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Abstract. We conduct numerical analysis of the 2-dimensional discrete-time
gene expression model originally introduced by Andrecut and Kauffman (Phys.

Lett. A 367: 281–287, 2007). In contrast to the previous studies, we analyze

the dynamics with different reaction rates α1 and α2 for each of the two genes
under consideration. We explore bifurcation diagrams for the model with α1

varying in a wide range and α2 fixed. We detect chaotic dynamics by means

of the positive maximum Lyapunov exponent and we scan through selected
parameters to detect those combinations for which chaotic dynamics can be

found in the model. Moreover, we find bistability in the model, that is, the

existence of two disjoint attractors. Both situations are interesting from the
point of view of applications, as they imply unpredictability of the dynamics

encountered. Finally, we show some specific values of parameters of the model

in which the two attractors are of different kind (a periodic orbit and a chaotic
attractor) or of the same kind (two periodic orbits or two chaotic attractors).

1. Introduction

Modeling gene expression plays a key role in understanding the regulatory mech-
anisms within cells and the dynamics of biological processes at the molecular level.
The development of mathematical models that accurately reflect the course of these
processes allows for predicting the behavior of biological systems and contributes
to the advancement of therapeutic strategies and genetic engineering. Gene expres-
sion models enable the study of complex networks of interactions between genes,
transcripts, and proteins, which in turn contributes to a better understanding of
phenomena such as cellular responses to stress and cell differentiation processes.

Despite the undeniable complexity of the chemical reactions and kinetics involved
in transcription and translation processes, the expression of a single gene does not
reflect the intricacies of processes occurring within a living cell. When more genes
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are present in a system, their corresponding proteins can act as transcription factors,
binding to different promoters, creating an extensive network of dependencies. Due
to their significance for all biological processes, numerous attempts have been made
over the past decades to accurately model gene regulatory networks.

The first approach to modeling gene expression involves continuous-time models,
in which the dynamics is described using systems of differential equations. This
type of modeling allows for capturing the variables that describe the concentrations
of gene products, such as mRNA or proteins, in a smooth manner over time. Among
the classical models of this type are systems of differential equations. These systems
form the basis for analyzing dynamic dependencies among various components of
a biological system, such as Goodwin’s model (see [10]) and the Michaelis-Menten
model (see [16]), which have been further developed by many authors. Such mod-
els constitute effective tools for studying kinetic reactions and gene transcription,
although their limitation is the necessity of assuming an immediate response of the
system to changes in parameters. Therefore, in order to better capture biological
realities, models that incorporate time delays are considered. Delay models take
into account time shifts that reflect the actual phenomena taking place during the
synthesis of proteins and mRNA. This approach allows for a more precise reflection
of processes where natural delays exist between the initiation of transcription and
protein synthesis.

The introduction of time delays into gene expression models has been proposed
in numerous studies. For example, the authors of [7, 8, 9] analyze continuous
mathematical models of Hes1 gene expression, incorporating various aspects such
as time delays, feedback mechanisms, and dimerization processes. The paper [9]
introduces separate delays for transcription and translation, highlighting the impact
of the total delay on stability and the occurrence of a Hopf bifurcation. In [7], the
model is expanded to include different time scales and is reduced to the classical Hes1
model, examining equilibrium stability and dynamics. Finally, further development
of the model is proposed in [8] by including dimerization, and analysis of the impact
of delays on bifurcations and stability of limit cycles is being conducted, which
results in deeper insight into oscillations in Hes1 gene expression. Similarly, the
authors of [19] investigate a generalized p53-Mdm2 model and demonstrate that
oscillations in gene expression can arise with or without time delays, depending on
specific stability conditions and bifurcation criteria.

The groundwork for the model analyzed in our research was laid out by Kauffman
in 1969 in the form of Boolean networks [11]. A Boolean network is a finite set
of Boolean variables changing in discrete time steps according to predetermined
rules. A single network can have several distinct modes of behavior, by analogy
to one genome creating specialized cell types. Further analysis of random Boolean
networks was facilitated in 2005 when Andrecut used mean field theory to calculate
probabilities of node states in a network given only global parameters. Moreover, he
has calculated Lyapunov exponents of such networks as a function of connectivity,
and has shown that for the purpose of investigating chaotic behavior the discrete
network can be replaced with a continuous map. This allowed for application of
Sharkovskii’s theorem to find possible orbits present in the model [3].

In 2006, Andrecut and Kauffman proposed a continuous model in which individ-
ual reactions between genes have been replaced with their average results, reducing
computational complexity and making the outcome deterministic, as opposed to
the more realistic stochastic simulations. The regulatory network is represented as
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BISTABILITY AND CHAOS IN THE DISCRETE TWO-GENE MODEL 3

a system of differential equations, with exact formulae derived directly from the
underlying chemical reactions. The model accounts for N genes and protein multi-
mers up to length n, including mixed protein chains. Fourier analysis of numerical
solutions has shown that this model admits a range of different behaviors, such as
stationary solutions, periodic orbits, and chaotic behavior as well [4].

A more approachable, discrete-time model was proposed a year later in [5]. The
number of genes was fixed at 2 and only homo-multimers of length exactly n were
taken into consideration. This led to a system of two mutually dependent equa-
tions. Despite the considerable simplification, the new model seems to represent the
complex dynamics of the original model well, displaying different modes of behavior
under various conditions. Combined with the relative ease of simulating a discrete
model, this has encouraged further research.

In our work, we focus on the discrete Andrecut-Kauffman model. However, we
consider a generalized form in which a different reaction rate may be associated
to each gene (see Section 3). This distinction allows for a more precise represen-
tation of gene expression dynamics. Specifically, instead of a single, general rate
α, inclusion of α1 and α2 in the equations of the model enables capturing various
regulatory mechanisms that may influence transcription processes. Additionally,
we incorporate the Lyapunov exponent into our analysis, which enables us to mea-
sure the model’s stability and sensitivity to initial conditions, an essential factor for
understanding the complex dynamics of discrete models in a biological context.

The purpose of our research is to investigate the dynamics encountered in the
generalized discrete Andrecut-Kauffman model important for applications. We put
emphasis on the existence of chaotic dynamics, and also on the phenomenon of bista-
bility, that is, the existence of two distinct attractors, possibly of different types,
such as an attracting periodic orbit and a chaotic attractor. Both phenomena are
of undeniable importance from the biological point of view. Chaotic dynamics im-
plies unpredictability of the long-term behavior of the modeled system. Bistability
implies the fact that the system can stabilize in two different ways depending on
the initial conditions.

The paper is organized as follows. In Section 2, we explain the gene expression
mechanisms that yield the difference equations that we analyze. The equations are
introduced in Section 3. Then in Section 4, we establish an absorbing set that
captures all the bounded dynamics. In Section 5, we show evidence that admitting
different reaction rates proposed in Section 3.3 can result in qualitative change of
dynamics and is thus an important direction of investigation. In Section 6, we
show and analyze bifurcation diagrams of the model with one of the reaction rates
varying in a wide range while keeping the other rate fixed. Then we introduce a
numerical procedure for the computation of the maximum Lyapunov exponent in
our 2-dimensional model in Section 7, and we apply it to the search for chaotic
dynamics in Section 8. We then analyze the maximum Lyapunov exponents for
a wide range of reaction rates in Section 9. Then in Section 10, we discuss the
asymmetry found in the computation of the maximum Lyapunov exponent, which
yields to the detection of three kinds of bistability in the model that we discuss
in Section 11. The paper concludes with a discussion in Section 12, where we
address the importance of our findings for understanding gene expression dynamics,
emphasizing the role of parameters in the stability of the analyzed model and its
potential to exhibit chaotic behavior. We also suggest future research directions,
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such as the analysis of bifurcations, unstable fixed points, and global dynamics in
the context of Systems biology and controlled genetic systems.

2. Gene expression mechanisms

Gene expression encompasses all the processes that determine the amount of a
specific mRNA and protein produced within a cell. This series of processes includes
two fundamental stages: transcription, where a gene’s DNA sequence is transcribed
into mRNA, and translation, where the mRNA is subsequently translated into a
protein. Gene expression often serves as a foundational aspect in cell biology re-
search, providing insight into mechanisms both at the microscopic and molecular
scale. Understanding how gene expression is regulated and coordinated is crucial
for grasping the complexity of cellular systems [12].

2.1. Transcription. Transcription is the process in which enzymes use one strand
of DNA within a gene as a template to produce messenger RNA (mRNA). RNA
polymerase, aided by proteins called transcription factors, binds to a specific se-
quence within the gene known as the promoter and separates the two DNA strands.
The template strand, or the antisense strand, is used to generate the mRNA, while
the other strand is the nontemplate or sense strand. RNA polymerase initiates
mRNA synthesis at the start codon without needing a primer and moves down-
stream along the gene in a process called elongation. It synthesizes the mRNA by
reading the antisense strand and generating the mRNA, adding RNA nucleotides
as it goes. This process is similar to how DNA polymerase synthesizes DNA, ex-
cept that RNA is being synthesized with ribose instead of deoxyribose and uracil
instead of thymine. Unlike DNA replication, RNA polymerase re-zips the DNA
behind it, keeping only 10 to 20 bases exposed at a time. When RNA polymerase
reaches the end of the gene, termination occurs, the enzyme detaches, and the DNA
returns to its original state. The resulting mRNA, after a few modifications during
RNA processing, leaves the nucleus and moves to the cytoplasm, where it finds a
ribosome [1].

DNA

mRNA

Figure 1. Schematic representation of DNA transcription.
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2.2. Translation. Translation occurs in the ribosome, where mRNA serves as a
code for a specific protein. Each set of three bases on the mRNA, called codons,
encodes a specific anticodon carried by a transfer RNA (tRNA), each linked to
a particular amino acid. The arrangement of nucleotides into codons is called the
reading frame. With four bases to choose, and codons consisting of three bases each,
there are 64 possible codons, enough to encode all the necessary amino acids. Each
codon corresponds to a particular amino acid; AUG is the start codon, initiating
translation by coding for methionine, and there are three stop codons (UAG, UAA,
UGA) that terminate translation.

During translation, the small ribosomal subunit binds to the mRNA and an
initiator tRNA, which adheres to the start codon. The large ribosomal subunit
then joins to complete the translation initiation complex. The tRNA corresponding
to the next codon enters the ribosome, carrying an amino acid that binds covalently
to the methionine from the initiator tRNA. The first tRNA detaches and leaves the
ribosome, which shifts to accommodate the next tRNA. This process continues
along the mRNA, with tRNAs entering and exiting the ribosome according to the
codons on the mRNA, and the polypeptide chain grows. When a stop codon is
reached, the completed polypeptide is released, likely entering a cell organelle for
folding and further modification [1].

mRNA

protein

Figure 2. Schematic representation of the RNA translation.

Through this two-step process, DNA is transcribed into mRNA, and then this
mRNA is translated into a protein. Since every gene encodes a specific protein and
proteins constitute much of an organism’s structure and function, from muscle and
organ tissue to receptors and enzymes, this is how DNA carries the code for a living
organism.

3. The Andrecut-Kauffman model

In molecular biology, the flow of genetic information follows this transcription and
translation pathway, where DNA is first transcribed into messenger RNA (mRNA),
which is subsequently translated into protein. Each gene within DNA encodes a
specific protein, essential for an organism’s structure and function, forming cells,
tissues, and organs, and playing critical roles in processes like muscle structure and
enzymatic activity. Thus, DNA serves as the blueprint for life by directing the
synthesis of the proteins required for a functioning organism.

3.1. Motivation behind the model. Andrecut and Kauffman [5] introduced a
simplified model of gene expression that merges the processes of transcription and
translation described in Section 2 into a single reaction. This approach simplifies
the complex biological processes by treating them as one integrated step, making it
easier to analyze the model’s dynamics.

The main motivation for the introduction of the discrete Andrecut-Kauffman
model is the set of chemical reactions for the two-gene system, which covers the
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complex steps of gene expression. In this model, the key reactions include the
following.

1. The expression reaction

RNAp + P
k−→ RNAp + P + M

describes the processes of transcription and translation in a condensed form.
During transcription, RNA polymerase (RNAp) binds to the gene promoter
(P ) and then goes through intermediate reactions, leading to the formation
of an mRNA molecule. During translation, the mRNA binds to the ribo-
some, resulting in the formation of a protein (M).

2. Multimerization

nM ←→Mn

is the process by which individual protein particles – monomers (n = 1)
combine to form a multimeric structure (Mn). This step is crucial for many
proteins, which achieve full functionality only in their multimeric forms,
such as dimers (n = 2) or trimers (n = 3), depending on cellular conditions.

3. Promotor blocking

P + Mn ←→ P (Mn)

captures how multimeric complexes (Mn) bind to promoter sites (P ), thus
blocking further transcription. Such promoter blocking mechanisms are
essential for regulatory feedback, where the complex (P (Mn)) can inhibit
continued gene expression.

4. The degradation reaction

M
kδ

−→ Ø

describes the degradation of protein monomers (M), a vital aspect of gene
regulation that affects the level of gene expression by controlling the lifespan
of protein molecules.

3.2. Equations for the two-gene model. In this framework, the dynamic rela-
tionships between the expression levels of two genes, labeled x and y, are explored
through their interactions and feedback mechanisms. The model defines these rela-
tionships with the following equations:

(1)


xt+1 =

α

1 + (1− ε)xn
t + εynt

+ βxt,

yt+1 =
α

1 + εxn
t + (1− ε)ynt

+ βyt.

Here, xt and yt represent the concentration levels of transcription factor proteins
for the genes x and y at time t, respectively. The parameters represent properties
of the chemical reactions discussed in Section 3.1. The parameter α = ∆t ·k reflects
the rate of combined transcription and translation over a fixed time interval. The
parameter β = 1−∆t·kδ depends on the rate of protein degradation for a fixed time
interval. Finally, ε is a parameter that describes the coupling between the genes
under the assumption that it is symmetric [4]. The exponent n denotes the number
of monomers of a given protein that are subject to the multimerization reaction.
These parameters were considered in [5] in the following ranges: n ∈ {1, 2, 3, 4},
α ∈ [0, 100], β ∈ [0, 1), and ε ∈ [0, 1].
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BISTABILITY AND CHAOS IN THE DISCRETE TWO-GENE MODEL 7

3.3. Equations for the generalized two-gene model. The model proposed
in [5] assumes many simplifications, including the assumption that the genes are
identical in terms of the rate of gene expression reaction, and the degradation of
protein monomers as well. In [20, 22], the Andrecut-Kauffman model was considered
with different rates of degradation β for each gene. However, in our research, we
will instead deal with different reaction rates α for each gene. In other words, we
use α1 and α2 in the two equations instead of having the common rate α. We thus
consider the following model:

(2)


xt+1 =

α1

1 + (1− ε)xn
t + εynt

+ βxt,

yt+1 =
α2

1 + εxn
t + (1− ε)ynt

+ βyt.

Moreover, the definition of the parameter α = ∆t ·k in no way limits its value to the
range [0, 100] considered previously; therefore, in what follows, we consider larger
ranges of the parameters α1 and α2 in order to examine the dynamics of the model
more broadly.

In the original analysis, Andrecut and Kauffman [5] indicate that for n = 1 and
n = 2 the model exhibits no chaotic behavior and only produces stable points or
cycles. We have conducted low resolution simulations to validate these findings
using methods described in Section 7. Indeed, the computed Lyapunov exponents
were negative in the range of parameters considered. Therefore, we decided to limit
our attention to n = 3 and n = 4 in our research.

4. An absorbing set for the model

Before conducting numerical investigation of model (2), it is worth to know
that within the regime of parameters of our interest and among all the relevant
initial conditions there are no trajectories that become unbounded in forward time.
Moreover, we would like to know that all the attractors and other sets that represent
long-term dynamics are located within a specific bounded region of the phase space,
so that we can conduct informed numerical simulations and not worry that we miss
any important part of the dynamics. The following notion is useful for this purpose.

Definition 4.1 (Absorbing set, see [17, Definition 1]). A set P ⊂ X is called an
absorbing set for a dynamical system generated by f : X → X if for every x ∈ X
there exists N0 > 0 such that fn(x) ∈ P for all n ≥ N0.

Note that although every forward trajectory in the dynamical system enters an
absorbing set in a finite number of steps, the actual number of steps may depend on
the initial conditions. Moreover, every absorbing set contains all the attractors of
the system (both local and global). Moreover, it contains all the recurrent dynamics
present in the system, such as stable and unstable fixed points and periodic orbits.

Note that the entire phase space satisfies the definition of an absorbing set for a
dynamical system. However, we are interested in finding a possibly small bounded
absorbing set in order to be able to restrict our numerical simulations to a manage-
able subset of the phase space and still ensure that we obtain reliable results. The
following proposition defines a useful absorbing set for model (2).

Proposition 4.2. Let c1, c2 > 0 be arbitrary numbers (in particular, they can be
very small). Define bi := (αi + ci)/(1 − β) for i ∈ {1, 2}. Then the set Rc :=
[0, b1]× [0, b2] is an absorbing set for model (2) with α1, α2 ≥ 0, β ∈ [0, 1), and any
ε ∈ [0, 1] and n ∈ N. Moreover, the set Rc is positively invariant.
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Proof. Note that only the first quadrant of the phase space (that is, x, y ≥ 0) is
meaningful from the point of view of applications. So we consider X := R2

+.
Following the ideas from [17], we shall prove that if xt ≥ b1 then xt+1 ≤ xt − c1,

that is, after each iteration, the x coordinate of the point decreases at least by the
constant amount c1, as long as it is beyond b1. This statement implies that after a
finite number N0 of iterations, we must reach the condition xt+N0

≤ b1. Moreover,
we shall also show that if xt ≤ b1 then also xt+1 ≤ b1.

For the first statement, first notice that xt ≥ b1 = (α1 + c1)/(1−β) is equivalent
to α1 ≤ (1− β)xt − c1, and then calculate as follows:

xt+1 = α1/(1 + a non-negative term) + βxt ≤ α1 + βxt

≤ (1− β)xt − c1 + βxt = xt − c1.
(3)

Let us now consider the second statement and take xt ≤ b1 = (α1 + c1)/(1− β).
Then we calculate:

xt+1 ≤ α1 + βxt ≤ α1 + β(α1 + c1)/(1− β)

= α1(1− β)/(1− β) + β(α1 + c1)/(1− β)

= (α1 − βα1 + βα1 + βc1)/(1− β)

= (α1 + βc1)/(1− β) ≤ (α1 + c1)/(1− β) = b1.

(4)

By symmetry in the equations, the same holds true for yt and b2.
As a consequence, every trajectory enters Rc = X ∩ {x ≤ b1} ∩ {y ≤ b2} in a

finite number of steps. Moreover, every trajectory that starts in Rc remains in Rc.
This completes the proof. □

In our case, it follows from Proposition 4.2 that if αi ∈ [0, 100] and β ≤ 0.5 then
all the recurrent dynamics of the model we consider is contained in [0, 200]2.

5. Periodic and chaotic behavior of the model

Both models (1) and (2) admit periodic solutions and chaotic dynamics. However,
allowing α1 ̸= α2 may switch the model to quantitatively different dynamics by
changing α2 alone while leaving α1 unchanged, as we illustrate below.

The plots in Figure 3 show evolution of variables x and y in time in model (2)
for two specific trajectories, both starting at x0 = y0 = 0.5: one for the model with
α1 = α2 = 20, the other one with the same value of the first reaction rate α1 = 20,
but with α2 = 60. In this example, the same values of the other parameters are
used in both cases: ε = 0.8, β = 0.1, n = 4. For α1 = α2 = 20 one can immediately
notice the chaotic nature of the model. However, the trajectory for α2 = 60 appears
to approach a stable periodic orbit.

The opposite situation is also present in the model. Specifically, it is possible
to find a case in which for α1 = α2 we observe periodic solutions, while changing
the value of α2 yields chaotic behavior. An example of such a case occurs for the
parameters α1 = 3, α2 = 3, β = 1, ε = 0.8, and n = 4. Periodic trajectories switch
to chaotic solutions when we change the value of α2 to 28.

These plots highlight the role of α1 and α2 in controlling the model’s stability, and
illustrate how the gene expression model can shift between oscillatory and chaotic
regimes, depending solely on the choice of these parameters.
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BISTABILITY AND CHAOS IN THE DISCRETE TWO-GENE MODEL 9

(a) A trajectory for α1 = α2 = 20. (b) A trajectory for α1 = 20 and α2 = 60.

Figure 3. The two coordinates (x and y) of selected trajectories
observed for ε = 0.8, β = 0.1, n = 4, and different values of α1 and
α2.

6. Analysis of bifurcation diagrams

A bifurcation diagram is a visual representation of the evolution of the global at-
tractor (or attractors in general) of a dynamical system as a selected one-dimensional
parameter varies. The horizontal axis of the diagram typically represents the param-
eter being varied, while the vertical axis corresponds to the one-dimensional phase
space of the system, or a projection onto a selected variable if the actual dimension
of the phase space is higher than one. Several features of the global attractor can
be easily spotted on a bifurcation diagram, such as the size and complexity of the
attractor, as well as bifurcations it undergoes when the parameter is varied.

The purpose of the experiment described below is to investigate the dynamics
by means of bifurcation diagrams with respect to one of the reaction rates α1 while
keeping the other rate α2 fixed in model (2) and compare it to the dynamics of
model (1) in which both reaction rates are the same. For that purpose, we fix
ε = 0.7, β = 0.2, n = 4, α2 = 200, and create bifurcation diagrams for α1 ∈ [0, 500]
for model (2). We do the same for model (1) with α ∈ [0, 500].

The results of this experiment are shown in Figure 4. In the vertical axes of the
bifurcation diagrams, we show projections of the observed dynamics to variables x
and y, respectively. In the horizontal axes, we indicate the parameters of the models
that are varied: the common reaction rate α in model (1) in Figures 4(a) and 4(c),
and the reaction rate α1 of model (2) in Figures 4(b) and 4(d).

It is interesting to see that there is a sudden transition in model (2) that occurs in
the bifurcation diagrams 4(b) and 4(d) as the parameter α1 crosses the value α1 =
α2 = 200. Indeed, this is kind of a boundary between two different behaviors of the
model. Moreover, we notice considerable difference between the shape of diagrams
4(b) and 4(d). The first one resembles a series of period-doubling bifurcations, while
the second one looks like showing period-halving bifurcations.
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On the other hand, the corresponding bifurcation diagrams for model (1) shown
in Figures 4(a) and 4(c) for α varying together in the same wide range [0, 500]
yield relatively typical bifurcation diagrams with periodic windows, period-doubling
bifurcations, and regions of allegedly chaotic behavior. Moreover, the diagrams for
x and y seem to be practically identical.

(a) Bifurcation Diagram for x with α = α1 =

α2.

(b) Bifurcation Diagram for x with α2 = 200.

(c) Bifurcation Diagram for y with α = α1 =
α2.

(d) Bifurcation Diagram for y with α2 = 200.

Figure 4. Bifurcation diagrams of variables x and y for model (2)
with fixed parameters ε = 0.7, β = 0.2, n = 4 for α1 = α2 (a), (c)
and α2 = 200 (b), (d).

In an attempt to seek the reasons for the x-y symmetry in the bifurcation dia-
grams shown in Figures 4(a) and 4(c), as well as the odd bifurcation observed in
Figures 4(b) and 4(d) at α1 = 200, we used numerical simulations to compute the
actual attractors in the phase space for several values of α1. It turns out that for
α1 = α2 = 200 one can see two attractors symmetric to each other, as shown in
Figure 5. When we increase or decrease α1 by a certain amount, while keeping the
other parameters unchanged, including α2 = 200, one of the attractors disappears
and the model exhibits a single attractor. The symmetry of equations (1) and the
existence of the two attractors explain the fact that we observed identical bifurca-
tion diagrams in Figures 4(a) and 4(c). The disappearance of one of the attractors,
on the other hand, explains the sudden change in the shape of the observed pro-
jections of the attractors in Figures 4(b) and 4(d) when α1 crosses the value of
α2 = 200.
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Figure 5. Two attractors observed in model (2) with the param-
eters ε = 0.7, β = 0.2, n = 4 and α1 = α2 = 200.

7. Numerical procedure for the computation of the maximum
Lyapunov exponent

Chaos is characterized by aperiodic long-term behavior of a bounded determinis-
tic system that exhibits sensitive dependence on initial conditions. In such a system,
small differences in initial conditions can lead to vastly different outcomes, making
prediction difficult. A key tool for quantifying the separation rate of such trajec-
tories is the Lyapunov exponent. In general, the existence of a positive Lyapunov
exponent indicates instability and chaotic behavior, while having all the Lyapunov
exponents negative suggests convergence of nearby trajectories and thus stability.
In an n-dimensional system, there are n Lyapunov exponents corresponding to the
system’s degrees of freedom. See, e.g., [21] for a comprehensive introduction to this
topic.

Let us explain the background and the numerical approach that we use to com-
pute the maximum Lyapunov exponent for our model.

In what follows, we are interested in the maximum Lyapunov exponent. The
maximum Lyapunov exponent is simply the larger of the two Lyapunov exponents
in our two-dimensional model.

Definition 7.1 (see [2]). Let f be a smooth map on R2, and let Jm = Dfm(v0)
denote the first derivative matrix of the m-th iterate of f at the initial point v0.
For i ∈ {1, 2}, let rmi be the length of the i-th longest orthogonal axis of the
ellipsoid JmN for an orbit with initial point v0. Then rmi measures the contraction
or expansion near the orbit of v0 during the first m iterations. The i-th Lyapunov
number of v0 is defined by

Li = lim
m→∞

(rmi )
1/m

,

if this limit exists. The corresponding i-th Lyapunov exponent of v0 is λi = lnLi.
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In order to compute the maximum Lyapunov exponent for model (2), the Jaco-
bian matrix of the right-hand side is determined as follows:

(5) J =


− (1− ε)α1nx

n−1

(1 + (1− ε)xn + εyn)
2 + β − εα1ny

n−1

(1 + (1− ε)xn + εyn)
2

− εα2nx
n−1

(1 + εxn + (1− ε)yn)
2 − (1− ε)α2ny

n−1

(1 + εxn + (1− ε)yn)
2 + β

 .

Then an initial small disturbance is iterated along the trajectory, following the equa-
tions, using the Jacobian matrix evaluated at consecutive points of the trajectory.
After each iteration, the size of the disturbance is measured. It shows how quickly
nearby trajectories diverge or converge. A positive value of the maximum Lya-
punov exponent suggests chaotic behavior of the model, as it indicates an average
exponential divergence of nearby trajectories.

Let us now describe the numerical procedure that we employed to estimate the
maximum Lyapunov exponent for a considerable number of points in the parameter
space. The algorithm used during these calculations relies on the fact that for a
given point x orbiting inside an attractor, almost every vector in the neighborhood
of x will converge towards the direction of the fastest expansion.

In order to calculate the Lyapunov exponent numerically for initial conditions x0

(preferably in a neighborhood of an attractor), a second point x′
0 is chosen at a small

distance d0 = 10−8 from x0. After one iteration, we obtain d1 = ∥f(x0) − f(x′
0)∥.

From the definition of the Lyapunov exponents, we expect d1 ≈ d0e
λ, allowing us

to estimate λ ≈ ln d1

d0
. This process is repeated iteratively with xm+1 = f(xm)

and x′
m+1 = xm+1 + d0

dm+1
(f(x′

m) − xm+1). Normalization is applied at each step

to keep both trajectories close enough so that f can be reasonably approximated
by its Jacobian, yet sufficiently separated to minimize numerical errors that would
make their images merge into one number. The final estimate is the average of the
λ values obtained in all iterations.

Note that we treat the model as if it were effectively one-dimensional, because the
vector x′

m−xm naturally converges towards the direction of fastest expansion, which
aligns with the eigenvector associated with the largest eigenvalue of the Jacobian
matrix J . This approach does not yield the full Lyapunov spectrum. However, it
is inexpensive computationally and the estimated maximum exponent suffices to
identify chaotic dynamics in the model.

If a global attractor exists, the method should converge to a single Lyapunov
exponent value, independent of the chosen initial condition. This behavior has
been confirmed in the current setup, as shown in Figure 6. The left panel dis-
plays the distribution of Lyapunov exponent values calculated for a large number
of initial conditions, showing a normal distribution centered around approximately
0.35, which supports convergence towards a single value. The right panel shows
the spatial distribution of these values in the phase space, where the uniformity
and homogeneity of the values provide further evidence of their independence with
respect to the choice of x0 and y0. Together, these visualizations provide a baseline
for understanding the computational methods discussed in the following sections.

8. A search for positive Lyapunov exponents in both models

The purpose of our first numerical experiment that involves the computation
of the maximum Lyapunov exponent is to check whether taking different reaction
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BISTABILITY AND CHAOS IN THE DISCRETE TWO-GENE MODEL 13

Figure 6. Distribution of the computed Lyapunov exponent for
1024×1024 starting points taken from (1, 99)×(1, 99). Parameters
used in this simulation are α1 = 50, α2 = 85, β = 0.2, ε = 0.7 and
n = 3.

rates α1 and α2 for each gene proposed in model (2), as opposed to using the same
rate α = α1 = α2 in model (1), increases the number of parameters (β, ε) for which
a positive maximum Lyapunov exponent can be encountered.

For that purpose, we took a grid of 100× 100 different values of the parameters
β ∈ [0, 1) and ε ∈ [0, 1]. Specifically, we examined 100 evenly spaced values of
β, ranging from 0 to 0.99, including both endpoints, and 100 values of ε ranging
from 0 to 1, inclusive. For each of these combinations, we computed the maximum
Lyapunov exponent for a grid of 1000 × 1000 values of α1, α2 ∈ [0, 100], including
both 0 and 100, taking the initial condition x0 = 0.1, y0 = 0.1 in each case. We
conducted these computations for each of the two models (1) and (2), and for
n ∈ {3, 4}, which resulted in four series of computations in total.

The plots in Figure 7 illustrate those pairs of parameters β and ε for which we
were able to find reaction rates (α1, α2) ∈ [0, 100] × [0, 100] in the case of model
(2), or a reaction rate α ∈ [0, 100] in the case of model (1), with a positive maxi-
mum Lyapunov exponent. Note that the presence of a positive Lyapunov exponent
indicates chaotic behavior encountered in the model.

The plots show that a larger number of parameter pairs (β, ε) for model (2) were
found to be capable of experiencing chaotic behavior, compared to model (1). This
suggests that model (2) is more prone to experience chaotic dynamics.

9. The maximum Lyapunov exponent for various parameters α1 and α2

Plots of Lyapunov exponents as a function of parameters of a model convey de-
tailed information on the changes in the behavior of the model when the parameters
vary. In Figure 8, we show the maximum Lyapunov exponent computed for model
(2) when α1 and α2 vary within the interval (0, 250) while β = 0.2, ε = 0.6, and
n = 3 are fixed.

Due to the color scale chosen in Figure 8, stability regions are shown in black (low
values of the maximum Lyapunov exponent), and chaotic dynamics is indicated by
lighter shades of gray, with brightness corresponding to the magnitude of chaos,
measured by the value of the maximum Lyapunov exponent. As one can see in
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(a) Results for n = 3.
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(b) Results for n = 4.

Figure 7. Pairs of parameters β and ε for models (1) and (2) for
which there exists a parameter α ∈ [0, 100], or a pair of parameters
(α1, α2) ∈ [0, 100] × [0, 100], respectively, with the positive maxi-
mum Lapunov exponent. Pairs with the positive maximum Lya-
punov exponent observed in both models are marked in blue, while
those with this observation made only for model (2) are marked in
orange.

the figure, moving across the parameter space along a straight line might involve
multiple transitions between chaos and stability. Indeed, the bifurcation diagram
in Figure 9 was computed for the parameters taken along the line segment plotted
in red in Figure 8. It shows how chaos arises in the model from a series of period-
doubling bifurcations at small values of α1 and α2. One can also see the next major
stable region that appears when the chaotic attractor collapses into a period-five
orbit.

10. Asymmetry in the computation of the maximum Lyapunov exponent

The symmetry in the equations that define this dynamical system implies that,
for a global attractor, Lyapunov exponent values in the (α1, α2) parameter plane
should exhibit symmetry around the α1 = α2 line, as demonstrated in Figure 8.
However, while scanning the parameter space using a fixed set of 16 initial condi-
tions, we identified regions where that symmetry was unexpectedly broken. This
phenomenon can be explained by the presence of multiple attractors in the phase
space.

In order to illustrate this phenomenon, we consider a fixed initial condition x0,
and let A1 and A2 be two attractors of the model that are present for certain values
of α1 and α2. Assume x0 is in the basin of attraction B1 associated with A1. Now
consider the model with the parameters α1 and α2 swapped, that is, α′

1 = α2 and
α′

2 = α1. The new model will behave identically to the original one, except that the
phase space will be reflected by the y = x line. Consequently, attractors A′

1 = T (A1)
and A′

2 = T (A2) will now exist, where T : (x, y) 7→ (y, x). Their basins of attraction
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BISTABILITY AND CHAOS IN THE DISCRETE TWO-GENE MODEL 15

Figure 8. The maximum Lyapunov exponent computed for model
(2) for α1, α2 ∈ (0, 250) with β = 0.2, ε = 0.6, and n = 3.

Figure 9. Bifurcation diagram of the x variable computed along
the segment in the parameter space plotted in red in the previous
figure (Figure 8), parametrized as (α1, α2) = (20 + 130t, 10 + 215t)
for t ∈ [0, 1].

will similarly be reflections B′
1 = T (B1), B′

2 = T (B2) of the original ones, and thus
it is now possible for x0 to lie within B′

2. Although the attractors’ locations have
changed, their underlying properties, including their Lyapunov spectra, remain the
same.

Therefore, if the maximum Lyapunov exponent was λ1 in A1 and λ2 in A2, with
λ1 ̸= λ2 the maximum Lyapunov exponent calculated at the point x0 may differ
when the parameters α1 and α2 are swapped, despite the intrinsic symmetry of the
equations that define the model.

This behavior can be utilized to detect ranges of parameters where certain forms
of bistability occur. The following computations focused on the effects of choosing
ε. We sampled 1024 uniformly spaced values of ε from [0, 1]. For each sample, the
maximum Lyapunov exponent was calculated for (α1, α2) in a 512× 512 grid over
the range of (0, 250), resulting in a square array of exponents denoted by L. The
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Figure 10. Asymmetry of the model assessed for α1, α2 ∈
(0, 250), β = 0.2 and n = 3 measured by the two quantities in-
troduced in the text: S′ shown as the black line and p± indicated
by the shaded area.

amount of asymmetry S′ was then calculated as

S′ =

√√√√ 512∑
i=1

512∑
j=1

(Lij − Lji)2

and averaged over the 16 initial conditions considered. The computed values of the
amount of asymmetry S′ are shown in Figure 10 (line graph) together with the
proportion of samples for which both positive and negative maximum Lyapunov
exponents have been detected (depending on the initial condition chosen), denoted
as p± (shaded area). Note that the absolute value of S′ is less important than its
relative magnitude compared to the baseline.

Two intervals with high asymmetry values can be noticed. The results for ε ∈
(0, 0.16) appear to reflect slow convergence of the model with a low but nonzero
coupling between the variables, and are thus inconclusive. However, the method
converges relatively quickly for ε ∈ (0.7, 1). Indeed, closer analysis of parameters
from the latter subset reveals the presence of bistability which we discuss in the
next section.

11. Three kinds of bistability in the model

For wide ranges of parameters, both models (1) and (2) exhibit the phenomenon
of bistability. It is defined as the existence of two coexisting attractors, sometimes
with different characteristics, such as a periodic orbit or a chaotic attractor. Any
trajectory in the model then converges to one attractor or to the other one, which is
reflected in the model experiencing a different type of long-term behavior, depending
on the initial conditions.
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BISTABILITY AND CHAOS IN THE DISCRETE TWO-GENE MODEL 17

Examples of the three kinds of bistability that we found are provided in Table 1.
In particular, the stable period-6 orbit and the chaotic attractor observed numeri-
cally for the parameters listed in the third row of Table 1 are shown in Figure 11
together with approximations of their basins of attraction.

Table 1. Examples of parameters resulting in different modes of
bistability of model (2).

type of bistability α1 α2 β ε n

two attracting cycles 50.0 55.0 0.2 0.804 3
two chaotic attractors 55.0 55.0 0.2 0.770 3

an attracting cycle and a chaotic attractor 43.6 75.7 0.2 0.900 3

0 5 10 15 20 25 30
x

0
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10

15

20

25

30

y

Figure 11. An attracting cycle (blue) and a chaotic attractor
(orange) observed in model (2) with the parameters α1 = 43.6,
α2 = 75.7, ε = 0.9, β = 0.2, and n = 3 mentioned in Table 1.
Approximations of attraction basins of the attractors are indicated
by the corresponding bright colors.

To the best of our knowledge, this phenomenon was not previously observed for
such wide ranges of parameters in the Andrecut-Kauffman model. Up to now, the
only kind of bistability known for this model was the two stable fixed points present
for ε = 1 (see [4]).

A possible reason for the fact that the bistability of this kind was not discovered
in this model by previous studies is that while multiple attractors exist for α1 = α2,
their maximum Lyapunov exponents are identical and therefore cannot be detected
by this feature alone. Therefore, admitting different rates α1 ̸= α2 in the model
allows for better understanding of possible dynamics of the actual gene expression
system.

Finally, it turns out that for ε = 0, the existence of more than two attractors
is possible. The variables x and y are independent in that case, and each of them
might have its own attractor. In particular, at some values of the parameters, both
may have a stable period-4 cycle; let us denote these cycles by (x1, x2, x3, x4) and
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(y1, y2, y3, y4), respectively. Then the Cartesian product of the two 4-element sets
is an attractor for the two-dimensional model. It splits into four disjoint attracting
cycles:

(x1, y1)→ (x2, y2)→ (x3, y3)→ (x4, y4)

(x1, y2)→ (x2, y3)→ (x3, y4)→ (x4, y1)

(x1, y3)→ (x2, y4)→ (x3, y1)→ (x4, y2)

(x1, y4)→ (x2, y1)→ (x3, y2)→ (x4, y3)

For example, one can see this behavior for α1 = 13, α2 = 13, β = 0.2, ε = 0, and
n = 3.

12. Conclusions and future research directions

Gene expression is a fundamental biological process that influences nearly every
aspect of cell function, including cell differentiation, responses to stimuli, and cell
cycle regulation. Research on the dynamics of gene expression provides insight into
mechanisms that lead to stable and chaotic patterns of activity, which is crucial in
both systems biology and synthetic biology, where the goal is to design controlled
genetic systems with specific properties.

Our results illustrate different types of dynamical behavior encountered across
different parameter regimes. These results shed light on the influence of parameters
on stability of the model, and thus on the modeled system, and its potential for
exhibiting chaotic behavior as well. In particular, the existence of configurations
with the chaos-order type of bistability shown in Section 11 has profound impli-
cations for the real gene expression system. A sudden external impulse (e.g., an
injection containing one of the transcription factors) or continuous addition of one
protein into the system can permanently destabilize the system by pushing it across
the boundary between basins of attraction towards the chaotic region. In the same
way, ordered state can be reestablished by applying some force towards the stable
attractor until the system switches its state. Similar switching between stable states
could also occur naturally during processes analogous to cell specialization or cells
working in different modes.

The process of multimerization is essential for the functionality of many proteins,
as they achieve full functionality only in their multimeric forms, such as dimers (n =
2), trimers (n = 3) or higher-order multimers, depending on cellular conditions.
Therefore, there is a natural demand for further research on model (2) to include
the analysis of the dynamics also for n > 4. As one can see in Figure 7, there are
more parameters that exhibit chaotic dynamics for n = 4 than for n = 3. Therefore,
one can expect that the analysis of dynamics becomes more demanding with the
increase in n.

Another promising direction of further research might be to search for unsta-
ble fixed points and unstable periodic orbits, especially in the case of bistability.
Although biological systems typically settle down in stable states, one can apply
mild control (e.g., in terms of some external force or an agent) in order to keep the
system in an unstable state at minimal cost. Therefore, determining unstable fixed
points and unstable periodic solutions is also important for a better understanding
of such systems and handling them.
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In general, the analysis of bifurcations and unstable fixed points in these types
of models is of particular importance, as it allows the identification of conditions
that lead to a qualitative change in the behavior of the system, such as transitions
between activated and silenced states of genes. Thorough analysis of the actual
bifurcations that take place in the system when the parameters change might shed
light on the actual role of the various parameters for the dynamics exhibited by
the system and on the stability of solutions. As a result of a bifurcation, some
stable states might lose their stability. This means that for the gene expression
process, a gene that was previously active can become silenced, potentially leading
to changes in cellular behavior or function. On the other hand, a new stable solution
might emerge. This could correspond to the appearance of a new biological state
or pathway that was not previously observed, such as the activation of alternative
gene expression mechanisms or regulatory networks. It might also be the case that
chaotic solutions emerge, which means that due to the change of some conditions,
such as the increase in temperature that affects the intensity of some processes,
the system suddenly switches its state from a well-understood stable equilibrium
to hard-to-predict chaotic oscillations. From the perspective of gene expression,
such chaotic behavior could result in irregular production of proteins, leading to
unpredictable cellular responses and potentially impacting the organism’s overall
functionality. Both silencing and overexpression as defects in gene regulation can
cause profound and unfavorable change in cellular functioning; see, e.g., [13, 14].
As a result, many kinds of bifurcations are important from the biological point of
view and should not be neglected.

Finally, comprehensive analysis of global dynamics that takes into account all
the possible values of parameters in the ranges indicated in Section 3, focused on
detecting interesting phenomena like bistability or chaotic dynamics, might provide
information on how often these phenomena occur and how likely they are to be
encountered in the model. For example, one could try applying the approach intro-
duced in [6] and further developed in [18] for this purpose, combined with additional
analyses, such as the calculation of the maximum Lyapunov exponent discussed in
Section 7. Although this approach is limited to the analysis of dynamics at finite
resolution, it can be argued that phenomena occurring below certain scale in a
mathematical model of a biological system are not biologically relevant; see, e.g.,
the discussion in [15].
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