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Abstract—In this paper, we study a classical two-predators-one-prey model. The classical model
described by a system of three ordinary differential equations can be reduced to a one-dimensional
bimodal map. We prove that this map has at most two stable periodic orbits. Besides, we describe the
bifurcation structure of the map. Finally, we describe a mechanism that leads to bistable regimes.
Taking this mechanism into account, one can easily detect parameter regions where cycles with
arbitrary high periods or chaotic attractors with arbitrary high numbers of bands coexist pairwise.
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1. INTRODUCTION

Modeling ecosystems is one of the well-established parts of the theory of dynamical systems. One of
the standard models in this area is the Lotka–Volterra system, also known as the prey-predator model.
The behavior of this two-dimensional autonomous system of differential equations is well known: the
system may exhibit stationary or periodic solutions only.

Conversely, ecological models involving competition between two or more predators (and, possibly,
more species of prey) may demonstrate a sophisticated behavior, including chaotic dynamics. Besides,
the number of attracting sets (periodic or chaotic) may vary.

The general case of a two-predators-one-prey system is considered by Hsu, Hubell, and Waltman
in [15–17]. The models considered in the cited works are based on ecological laws described initially by
Holling in [14]. A good review of recent results in population dynamics can be found in [6].

A study of periodic solutions of the above-mentioned models together with a detailed bifurcation
analysis is presented in [4, 18] and [26]. Two-dimensional and three-dimensional models in discrete
time and the bifurcations of their equilibria are considered in [29].

A model with additional terms responsible for competition between predators is studied in [24].
Extinction conditions are discussed for predator species, stability of fixed points and other invariant sets
is analyzed.
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BISTABILITY IN A ONE-DIMENSIONAL MODEL

A model with ratio-depending predator growth rates is introduced in [7]. Equilibrium analysis is
performed, and extinction conditions for predators are presented. Various generalizations of the Lotka–
Volterra model with polynomials at the right-hand side have also been studied, see, for example, [13]
and [23]. More sophisticated models including stochastic terms [10, 19] or taking into account diffusion
phenomena [20] are also developed.

In the present work, we consider a classical two-predators-one-prey model. Following [27], this
model can be approximated by a one-dimensional bimodal map. Previously, it has been observed
that typically this map has a unique attractor, although for some parameter values it also may exhibit
bistability (coexistence of two attractors). The goal of the present paper is to describe the mechanism
leading to this effect.

The paper is organized as follows.

In Sec. 2 and Sec. 3, the considered 3D model in continuous time and its one-dimensional
approximation in discrete time are introduced, respectively. For the one-dimensional map, we apply
the classical techniques developed by Devaney and demonstrate that this map cannot have more than
two attractors. Thereafter, in Sec. 4 we identify the regions in the parameter space where bistability
occurs. We demonstrate that this kind of dynamics occurs in neighborhoods of the intersection points
of bifurcation curves forming so-called shrimp-structures.

2. TWO-PREDATORS-ONE-PREY MODEL

Let us consider the two-predators-one-prey model given by the following three differential equations

Ẋi = piϕi(S)Xi − diXi, i = 1, 2;

Ṡ = H(S)− q1ϕ1(S)X1 − q2ϕ2(S)X2 (1)

investigated previously in [27]. Here, the non-negative values S and Xi, i = 1, 2, represent quantities
of the prey and predators respectively; H and ϕi are smooth functions with H(0) = 0, H being of the
logistic type and both functions ϕi being non-decreasing. Parameters pi, di and qi are positive. Using
the normalized variables s = S

K , yi =
qiXi
rK , i = 1, 2, Eqs. (1) can be rewritten as

ẏi = φi(s)yi, i = 1, 2;

ṡ = h(s)− ψ1(s)y1 − ψ2(s)y2, (2)

where

h(s) =
1

K
H(sK), ψi(s) = ϕi(sK), φi(s) = piψi(s)− di.

In this paper, we choose the functions φi(s), h(s), and ψi(s) to be defined as follows:

φi(s) = mi
s− λi

s+ ai
, ψi(s) =

s

s+ ai
, i = 1, 2; h(s) = (1− s)s,

where a1, a2, λ1 and λ2 are positive. Then, system (2) takes the following form:

ẏi = mi
s− λi

s+ ai
yi, i = 1, 2,

ṡ =

(
1− s− y1

s+ a1
− y2

s+ a2

)
s. (3)

Dissipativity of this system and the extinction conditions for one of the predators are considered in
[27] (see also [1]). There, possible equilibria of this system are studied as well as some periodic solutions.
In particular, it is shown in the cited work that there are no stationary solutions related to the coexistence
of predators for λ1 �= λ2 or a1 �= a2 and that the coexistence of periodic or chaotic solutions is possible.

The structure of Poincaré maps corresponding to the condition s = const, ṡ < 0 near fixed points is
studied in [21]. It is shown in [8] and [9] that for a broad range of parameter values the considered system
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Fig. 1. Graph of the one-dimensional map (5), b = −12, k = −30. Colored versions of all the figures are available at
arxiv.org/pdf/2108.06739.pdf.

exhibits a strong contraction in the (y1 + y2)-direction in which case its dynamics can be approximated
by the one-dimensional map given by

xn+1 = f(xn) = β + xn − k1 + k2e
xn

1 + exn
u, (4)

where β, u and ki are parameters. Here xj = log(y2j/y1j), where y1j and y2j are values of y1 and y2
respectively calculated in the jth step.

Remark 1. Note that for parameter values which do not lead to a strong contraction in the (y1 + y2)-
direction, system (3) cannot be described by a one-dimensional map and presumably may exhibit such
phenomena as Shil’nikov’s spiral chaos and coexistence of at least three attractors (see [3, 21, 27]). As
discussed below, this cannot occur in the one-dimensional model (4).

3. ONE-DIMENSIONAL MODEL AND ITS PROPERTIES

It can easily be shown that map (4) can be written in the following form

xn+1 = f(xn) = b+ xn − k

1 + exn
, (5)

where b = β + k2u, k = (k1 − k2)u. An example of the graph of the function f in Eq. (5) is shown in
Fig. 1. In the following we consider the dynamics of map (5) in the parameter domain

P = {(b, k) | k < b < 0} (6)

as outside this domain all trajectories either diverge or converge to a stable fixed point.
Remark 2. The map has the following symmetry property

f(x)|b=b∗,k=k∗ = −f(−x)|b=k∗−b∗,k=k∗ .

Therefore, if the map at the parameter values b = b∗, k = k∗ has a period-n orbit {x1, . . . , xn}, then
the map at the parameter values b = k∗ − b∗, k = k∗ has the period-n orbit {−x1, . . . ,−xn}. As a
consequence, the bifurcation structures of the map in the parameter regions

P1 = {(b, k) | 2 b < k < b < 0} and P2 = {(b, k) | k ≤ 2 b < 0}
with P = P1 ∪ P2 (see Fig. 2) are topologically equivalent.

1. The fixed point and the period-2 orbit. Note that for k ≥ −4 the function f has a local
minimum and a local maximum at the points

xmax = ln
(
−1− 1

2k − 1
2

√
4k + k2

)
, xmin = ln

(
−1− 1

2k + 1
2

√
4k + k2

)

respectively. Evidently, xmin = −xmax > 0. The map is increasing for x < xmax and for x > xmin and
decreasing in the interval {xmax, xmin} containing the unique fixed point of the map x∗ = ln

(
k
b − 1
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Fig. 2. Boundaries of the regionsP , P1, P2, P s
x∗ in the parameter space and the boundaries of the regions corresponding

to different definitions of the globally attracting absorbing intervals. Additionally, the bifurcation structure calculated
numerically is shown (see also Fig. 4). The regions P1 and P2 are highlighted in dark and light grey, respectively.

existing for (b, k) ∈ P . As the parameter values approach the boundaries of P , the fixed point tends to
±∞ (i.e., for a fixed value of k < 0, if b → k from the right and x∗ → ∞ if b → 0 from the left).

From the condition f ′(x∗) > −1, we obtain that the fixed point is attracting (moreover, it is globally
attracting) in the parameter region

P s
x∗ = (b, k) ∈ P | k >

b2

b+ 2
, b > −2 .

At the boundary of the region P s
x∗ , i.e., at the curve

η−1
1 = (b, k) ∈ P | k =

b2

b+ 2
, b > −2

the fixed point x∗ undergoes a supercritical period-doubling bifurcation leading to the appearance of a
period-2 orbit. As shown by the following lemma, this period-2 orbit exists in the complete parameter
region P \ P s

x∗ :

Lemma 1. For any (b, k) such that k < b2

b+2 , b < −2, the map (5) has a period-2 orbit.

Proof. Evidently, limx→−∞ f(x)− x = b− k, limx→∞ f(x)− x = b. Consequently,

lim
x→−∞

f2(x)− x = 2(b− k) > 0, lim
x→∞

f2(x)− x = 2b < 0.

On the other hand, (f2)′(x∗) = (f ′(x∗))2 > 1. Therefore, the equation f2(x)− x = 0 has at least one
solution in the interval (−∞, x∗) and another one in the interval (x∗,∞). The fixed point x∗ is unique,
so these solutions correspond to a period-2 orbit. �

Moreover, one can actually prove a more general result:

Lemma 2. For any (b, k) such that k < b2

b+2 , b < −2, at least one of the following statements
applies:
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1. There exists an n ∈ N such that map (5) has a stable period-2n orbit.

2. The map has period-2n orbits for all n ∈ N.

The proof of this lemma is similar to that of Lemma 1.
Lemma 1 proves the existence of at least one period-2 orbit. However, for each b ∈ (P \ P s

x∗) there
exists only one period-2 orbit. This is shown in Lemma 3.

Lemma 3. For any (b, k) such that k < b2

b+2 , b < −2, map (5) can have at most one period-2
orbit.

Proof. The idea of the proof is as follows. Given a period-2 orbit {x1, x2}, x2 > x1 of map (5), we
express k and b as functions of x1 and x2. Then we consider values k and b such that B := 2 b/k = const,
and represent k as a function of x1. We show that the latter function is strictly monotone which implies
that two distinct orbits {x1, x2} cannot correspond to a pair (k, b).

B = u1 + u2, k =
2 (x2 − x1)

u2 − u1
, where ui =

1

1 + exi
, i = 1, 2. (7)

Note that 0 < ui < 1 and u2 < u1 implying u1 > B/2. From k < b < 0 follows 0 < B < 2. Thus
B/2 < u1 < B if B < 1 and B/2 < u1 < 1 if B ≥ 1. Solving the last equality of (7) for xi, we get

xi = ln
(

1
ui

− 1
)
= h(ui). Henceforth, we drop the subscript and write u instead of u1. So, we can

express k as a function of u:

k(u) =
2(h(u) − h(B − u))

2u−B
.

Since h′(u) = 1/[u(u − 1)] we obtain

lim
u→B/2

k(u) = 2h′(B/2) =
8

B (B − 2)
, (8)

where the limit is taken from the right side. Moreover, it follows by the Lagrange theorem that
k < 2maxh′(u) = h′(B/2) = 8

B (B−2) . The function h′(u) is convex for u ∈ (0, 1) and, consequently

h′(B − u) + h′(u) < 2h′(B/2) =
8

B (B − 2)

for any u ∈ (B/2,min(B, 1)).
Now we calculate the derivative of k:

k′(u) =
2

2u−B

(
h′(B − u) + h′(u)− k <

2

B − 2u

(
8

B (B − 2)
− k

)

for any u > B/2. So, taking into account the initial conditions (8), we obtain that

k(u) <
8

B (B − 2)

and, moreover, k′u(u) < 0 for any u > B/2. This implies the uniqueness of the period-2 orbit. �

Remark 3. Orbits (even stable ones) of periods higher than 2 may be non-unique. One can find
numerically that two period-4 attractors can coexist (e.g. for b = −7.55 and k = −19.06).

2. A globally attracting interval. It is easy to see that for (b, k) ∈ P the function f satisfies
f(x) > x for x < x∗ and f(x) < x for x > x∗. Therefore, either the fixed point is globally attracting
or there map has a globally attracting absorbing interval around x∗. The boundaries of this interval are
given by the images of the points xmax and xmin, as illustrated in Fig. 3. As one can see, in the left part of
this figure the absorbing interval is given by [f2(xmax), f(xmax)], in the middle part by [f(xmin), f(xmax)],
and in the right part by [f(xmin), f

2(xmin)]. As shown below in Lemma 4, the regions in the parameter
space corresponding to these configurations are separated from each other by the curves

γ1 = {(b, k) ∈ P | f(xmax) = xmin} = {(b, k) ∈ P | b = b1} ,
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Fig. 3. Bifurcation sequence at k = −40. Boundaries of the globally attracting absorbing intervals are indicated.

b1 = 2xmin − 1− exmin , b2 = 2 ln
(
−1− 1

2k + 1
2

√
4k + k2

)
+ 1

2k − 1
2

√
4k + k2;

γ2 = {(b, k) ∈ P | f(xmin) = xmax} = {(b, k) ∈ P | b = b2} ,

b2 = −2xmin − 1− e−xmin = 2 ln
(
−1− 1

2k − 1
2

√
4k + k2

)
+ 1

2k + 1
2

√
4k + k2

(see Fig. 2 for graphs of γ1 and γ2). Using this notation, we can state the following
Lemma 4.

1. If b < min(b1, b2) then the interval J− = {(f2(xmax), f(xmax)} does not contain xmin and is
globally attracting.

2. If b > max(b1, b2) then the interval J+ = {(f(xmin), f
2(xmin)} does not contain xmax and is

globally attracting.

3. If b2 < b < b1 then the interval {(f(xmin), f(xmax)} does not contain any of xmin and xmax.
In this case, the function f is monotonous on this interval. Therefore, the function cannot
have any invariant sets different from a fixed point and a period-2 orbit.

4. If b1 < b < b2 then the interval J0 = {(f(xmin), f(xmax)} contains both xmin and xmax and is
globally attracting.

The proof of this lemma follows from the definitions of b1 and b2.
Note that the absorbing intervals J−, J+ and J0 in cases 1, 2 and 4 respectively are positively

invariant.
However, if b2 < b < b1, the fixed point and the period-2 orbit cannot be stable at the same parameter

value. Hence, in this case, there is only one stable periodic orbit.
Calculating the Schwarzian derivative for the map (5), we get

S f(x) = k ex
2(ex − 1)2 − (k + 4) ex

2((ex + 1)2 + k ex)2
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Fig. 4. Regions of the parameter plane corresponding to different periods of stable orbits.

which is negative for k < −4.
Let b < min(b1, b2). Then the positively invariant and globally attracting absorbing interval J− =

[f2(xmax), f(xmax)] contains the point xmax and does not contain xmin. In other words, the map is
unimodal on J−. It follows from the classical result of Devaney [5, Theorem 11.4] that in this case any
stable periodic orbit (and, in fact, any attractor) attracts xmin. So, such an orbit is necessarily unique.
The case b ≥ max(b1, b2) is similar. Therefore, the dynamics of the map for parameter values inside the
region P but outside the region between the curves γ1, γ2 below their intersection point (see Fig. 2)
cannot be affected by bistability.

Finally, if b1 < b < b2, the globally attracting positively invariant absorbing interval J0 contains
both xmin and xmax. Therefore, as follows from the Devaney’s result mentioned above, it can contain
two attractors, with xmin belonging to the basin of one of them, and xmin to the basin of other one.
Accordingly, the map in the parameter region shown in Fig. 2 between the curves γ1, γ2 below their
intersection point can exhibit bistability.

4. PERIOD DOUBLING CASCADES AND COEXISTING PERIODIC SOLUTIONS
OF DISTINCT PERIODS

In order to explain the occurrence of bistability in map (5) in the parameter region between the curves
γ1, γ2, let us consider the complete bifurcation structure in the 2D parameter space (b, k). Fig. 4 shows
this structure including regions corresponding to stable cycles of higher periods calculated numerically.
As illustrated in the magnification of this structure shown in Fig. 5, in the parameter domain P given by
Eq. (6) the bifurcation curves form so-called shrimp-structures [12], previously observed in several one-
dimensional and two-dimensional maps [22, 28], including the well-known Hénon map. For a detailed
description of the “anatomy” of a shrimp-structure, we refer to [11].

A distinguishing feature of the shrimp-structures is the presence of the so-called “tails”, i.e., long
and narrow parameter regions confined from one side by a fold (saddle-node) bifurcation curve issuing
from the central part of the structure and approaching infinity. Inside these narrow regions, one observes
a complete period-doubling cascade and thereafter by the complete logistic map scenario, including
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Fig. 5. Bifurcation structure in the (b, k) parameter plane. (a) Magnification of the rectangle marked in Fig. 4.
(b) Magnification of the rectangle marked in (a). (c) Magnification of the rectangle marked in (b). Fold bifurcation
curves η+1

5 , η+1
7 , flip bifurcation curves η−1

5 , η−1
7 , and final bifurcation curves θ5, θ7 are indicated. Attractors at the

marked parameter points are shown in Figs. 6 and 7.

a countable set of curves associated with quasi-periodic dynamics (Feigenbaum-attractors) as well
as by an uncountable set of curves related to non-robust chaotic dynamics. From the other side, the
“tails”, are confined by expansion or final bifurcations (see, e.g., [2]) of narrow-band chaotic attractors
(interior and boundary crises, respectively) associated with homoclinic bifurcations of the unstable
cycles appearing at the fold bifurcations.

It is well-known that such “tails” may overlap pairwise. In this case, two transversely intersecting
fold bifurcation curves subdivide the parameter plane into four quadrants. In one of these quadrants,
the attractors belonging to both overlapping “tails” coexist pairwise, which explains the occurrence of
bistability in map (5). Accordingly, the region of bistability related to the intersection of two “tails” is
confined by four bifurcation curves (two-fold bifurcations and two homoclinic bifurcations).

As an example, Fig. 5 presents a few subsequent magnifications of the bifurcation structure shown
in Fig. 4. In particular, in Fig. 5c one can see the bifurcation structure close to the intersection point
(marked by A) of the bifurcation curves η+1

5 and η+1
7 associated with fold bifurcations of 5- and 7-cycles,
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Fig. 6. Attractors of map (5) existing in the neighborhood of the intersection point of the fold bifurcation curves η+1
5

and η+1
7 (point A in Fig. 5c). (a) Unique broad-band chaotic attractor (b = −11.9655, k = −28.85); (b) unique

5-cycle (b = −11.9642, k = −28.8515); (c) unique 7-cycle (b = −11.9672, k = −28.853); (d) coexisting 5-cycle
(b = −11.9655, k = −28.854).
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Fig. 7. Coexisting attractors of of map (5): (a) two narrow-band chaotic attractors (b = −11.9709, k = −28.8708);
(b) a 20-cycle and a 56-cycle (b = −11.9708, k = −28.8695).

respectively. Examples of attractors of map (5) at parameter values belonging to a neighborhood of point
A are shown in Fig. 6. As one can see, in the quadrant above this point (i.e., before the fold bifurcations
occurring at η+1

5 and η+1
7 ), the map has a unique broad-band chaotic attractor (see Fig. 5a). In the

quadrant on the left of this point (i.e., before the fold bifurcation occurring at η+1
5 but after the fold

bifurcation occurring at η+1
7 ), the stable 7-cycle is the unique attractor (Fig. 6b). Similarly, in the

quadrant on the right of point A (i.e., after the fold bifurcation occurring at η+1
5 but before the fold

bifurcation occurring at η+1
7 ), the unique attractor of the map is the stable 5-cycle (Fig. 6c). As for
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the quadrant located below the point A (i.e., after both the fold bifurcations occurring at η+1
5 and η+1

7 ),
here the stable 7- and 5-cycles coexist (Fig. 6d).

At the bifurcation curves η−1
5 and η−1

7 the stable 5- and 7-cycles appearing at η−1
5 and η−1

7 ,
respectively, undergo flip (period-doubling) bifurcations. At the point (marked by B in Fig. 5c), these
curves intersect so that in its neighborhood, one can observe not only the coexistence of stable 5- and
7-cycles (in the quadrant above this point) but also the coexistence of stable 5- and 14- (in the quadrant
on the left of this point), 10- and 7- (in the quadrant on the right of this point), and 10- and 14-cycles
(in the quadrant below this point).

Under further parameter variation, both period-doubling cascades proceed, followed by complete
logistic map scenarios. As a consequence, an arbitrary attractor belonging to one of these scenarios
may coexist with an arbitrary attractor belonging to another one. As an example, Fig. 7 shows a pair of
coexisting narrow-band chaotic attractors and a pair of coexisting cycles of periods 20 and 56.

5. CONCLUSION

We considered a model of a two-predators-one-prey system. Previously, it was demonstrated that
under certain assumptions the dynamics system can be represented by a one-dimensional bimodal map.
In the present work, we explained the bifurcation structure in the 2D parameter space of this map. We
identified the region in the parameter space associated with bounded dynamics. Then, we described
the domains in the parameter space associated with different attractors. As we have shown, these sets
overlap pairwise, leading to bistability.
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21. A. V. Osipov and G. Söderbacka, “Poincaré map construction for some classic two predators—one prey

systems,” Int. J. Bifurc. Chaos Appl. Sci. Eng. 27, 1750116 (2017).
22. D. F. M. Oliveira, M. Robnik, and E. Leonel, “Shrimp-shape domains in a dissipative kicked rotator,” Chaos

21, 043122 (2011).
23. N. Samardzija and L. D. Greller, “Explosive route to chaos through a fractal torus in a generalized Lotka–

Volterra model,” Bull. Math. Biol. 50, 465–491 (1988).
24. D. Savitri, A. Suryanto, W. Kusumawinahyu, and Abadi, “A dynamics behaviour of two predators and one

prey interaction with competition between predators,” IOP Conf. Ser.: Mater. Sci. Eng. 546, 052069 (2019).
25. D. Singer, “Stable orbits and bifurcations of maps of the interval,” SIAM J. Appl. Math. 35, 260–267 (1978).
26. H. Smith, “The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition

model,” SIAM J. Appl. Math. 42, 27–43 (1982).
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