 (12)
H9A	1.0316	1.0469	0.301	0.055*
H9B	0.9947	1.0627	0.2037	0.055*
H9C	1.0833	0.95	0.2236	0.055*
C10	0.7317 (5)	0.6931 (4)	0.5149 (4)	0.0277 (10)
H10	0.7206	0.672	0.4547	0.033*
C11	0.5927 (5)	0.7584 (5)	0.5843 (4)	0.0404 (13)
H11A	0.5981	0.7717	0.6475	0.061*
H11B	0.5318	0.7186	0.5925	0.061*
H11C	0.5612	0.8256	0.5561	0.061*
C12	0.7852 (6)	0.5903 (5)	0.5637 (5)	0.0453 (14)
H12A	0.871	0.5482	0.52	0.068*
H12B	0.7244	0.5496	0.5773	0.068*
H12C	0.7937	0.6083	0.6246	0.068*
C13	0.6972 (4)	0.5653 (3)	0.1692 (3)	0.0192 (9)
C14	0.7022 (4)	0.4784 (4)	0.2323 (3)	0.0226 (9)
C15	0.6217 (5)	0.4149 (4)	0.2379 (3)	0.0282 (10)
H15	0.6266	0.357	0.2784	0.034*
C16	0.5353 (5)	0.4361 (4)	0.1847 (4)	0.0306 (11)
H16	0.4813	0.3937	0.1899	0.037*
C17	0.5298 (5)	0.5218 (4)	0.1233 (3)	0.0261 (10)
H17	0.4718	0.5357	0.087	0.031*
C18	0.6073 (4)	0.5871 (3)	0.1142 (3)	0.0193 (9)
C19	0.7952 (5)	0.4533 (4)	0.2924 (3)	0.0267 (10)
H19	0.8076	0.5209	0.3049	0.032*
C20	0.7410 (6)	0.4094 (4)	0.3930 (4)	0.0375 (12)
H20A	0.6539	0.4573	0.4286	0.056*
H20B	0.8	0.4035	0.43	0.056*
H20C	0.7351	0.3398	0.3836	0.056*
C21	0.9322 (5)	0.3769 (5)	0.2345 (4)	0.0390 (12)
H21A	0.9246	0.3085	0.2232	0.058*
H21B	0.9916	0.3682	0.2716	0.058*
H21C	0.9668	0.406	0.172	0.058*
C22	0.6044 (4)	0.6763 (3)	0.0418 (3)	0.0210 (9)
H22	0.6282	0.7316	0.0675	0.025*
C23	0.4647(5)	0.7303 (4)	0.0324 (4)	0.0306 (11)
H23A	0.4414	0.6797	0.0022	0.046*
H23B	0.4661	0.7911	-0.008	0.046*
H23C	0.3999	0.7538	0.0969	0.046*
C24	0.7096 (5)	0.6349 (4)	-0.0588(3)	0.0294 (10)
H24A	0.7965	0.6084	-0.0518	0.044*
H24B	0.7071	0.6924	-0.1033	0.044*
H24C	0.6918	0.578	-0.0848	0.044*
C25	1.0286 (4)	0.6345 (4)	0.2313 (3)	0.0251 (10)
H25A	1.0531	0.5737	0.1859	0.03*
H25B	0.9602	0.6261	0.2911	0.03*
C26	1.1508 (5)	0.6316 (5)	0.2573 (4)	0.0380 (12)
H26A	1.2205	0.6373	0.1982	0.057*

H26B	1.1814	0.5652	0.2868	0.057*
H26C	1.1274	0.6907	0.3033	0.057*
C27	1.0646 (4)	0.7550 (4)	0.0928 (3)	0.0239 (9)
H27A	1.1431	0.7593	0.1047	0.029*
H27B	1.0217	0.8239	0.0707	0.029*
C28	1.1072 (7)	0.6691 (5)	0.0121 (4)	0.0509 (16)
H28A	1.1663	0.6043	0.027	0.076*
H28B	1.1527	0.6931	-0.0502	0.076*
H28C	1.0298	0.6555	0.0081	0.076*
C29	0.4813 (5)	0.7500 (4)	0.3598 (3)	0.0282 (10)
H29A	0.4477	0.7966	0.419	0.034*
H29B	0.5585	0.6917	0.3636	0.034*
C30	0.3737 (5)	0.7030 (5)	0.3591 (4)	0.0366 (12)
H30A	0.2926	0.7603	0.364	0.055*
H30B	0.3577	0.6583	0.4143	0.055*
H30C	0.403	0.6608	0.2985	0.055*
C31	0.4177 (4)	0.9023 (4)	0.2580 (4)	0.0292 (10)
H31A	0.3505	0.8756	0.2497	0.035*
H31B	0.4546	0.9342	0.1969	0.035*
C32	0.3507 (8)	0.9887 (5)	0.3406 (5)	0.067 (2)
H32A	0.3025	0.9608	0.3992	0.101*
H32B	0.2898	1.0489	0.3214	0.101*
H32C	0.4173	1.0112	0.3536	0.101*
C33	0.7937 (4)	0.8757 (4)	0.0015 (3)	0.0268 (10)
H33A	0.8264	0.7982	-0.0097	0.032*
H33B	0.8697	0.9015	-0.0258	0.032*
C34	0.6955 (5)	0.9233 (4)	-0.0547 (4)	0.0344 (12)
H34A	0.6159	0.9041	-0.0243	0.052*
H34B	0.736	0.8955	-0.1223	0.052*
H34C	0.6729	1.0002	-0.0527	0.052*
C35	0.6795 (5)	1.0173 (4)	0.1362 (4)	0.0297 (10)
H35A	0.6508	1.027	0.2077	0.036*
H35B	0.6006	1.0457	0.1166	0.036*
C36	0.7729 (6)	1.0832 (4)	0.0903 (4)	0.0405 (13)
H36A	0.8553	1.0516	0.1035	0.061*
H36B	0.7313	1.1555	0.1186	0.061*
H36C	0.7906	1.0839	0.0201	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zr1	0.0557 (4)	0.0191 (2)	0.0234 (3)	-0.0121 (2)	-0.0168 (2)	0.00391 (17)
N1	0.0115 (17)	0.028 (2)	0.0236 (19)	-0.0066 (15)	-0.0036 (14)	-0.0005 (16)
N2	0.0132 (18)	0.0206 (19)	0.0262 (19)	-0.0045 (15)	-0.0079 (15)	0.0025 (15)
N3	0.0156 (19)	0.0203 (19)	0.035 (2)	-0.0068 (15)	-0.0042 (16)	-0.0001 (16)
N4	0.0171 (19)	0.035 (2)	0.025 (2)	-0.0036 (17)	-0.0046 (15)	0.0012 (17)
N5	0.0151 (18)	0.0180 (18)	0.0237 (19)	-0.0038 (14)	-0.0047 (14)	-0.0006 (14)
C1	0.013 (2)	0.021 (2)	0.020 (2)	-0.0019 (17)	-0.0023 (16)	-0.0057 (17)

C2	0.011 (2)	0.025 (2)	0.022 (2)	-0.0028 (17)	-0.0021 (16)	-0.0082 (17)
C3	0.018 (2)	0.031 (3)	0.036 (3)	-0.0060 (19)	-0.0078 (19)	-0.007(2)
C4	0.018 (2)	0.041 (3)	0.040 (3)	-0.004(2)	-0.015 (2)	-0.008(2)
C5	0.033 (3)	0.035 (3)	0.026 (2)	-0.007(2)	-0.015 (2)	0.001 (2)
C6	0.023 (2)	0.024 (2)	0.022 (2)	-0.0027 (19)	-0.0049 (18)	-0.0056 (18)
C7	0.023 (2)	0.024 (2)	0.026 (2)	-0.0083 (19)	-0.0070 (18)	-0.0045 (18)
C8	0.035 (3)	0.025 (3)	0.038 (3)	-0.005 (2)	-0.008 (2)	0.000 (2)
C9	0.030 (3)	0.048 (3)	0.035 (3)	-0.023 (2)	-0.004 (2)	0.003 (2)
C10	0.025 (2)	0.029 (3)	0.029 (2)	-0.009(2)	-0.0093 (19)	0.003 (2)
C11	0.035 (3)	0.048 (3)	0.033 (3)	-0.018 (3)	0.000 (2)	0.004 (2)
C12	0.059 (4)	0.036 (3)	0.053 (4)	-0.019 (3)	-0.031 (3)	0.013 (3)
C13	0.012 (2)	0.022 (2)	0.020(2)	-0.0049 (17)	-0.0014 (16)	-0.0032 (17)
C14	0.018 (2)	0.025 (2)	0.023 (2)	-0.0074 (18)	-0.0032 (17)	-0.0011 (18)
C15	0.030 (3)	0.028 (2)	0.028 (2)	-0.016 (2)	-0.006 (2)	0.006 (2)
C16	0.027 (3)	0.036 (3)	0.034 (3)	-0.021 (2)	-0.006 (2)	-0.001 (2)
C17	0.023 (2)	0.033 (3)	0.025 (2)	-0.012 (2)	-0.0072 (19)	-0.0018 (19)
C18	0.015 (2)	0.020 (2)	0.019 (2)	-0.0037 (17)	-0.0023 (16)	-0.0050 (17)
C19	0.027 (2)	0.025 (2)	0.031 (3)	-0.011 (2)	-0.012 (2)	0.0074 (19)
C20	0.048 (3)	0.039 (3)	0.030 (3)	-0.017 (3)	-0.016 (2)	0.009 (2)
C21	0.033 (3)	0.042 (3)	0.038 (3)	-0.004 (2)	-0.014 (2)	0.005 (2)
C22	0.021 (2)	0.018 (2)	0.024 (2)	-0.0035 (17)	-0.0099 (18)	-0.0028 (17)
C23	0.021 (2)	0.028 (3)	0.043 (3)	-0.002 (2)	-0.016 (2)	0.001 (2)
C24	0.025 (2)	0.031 (3)	0.028 (2)	-0.007 (2)	-0.0051 (19)	0.003 (2)
C25	0.022 (2)	0.023 (2)	0.029 (2)	-0.0064 (19)	-0.0084 (19)	0.0012 (19)
C26	0.033 (3)	0.042 (3)	0.047 (3)	-0.014 (2)	-0.022 (2)	0.011 (2)
C27	0.017 (2)	0.026 (2)	0.026 (2)	-0.0059 (18)	-0.0043 (18)	0.0023 (19)
C28	0.072 (4)	0.037 (3)	0.028 (3)	-0.005 (3)	-0.007 (3)	-0.003 (2)
C29	0.020 (2)	0.043 (3)	0.020 (2)	-0.011 (2)	-0.0021 (18)	-0.003 (2)
C30	0.029 (3)	0.047 (3)	0.037 (3)	-0.020(2)	-0.008(2)	0.003 (2)
C31	0.015 (2)	0.033 (3)	0.037 (3)	-0.0052 (19)	-0.0066 (19)	-0.003 (2)
C32	0.077 (5)	0.040 (4)	0.057 (4)	0.001 (3)	-0.003 (4)	-0.017 (3)
C33	0.018 (2)	0.032 (3)	0.028 (2)	-0.0070 (19)	-0.0059 (18)	0.005 (2)
C34	0.036 (3)	0.038 (3)	0.033 (3)	-0.014 (2)	-0.018 (2)	0.011 (2)
C35	0.031 (3)	0.022 (2)	0.039 (3)	-0.008 (2)	-0.016 (2)	0.003 (2)
C36	0.048 (3)	0.032 (3)	0.053 (3)	-0.021 (3)	-0.026 (3)	0.017 (3)

Geometric parameters (Å, °)

Zr1—N5	2.036 (4)	C18—C22	1.519 (6)	
Zr1—N2	2.122 (4)	C19—C21	1.520 (7)	
Zr1—N1	2.129 (4)	C19—C20	1.524 (7)	
Zr1—N4	2.160 (4)	C19—H19	0.98	
Zr1—N3	2.402 (4)	C20—H20A	0.96	
N1—C1	1.417 (5)	C20—H20B	0.96	
N1—H1A	0.890 (2)	C20—H20C	0.96	
N2—C13	1.407 (5)	C21—H21A	0.96	
N2—H2	0.87 (5)	C21—H21B	0.96	
N3—C25	1.470 (6)	C21—H21C	0.96	

N3—C27	1.473 (6)	C22—C24	1.522 (6)
N3—H3A	0.84 (5)	C22—C23	1.546 (6)
N4—C29	1.465 (6)	C22—H22	0.98
N4—C31	1.465 (6)	C23—H23A	0.96
N5—C33	1.469 (6)	C23—H23B	0.96
N5—C35	1.470 (6)	C23—H23C	0.96
C1—C6	1.417 (6)	C24—H24A	0.96
C1—C2	1.418 (6)	C24—H24B	0.96
C2-C3	1.398 (6)	C24—H24C	0.96
$C^2 - C^7$	1 515 (6)	$C^{25} - C^{26}$	1 524 (6)
$C_3 - C_4$	1 376 (7)	C25—H25A	0.97
С3—Н3	0.93	C25—H25B	0.97
C4-C5	1 389 (7)	C26—H26A	0.96
C4—H4	0.93	C26—H26B	0.96
C5-C6	1 399 (6)	C26 H26C	0.96
С5—Н5	0.93	$C_{20} = 1120C$	1.511(7)
C5—II5	0.95	$C_{27} = C_{28}$	1.511(7)
C_{0}	1.512 (7)	$C_2/-H_2/R$	0.97
C7 = C9	1.318 (0)	$C_2/-\pi_2/B$	0.97
$C/-C\delta$	1.340 (0)	C_{20} H_{20}	0.96
C/-H/	0.98	C28—H28B	0.96
Co-HoA	0.96	C28—H28C	0.96
C8—H8B	0.96	$C_{29} - C_{30}$	1.525 (7)
C8—H8C	0.96	C29—H29A	0.97
С9—Н9А	0.96	C29—H29B	0.97
С9—Н9В	0.96	C30—H30A	0.96
С9—Н9С	0.96	C30—H30B	0.96
C10—C12	1.525 (7)	С30—Н30С	0.96
C10-C11	1.537 (7)	C31—C32	1.508 (8)
C10—H10	0.98	C31—H31A	0.97
C11—H11A	0.96	C31—H31B	0.97
C11—H11B	0.96	C32—H32A	0.96
C11—H11C	0.96	C32—H32B	0.96
C12—H12A	0.96	C32—H32C	0.96
C12—H12B	0.96	C33—C34	1.531 (6)
C12—H12C	0.96	С33—Н33А	0.97
C13—C14	1.413 (6)	С33—Н33В	0.97
C13—C18	1.427 (6)	C34—H34A	0.96
C14—C15	1.396 (6)	C34—H34B	0.96
C14—C19	1.511 (6)	C34—H34C	0.96
C15—C16	1.375 (7)	C35—C36	1.528 (7)
C15—H15	0.93	C35—H35A	0.97
C16—C17	1.387 (7)	C35—H35B	0.97
С16—Н16	0.93	C36—H36A	0.96
C17—C18	1.378 (6)	C36—H36B	0.96
С17—Н17	0.93	C36—H36C	0.96
N5— $Zr1$ — $N2$	115.34 (14)	C21—C19—H19	107
N5-Zr1-N1	116 93 (14)	C20-C19-H19	107
		0=0 017 1117	- • /

N2—Zr1—N1	126.85 (14)	C19—C20—H20A	109.5
N5—Zr1—N4	100.60 (14)	C19—C20—H20B	109.5
N2—Zr1—N4	90.93 (15)	H20A—C20—H20B	109.5
N1— $Zr1$ — $N4$	88.60 (14)	С19—С20—Н20С	109.5
N5—Zr1—N3	95.87 (13)	H20A—C20—H20C	109.5
N_2 — Zr_1 — N_3	83.79 (14)	H20B—C20—H20C	109.5
N1 - Zr1 - N3	82,12,(14)	C19 - C21 - H21A	109.5
N4—Zr1—N3	163 41 (14)	C19—C21—H21B	109.5
C1 - N1 - Zr1	138 4 (3)	$H_{21}A = C_{21} = H_{21}B$	109.5
C1—N1—H1A	105 (3)	C19-C21-H21C	109.5
$7r1_N1_H1\Delta$	105(3)	$H_{21}^{-1} = -C_{21}^{-1} = H_{21}^{-1} C_{21}^{-1}$	109.5
C13 N2 7r1	1335(3)	$H_{21R} = C_{21} = H_{21C}$	109.5
$C_{13} = N_2 = H_2$	100(3)	C_{18} C_{22} C_{24}	107.5 110.6(A)
7.1 N2 H2	109(3) 111(3)	$C_{10} - C_{22} - C_{24}$	110.0(4) 113.1(4)
211 - 12 - 112 C25 N2 C27	111(3) 1144(4)	$C_{10} - C_{22} - C_{23}$	113.1(4)
$C_{23} = N_{3} = C_{27}$	114.4(4) 117.5(2)	$C_{24} = C_{22} = C_{23}$	111.1 (4)
C_{23} N2 Z_{r1}	117.5(3)	C16 - C22 - H22	107.5
$C_2/-N_3-Z_{FI}$	120.5 (3)	C24—C22—H22	107.3
C_{25} —N3—H3A	99 (4)	C23—C22—H22	107.3
C27 - N3 - H3A	106 (4)	С22—С23—Н23А	109.5
Zrl—N3—H3A	93 (4)	С22—С23—Н23В	109.5
C29—N4—C31	114.7 (4)	H23A—C23—H23B	109.5
C29—N4—Zr1	116.7 (3)	С22—С23—Н23С	109.5
C31—N4—Zr1	125.7 (3)	H23A—C23—H23C	109.5
C33—N5—C35	114.2 (4)	H23B—C23—H23C	109.5
C33—N5—Zr1	124.4 (3)	C22—C24—H24A	109.5
C35—N5—Zr1	121.4 (3)	C22—C24—H24B	109.5
C6—C1—N1	120.8 (4)	H24A—C24—H24B	109.5
C6—C1—C2	119.6 (4)	C22—C24—H24C	109.5
N1—C1—C2	119.6 (4)	H24A—C24—H24C	109.5
C3—C2—C1	119.4 (4)	H24B—C24—H24C	109.5
C3—C2—C7	119.5 (4)	N3—C25—C26	114.5 (4)
C1—C2—C7	120.9 (4)	N3—C25—H25A	108.6
C4—C3—C2	121.0 (4)	C26—C25—H25A	108.6
С4—С3—Н3	119.5	N3—C25—H25B	108.6
С2—С3—Н3	119.5	С26—С25—Н25В	108.6
C3—C4—C5	119.9 (4)	H25A—C25—H25B	107.6
C3—C4—H4	120.1	C25—C26—H26A	109.5
C5—C4—H4	120.1	C25—C26—H26B	109.5
C4—C5—C6	121.4 (5)	H26A—C26—H26B	109.5
С4—С5—Н5	119.3	С25—С26—Н26С	109.5
С6—С5—Н5	119.3	H26A—C26—H26C	109.5
C5—C6—C1	118.7 (4)	H26B—C26—H26C	109.5
C5—C6—C10	121.0 (4)	N3—C27—C28	112.3 (4)
C1—C6—C10	120.4 (4)	N3—C27—H27A	109.1
C2—C7—C9	115.3 (4)	С28—С27—Н27А	109.1
C2—C7—C8	109.3 (4)	N3—C27—H27B	109.1
C9—C7—C8	110.1 (4)	C28—C27—H27B	109.1
С2—С7—Н7	107.3	H27A—C27—H27B	107.9

С9—С7—Н7	107.3	C27—C28—H28A	109.5
С8—С7—Н7	107.3	C27—C28—H28B	109.5
С7—С8—Н8А	109.5	H28A—C28—H28B	109.5
С7—С8—Н8В	109.5	C27—C28—H28C	109.5
H8A—C8—H8B	109.5	H28A—C28—H28C	109.5
С7—С8—Н8С	109.5	H28B—C28—H28C	109.5
H8A—C8—H8C	109.5	N4—C29—C30	114.9 (4)
H8B—C8—H8C	109.5	N4—C29—H29A	108.5
С7—С9—Н9А	109.5	С30—С29—Н29А	108.5
С7—С9—Н9В	109.5	N4—C29—H29B	108.5
H9A—C9—H9B	109.5	С30—С29—Н29В	108.5
С7—С9—Н9С	109.5	H29A—C29—H29B	107.5
Н9А—С9—Н9С	109.5	С29—С30—Н30А	109.5
H9B—C9—H9C	109.5	С29—С30—Н30В	109.5
C6-C10-C12	114.6 (4)	H30A—C30—H30B	109.5
C6-C10-C11	110.6 (4)	С29—С30—Н30С	109.5
C12—C10—C11	109.1 (4)	H30A—C30—H30C	109.5
C6-C10-H10	107.4	H30B-C30-H30C	109.5
C12—C10—H10	107.4	N4-C31-C32	114.6(5)
$C_{11} = C_{10} = H_{10}$	107.4	N4-C31-H31A	108.6
C10-C11-H11A	109.5	C_{32} C_{31} H_{31A}	108.6
	109.5	N4_C31_H31B	108.6
	109.5	$C_{32} C_{31} H_{31B}$	108.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$121 \wedge C21 + 121 \square$	107.6
	109.5	C21 C22 H22A	107.0
HIIA—CII—HIIC	109.5	C_{31} C_{32} H_{32R}	109.5
HIB-CII-HIC	109.5	C31—C32—H32B	109.5
C10—C12—H12A	109.5	H32A—C32—H32B	109.5
С10—С12—Н12В	109.5	С31—С32—Н32С	109.5
H12A—C12—H12B	109.5	H32A—C32—H32C	109.5
C10—C12—H12C	109.5	H32B—C32—H32C	109.5
H12A—C12—H12C	109.5	N5—C33—C34	114.7 (4)
H12B—C12—H12C	109.5	N5—C33—H33A	108.6
N2-C13-C14	121.1 (4)	С34—С33—Н33А	108.6
N2—C13—C18	120.0 (4)	N5—C33—H33B	108.6
C14—C13—C18	118.8 (4)	С34—С33—Н33В	108.6
C15—C14—C13	119.5 (4)	H33A—C33—H33B	107.6
C15—C14—C19	120.0 (4)	С33—С34—Н34А	109.5
C13—C14—C19	120.5 (4)	C33—C34—H34B	109.5
C16—C15—C14	121.5 (4)	H34A—C34—H34B	109.5
C16—C15—H15	119.3	C33—C34—H34C	109.5
C14—C15—H15	119.3	H34A—C34—H34C	109.5
C15—C16—C17	118.9 (4)	H34B—C34—H34C	109.5
C15—C16—H16	120.5	N5—C35—C36	115.0 (4)
C17—C16—H16	120.5	N5—C35—H35A	108.5
C18—C17—C16	122.3 (4)	С36—С35—Н35А	108.5
C18—C17—H17	118.8	N5—C35—H35B	108.5
C16—C17—H17	118.8	C36—C35—H35B	108.5
C17-C18-C13	118 9 (4)	H35A_C35_H35B	107.5
01, 010 010			

C17—C18—C22	120.8 (4)	С35—С36—Н36А	109.5
C13—C18—C22	120.2 (4)	C35—C36—H36B	109.5
C14-C19-C21	111.3 (4)	H36A—C36—H36B	109.5
C14-C19-C20	114 2 (4)	C35—C36—H36C	109.5
C_{21} C_{19} C_{20}	1099(4)	H_{36A} $-C_{36}$ $-H_{36C}$	109.5
C_{14} C_{19} H_{19}	107	H36B-C36-H36C	109.5
	107		107.5
N5—Zr1—N1—C1	-96.8(5)	N1—C1—C6—C10	-3.1(6)
N2—Zr1—N1—C1	71.9 (5)	C2-C1-C6-C10	178.9 (4)
N4—Zr1—N1—C1	162.0 (5)	C3—C2—C7—C9	28.7 (6)
N3—Zr1—N1—C1	-4.2 (4)	C1—C2—C7—C9	-155.7 (4)
N5-Zr1-N2-C13	-105.4(4)	C3-C2-C7-C8	-95.9 (5)
N1 - Zr1 - N2 - C13	85.7 (4)	C1-C2-C7-C8	79.7 (5)
N4-Zr1-N2-C13	-3.2(4)	C5-C6-C10-C12	-25.1(6)
$N_3 - Zr_1 - N_2 - C_{13}$	161.0(4)	C1 - C6 - C10 - C12	1559(4)
N_{5} Zr1 N_{2} Cr5	-1674(3)	C_{5} C_{6} C_{10} C_{11}	98.6 (5)
N_{2} Z_{r1} N_{3} C_{25}	-52.5(3)	C1 - C6 - C10 - C11	-80.3(5)
$N_1 - Zr_1 - N_3 - C_{25}$	76.1.(3)	$2r_1 - N_2 - C_{13} - C_{14}$	-106.6(4)
N4 - Zr1 - N3 - C25	196(7)	$2r_1 - N_2 - C_{13} - C_{18}$	72 2 (5)
$N_{2}^{-1} = N_{3}^{-1} = N_{$	-194(3)	N_{2} C13 C14 C15	-1799(4)
$N_2 = 7r_1 = N_3 = C_27$	95 5 (3)	C_{18} C_{13} C_{14} C_{15}	13(6)
$N_{1} = 2r_{1} = N_{3} = C_{27}$	-135.9(3)	N_{2} C_{13} C_{14} C_{19}	-0.7(6)
$N_{1} = 211 = N_{3} = C_{27}$	155.7(5)	C_{18} C_{13} C_{14} C_{19}	-1795(4)
N5 $Zr1$ NA C20	-1743(3)	$C_{13}^{13} C_{14}^{14} C_{15}^{15} C_{16}^{16}$	-13(7)
$N_{2} = \frac{1}{2} N_{1} = \frac{1}{2} N_{1} = \frac{1}{2} N_{2} = \frac{1}{2} N_{1} = \frac{1}{2} N_{2} = \frac{1}{2} N_{1} = \frac{1}$	1/4.3(3)	$C_{19} = C_{14} = C_{15} = C_{16}$	1.3(7) 170 5 (4)
$N_2 - Z_{II} - N_4 - C_{29}$ $N_1 - Z_{r1} - N_4 - C_{29}$	-57.2(3)	C14 $C15$ $C16$ $C17$	1/9.3(4)
N1 - Z11 - N4 - C29 $N2 - 7r1 - N4 - C20$	-14(7)	$C_{14} = C_{15} = C_{10} = C_{17}$	0.9(7)
N5 - Zr1 - N4 - C29	-1.4(7)	$C_{15} - C_{10} - C_{17} - C_{18}$	-0.3(7)
$N_{2} = \frac{1}{2} = \frac{1}{2$	-14.0(4)	C16 - C17 - C18 - C13	0.3(7)
N2 - ZII - N4 - C3I $N1 - 7r1 - N4 - C3I$	-130.0(4)	10 - 17 - 18 - 22	1/0.3(4) -170.8(4)
N1 - Z11 - N4 - C31	102.3 (4)	$N_2 = C_{13} = C_{16} = C_{17}$	-1/9.8(4)
N3 - ZII - N4 - C3I	158.5 (4)	C14 - C13 - C18 - C17	-0.9(0)
$N_2 - Z_{11} - N_5 - C_{22}$	-14.4(4)	$N_2 = C_{13} = C_{18} = C_{22}$	4.2 (0)
N1 - Zr1 - N5 - C33	155.0 (5)	C14 - C13 - C18 - C22	-1/0.9(4)
N4-2r1-N5-C33	-110.5(3)	C13 - C14 - C19 - C21	90.7(5)
N_{3} Z_{11} N_{5} C_{25}	71.5(3)	C13 - C14 - C19 - C21	-88.5(5)
N_2 —Zr1— N_5 —C35	164.6(3)	C13 - C14 - C19 - C20	-34.4(6)
N1 - Zr1 - N5 - C35	-25.4(4)	C13 - C14 - C19 - C20	140.4 (4)
N4-2r1-N5-C35	68.4(3)	C17 - C18 - C22 - C24	-90.1(5)
N_3 — Zr_1 — N_5 — C_{35}	-109.5 (3)	C13 - C18 - C22 - C24	85.9 (5)
2rI - NI - CI - C6	-105.2(5)	C17 - C18 - C22 - C23	35.2 (6)
ZrI - NI - CI - C2	72.9 (6)	C13—C18—C22—C23	-148.8 (4)
C6-C1-C2-C3	0.2 (6)	C27—N3—C25—C26	59.7 (5)
N1 - C1 - C2 - C3	-1/7.8(4)	$2r_1 - N_3 - C_{25} - C_{26}$	-150.5(3)
C6-C1-C2-C7	-1/5.4(4)	C25 - N3 - C27 - C28	63.2 (5)
NI-CI-C2-C7	6.6 (6)	Zr1—N3—C27—C28	-85.7 (5)
C1—C2—C3—C4	0.2 (7)	C31—N4—C29—C30	58.1 (6)
C7—C2—C3—C4	175.9 (4)	Zr1—N4—C29—C30	-140.0 (4)
C2—C3—C4—C5	-0.7 (7)	C29—N4—C31—C32	62.7 (6)

supporting information

C3—C4—C5—C6	0.8 (7)	Zr1—N4—C31—C32	-97.4 (5)
C4—C5—C6—C1	-0.4 (7)	C35—N5—C33—C34	-56.0 (5)
C4—C5—C6—C10	-179.4 (4)	Zr1—N5—C33—C34	123.1 (4)
N1—C1—C6—C5	177.9 (4)	C33—N5—C35—C36	-54.4 (5)
C2—C1—C6—C5	-0.1 (6)	Zr1-N5-C35-C36	126.5 (4)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	D—H···A
N3—H3 <i>A</i> …N1	0.84 (5)	2.56 (5)	2.983 (5)	112 (4)