
Journal of Computer and System Sciences 82 (2016) 802–816
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Bounds on the cover time of parallel rotor walks ✩

Dariusz Dereniowski a, Adrian Kosowski b, Dominik Pająk c,∗,
Przemysław Uznański d

a Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
b GANG Project, Inria Paris and IRIF, Paris, France
c Department of Computer Science, Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wrocław, Poland
d Department of Computer Science, ETH Zürich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 December 2014
Received in revised form 11 January 2016
Accepted 29 January 2016
Available online 9 March 2016

Keywords:
Distributed graph exploration
Rotor-router
Cover time
Collaborative robots
Parallel random walks
Derandomization

The rotor-router mechanism was introduced as a deterministic alternative to the random
walk in undirected graphs. In this model, a set of k identical walkers is deployed in parallel,
starting from a chosen subset of nodes, and moving around the graph in synchronous steps.
During the process, each node successively propagates walkers visiting it along its outgoing
arcs in round-robin fashion, according to a fixed ordering. We consider the cover time of
such a system, i.e., the number of steps after which each node has been visited by at least
one walk, regardless of the initialization of the walks. We show that for any graph with
m edges and diameter D , this cover time is at most �(mD/ logk) and at least �(mD/k),
which corresponds to a speedup of between �(log k) and �(k) with respect to the cover
time of a single walk.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In graph exploration problems, a walker or group of walkers (agents) is placed on a node of a graph and moves between
adjacent nodes, with the goal of visiting all the nodes of the graph. The study of graph exploration is closely linked to
central problems of theoretical computer science, such as the question of deciding if two nodes of the graph belong to
the same connected component (st-connectivity). For example, fast approaches to connectivity testing in little memory rely
on the deployment of multiple random walks [6,13]. In these algorithms, the initial locations of the walkers are chosen
according to a specific probability distribution.

More recently, multiple walks have been studied in a worst-case scenario where the k agents are placed on some set of
starting nodes and deployed in parallel, in synchronous steps. The considered parameter is the cover time of the process, i.e.,
the number of steps until each node of the graph has been visited by at least one walker. Alon et al. [2], Efremenko and
Reingold [11], and Elsässer and Sauerwald [12] have studied the notion of the speedup of the random walk for an undirected
graph G , defined as the ratio between the cover time of a k-agent walk in G for worst-case initial positions of agents and
that of a single-agent walk in G starting from a worst-case initial position, as a function of k. A characterization of the

✩ Research partially supported by ANR project DISPLEXITY and by NCN under contract DEC-2011/02/A/ST6/00201. Dariusz Dereniowski was partially
supported by a scholarship for outstanding young researchers funded by the Polish Ministry of Science and Higher Education. Some of the results of this
paper appeared in the extended abstract [9], published in the Proceedings of the 31st Symposium on Theoretical Aspects of Computer Science (STACS 2014).

* Corresponding author.
E-mail address: pajakd@gmail.com (D. Pająk).
http://dx.doi.org/10.1016/j.jcss.2016.01.004
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:pajakd@gmail.com
http://dx.doi.org/10.1016/j.jcss.2016.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.01.004&domain=pdf

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 803

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

speedup has been achieved for many graph classes with special properties, such as small mixing time compared to cover
time. However, a central question poised in [2] still remains open: what are the minimum and maximum values of speedup
of the random walk in arbitrary graphs? The smallest known value of speedup is �(log k), attained e.g. for the cycle, while
the largest known value is �(k), attained for many graph classes, such as expanders, cliques, and stars.

In this work, we consider a deterministic model of walks on graphs, known as the rotor-router. The rotor-router model,
introduced by Priezzhev et al. [22], provides a mechanism for the environment to control the movement of the agent deter-
ministically, mimicking the properties of exploration as the random walk. In the rotor-router, the agent has no operational
memory and the whole routing mechanism is provided within the environment. The edges outgoing from each node v
are arranged in a fixed cyclic order known as a port ordering, which does not change during the exploration. Each node v
maintains a pointer which indicates the edge to be traversed by the agent during its next visit to v . If the agent has not
visited node v yet, then the pointer points to an arbitrary edge adjacent to v . The next time when the agent enters node
v , it is directed along the edge indicated by the pointer, which is then advanced to the next edge in the cyclic order of the
edges adjacent to v . In this paper we also consider a class of processes called fair strategies which are a generalization of
the rotor-router model. In a fair strategy an agent entering a node can choose an arbitrary outgoing arc among arcs with
the minimum number of traversals.

For a single agent, the (deterministic) cover time of the rotor-router and the (expected) cover time of the random walk
prove to be surprisingly convergent for many graph classes. In general, it is known that for any n-node graph of m edges
and diameter D , the cover time of the rotor-router in a worst-case initialization is precisely �(mD) [26,3]. By comparison,
the random walk satisfies an upper bound of O (mD log n) on the cover time, though this bound is far from tight for many
graph classes. Different locally fair exploration strategies were considered in [7]: Oldest-First and Least-Used-First. In the
Oldest-First strategy, an agent visiting a node chooses an edge that has not been traversed for the longest time. In the
Least-Used-First strategy it chooses an edge with the smallest number of traversals. In both strategies ties can be broken in
an arbitrary way. Cooper et al. [7] showed that in undirected graphs any Oldest-First strategy achieves cover time of O (mD)

whereas exploration using Least-Used-First strategy can lead to exponential cover time. Note that in directed symmetric
graphs, the Oldest-First strategy is equivalent to the rotor-router and the Least-Used-First is more general and is equivalent
to the class of fair strategies. Yanovski et al. [26] observed, based on the analysis of Koenig and Simmons [17], that any fair
strategy has a cover time of O (mD).

The behavior of the rotor-router model with multiple agents appears to be much more complicated. Since the parallel
walkers interact with the pointers of a single rotor-router system, they cannot be considered independent (in contrast to
the case of parallel random walks). In the first work on the topic, Yanovski et al. [26] showed that adding a new agent to
a rotor-router system with k agents cannot increase the cover time, and showed experimental evidence suggesting that a
speedup does indeed occur. Klasing et al. [16] have provided the first evidence of speedup, showing that for the special case
when G is a cycle, a k-agent system explores an n-node cycle �(log k) times more quickly than a single agent system.

In this work we completely resolve the question of the possible range of speedups of the parallel rotor-router model in a
graph, showing that its value is between �(log k) and �(k), for any graph. Both of these bounds are tight. Thus, the proven
range of speedup for the rotor-router corresponds precisely to the conjectured range of speedup for the random walk. We
also show that the speedup of at least �(log k) is achieved for any fair strategy.

1.1. Related work

The rotor-router model Studies of the rotor-router started with works of Wagner et al. [25] who showed that in this model,
starting from an arbitrary configuration (arbitrary cyclic orders of edges, arbitrary initial values of the port pointers and
an arbitrary starting node) the agent covers all m edges of an n-node graph within O (nm) steps. Bhatt et al. [5] showed
later that within O (nm) steps the agent not only covers all edges but enters (establishes) an Eulerian cycle. More precisely,
after the initial stabilization period of O (nm) steps, the agent keeps repeating the same Eulerian cycle of the directed
symmetric version �G of graph G (see Section 3 for a definition). Subsequently, Yanovski et al. [26] and Bampas et al. [3]
showed that the Eulerian cycle is in the worst case entered within �(mD) steps in a graph of diameter D . Considerations
of specific graph classes were performed in [14]. Robustness properties of the rotor-router were further studied in [4],
where it has been considered the time required for the rotor-router to stabilize to a (new) Eulerian cycle after an edge is
added or removed from the graph. Regarding the terminology, we note that the rotor-router model has also been referred
to as the Propp machine [3] or Edge Ant Walk algorithm [25,26], and has also been described in [5] in terms of traversing a
maze and marking edges with pebbles. Studies of the multi-agent rotor-router were performed by Yanovski et al. [26] and
Klasing et al. [16], and its speedup was considered for both worst-case and best-case scenarios.

A variant of the multi-agent rotor-router mechanism has been extensively studied in a different setting, in the context
of balancing the workload in a network. In such a scenario, the walks in the graph are performed by entities referred to as
tokens. Cooper and Spencer [8] studied d-dimensional grid graphs and showed a constant bound on the discrepancy, defined
as the difference between the number of tokens at a given node v in the rotor-router model and the expected number of
tokens at v in the random-walk model. Subsequently, Doerr and Friedrich [10] analyzed in more detail the distribution of
tokens in the rotor-router mechanism on the 2-dimensional grid. Akbari and Berenbrink [1] showed an upper bound of
O (log3/2 n) on the discrepancy for hypercubes and a bound of O (1) for a constant-dimensional torus.

http://mostwiedzy.pl

804 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Table 1
Values of speedup for k-agent exploration with the rotor-router and parallel random walks. All results hold at least in the range k ≤ n.

Graph class Speedup of Rotor-Router Speedup of Random Walk

for cover time for cover time for max hitting time

General case: �(log k), O (k) (Theorems 3.9, 4.1) O (k2), O (k logn) [11,12] O (k) [12]
Cycle: �(log k) [16,18] �(log k) [2] �(log k) [2]
Star: �(k) (Proposition 4.2) �(k) [2] �(k) [2]

The rotor-router model can be generalized to serve as a derandomization of a Markov Chain with arbitrary probabilities
by modifying the ordering of edges [15]. Holroyd and Propp [15] showed that a Markov Chain and its rotor-router analogue
are close in terms of hitting frequencies, hitting times and occupation frequencies. An interesting application of the concept
of the generalized rotor-router is presented in [24] where the authors show how to use multiple rotor walks to obtain an
efficient deterministic sampler for some #P -complete problems, for example for 0-1 knapsack solutions, linear extensions,
matchings, etc., for which rapidly mixing chains are known.

Another variant of the rotor walk is called rotor-router aggregation and was introduced by Jim Propp. In the rotor-router
aggregation model, multiple tokens (particles) start at a specific vertex, known as the origin. Each token in turn performs a
rotor walk, starting at the origin, until it reaches a node not occupied by any other token. The asymptotic shape of the set of
occupied nodes for n particles in Zd with a clockwise ordering of outgoing edges was studied by Levine and Peres [19–21].

Parallel random walks Alon et al. [2] introduced the notion of the speedup of k independent random walks as the ratio of
the cover time of a single walk to the cover time of k random walks. They conjectured that the speedup is between log k and
k for any graph. The speedup was shown to be k for many graph classes, such as complete graphs [2], d-dimensional grids
[2,12], hypercubes [2,12], expanders [2,12], and different models of random graphs [2,12]. For the cycle, the speedup is equal
to log k [2]. For general graphs, an upper bound of min{k log n, k2} on the speedup was obtained by Efremenko et al. [11].
Independently, Elsässer et al. [12] showed the k log n upper bound. For binary trees, Sauerwald [23] showed an upper bound
on the cover time of O

(
n log5 n/

√
k
)

and a lower bound that is within a polylogarithmic factor (in n) of this upper bound,

providing evidence that the speedup on binary trees is
√

k.
Another measure studied by Efremenko et al. [11] concerns the speedup with respect to a different exploration parameter

— the maximum hitting time, i.e., the maximum over all pairs of nodes of the graph of the expected time required by the
walk to move from one node to the other. For this parameter, they showed a bound on speedup of O (k), mentioning that it
is tight in many graph classes.

1.2. Our results and overview of the paper

In this work we establish bounds on the minimum and maximum possible cover time for a worst-case initialization of a
k-rotor-router system in a graph G with m edges and diameter D .

In Section 2 we provide a formal definition of the rotor-router model and of fair strategies, recalling their basic properties.
In Section 3, we first prove that the cover time tC for any fair strategy satisfies tC ∈ O (mD/ log k), when k < 216D . We then
extend this result to the case of k ∈ O (poly(n)), i.e., we show that for any constant c1 > 0 there exists a constant c2 > 0,
such that if k < nc1 , then tC < c2mD/ log k. The main part of our proofs relies on a global analysis of the number of visits
to edges in successive time steps, depending on the number of times that these edges have been traversed in the past. We
first prove a stronger version of local structural lemmas proposed by Yanovski et al. [26], and apply them within a global
amortization argument over all time steps and all edges in the graph. The extension to the case of k ∈ O (poly(n)) relies on
a variant of a similar amortized analysis, and also makes use of a technique known as delayed deployments introduced by
Klasing et al. [16], which we briefly recall in Section 2. We remark that by [16,18], a cover time of �(mD/ log k) is achieved
when G is a cycle with all agents starting from one node.

In Section 4, we show a complementary lower bound on the cover time of the k-agent rotor-router in worst case initial-
ization, namely, tC ∈ �(mD/k). As a starting point, the proof uses a decomposition of the edge set of a graph, introduced
by Bampas et al. [3], into a “heavy part” containing a constant proportion of the edges and a “deep part”, having diameter
linear in D . The main part of the analysis is to show that an appropriate initialization of k agents in the heavy part takes a
long time to reach the most distant nodes of the deep part. The argument also takes advantage of the delayed deployment
technique. We close the section by remarking that a cover time of �(mD/k) is, in fact, achieved for some graphs, such as
stars.

Table 1 contains a summary of our results on the speedup of the k-agent rotor-router, compared to corresponding results
from the literature for parallel random walks. Note that for a deterministic process such as the rotor-router, the notions of
cover time and maximum hitting are equivalent, and hence we only refer to cover times.

http://mostwiedzy.pl

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 805

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

2. Model and preliminaries

Let G = (V , E) be an undirected connected graph with n nodes, m edges and diameter D . We denote the neighborhood
of a node v ∈ V by �(v). The directed graph �G = (V , �E) is the directed symmetric version of G , where the set of arcs
�E = {(v, u), (u, v) : {v, u} ∈ E}. We will denote arc (v, u) by v → u. For a node v of G , deg(v) is the number of edges
incident to v in G . Given a subset X ⊆ V , G[X] denotes the subgraph of G induced by X , G[X] = (X, {{u, v} ∈ E | u, v ∈ X}).

Definition of the rotor-router model We consider the rotor-router model (on graph G) with k ≥ 1 indistinguishable agents,
which run in steps, synchronized by a global clock. Each agent moves in discrete steps from node to node along the arcs of
graph �G . A configuration at the current step is defined as a triple ((ρv)v∈V , (π v)v∈V , {r1, . . . , rk}), where ρv is a cyclic order
of the arcs (in graph �G) outgoing from node v , π v is an arc outgoing from node v , which is referred to as the (current) port
pointer at node v , and {r1, . . . , rk} is the (multi-)set of nodes currently containing an agent. For each node v ∈ V , the cyclic
order ρv of the arcs outgoing from v is fixed at the beginning of exploration and does not change in any way from step to
step.

For an arc v → u, let next(v → u) denote the next arc after arc (v → u) in the cyclic order ρv . The exploration starts
from some initial configuration and then keeps running in all future time steps, without ever terminating. During the current
step, first each agent i is moved from node ri traversing the arc π ri , and then the port pointer π ri at node ri is advanced to
the next arc outgoing from ri (that is, π ri becomes next(π ri)). This is performed sequentially for all k agents. Note that the
order in which agents are released within the same step is irrelevant from the perspective of the system, since agents are
indistinguishable. For example, if a node v contained two agents at the start of a step, then it will send one of the agents
along the arc π v , and the other along the arc (v, next(π v)).

Definition of a fair strategy A fair strategy can be seen as a generalization of the rotor-router model, in which at each
node the ordering of outgoing edges may change after each full rotation of the rotor. Formally, in a fair strategy, the
agents move in discrete time steps, synchronized by a global clock. A configuration at a time step t is defined as the
triple ((ρv)v∈V , (σ v)v∈V , {r1, . . . , rk}), where each ρv is an infinite sequence of arcs (in graph �G) outgoing from node
v , each σ v ∈ {0, 1, 2, . . .} represents the index of the next arc in the sequence ρv to be used by an agent leaving v ,
and {r1, . . . , rk} is the (multi-)set of nodes currently containing an agent. Moreover, it is assumed that for each v , the
sequence ρv satisfies the following fairness condition: for any j = 0, 1, 2, . . . , the subsequence consisting of elements
ρv

j deg(v)
, ρv

(j deg(v)+1)
, . . . , ρv

(j deg(v)+deg(v)−1)
forms a permutation of the set {0, 1, . . . , deg(v) − 1}. The operation of a fair

strategy is such that each of the k agents is sequentially released from the respective node ri along the arc with port ρri
σ ri ,

and the value of σ ri is incremented by one. When multiple agents occupy the same vertex v , they are released in the
same step to different nodes, and the value of σ v is incremented multiple times in this step. Note that by specifying a
configuration of a fair strategy on a graph at a given time step, the configurations of the system at all future time steps are
uniquely determined. Hence, whenever this does not lead to misunderstanding, we will use the term strategy to refer to the
configuration of the system at time step 0.

Notation for edge and node counters Throughout the paper, N+ denotes the set of positive integers, and N = N+ ∪ {0}. We
introduce compact notation for discrete intervals of integers: [a, b] ≡ {a, a + 1, . . . , b}, and [a, b) ≡ [a, b − 1], for a, b ∈N.

For a fixed strategy, we will denote by a(t)(e) the number of agents traversing directed arc e ∈ �E in step t + 1. We recall
that multiple agents traversing one arc e ∈ �E in the same time step are considered to move simultaneously. By d(t)(e) we
denote the number of traversals of directed arc e ∈ �E till the end of step t , d(t)(e) = ∑

t′∈[0,t) a(t′)(e). For a node v ∈ V , let
d(t)(v) = minw∈�(v){d(t)(v → w)} be the number of fully completed rotations of the rotor at node v at the end of step t .
We note that for any arc u → v ∈ �E [26]:

0 ≤ d(t)(u → v) − d(t)(u) ≤ 1. (1)

We also denote V (t)
i = {v ∈ V : d(t)(v) ≤ i} and E(t)

i = {e ∈ �E : d(t)(e) ≤ i}. For all of the introduced counters, when more than
one strategy is considered, the denotation of the strategy will be provided in the subscript of the counter.

Delayed deployment technique In some of the proofs, we will make use of modified executions of the k-agent fair strategies,
called delayed deployments [16], in which some agents may be stopped at a node, skipping their move for some number of
time steps. Formally, a delayed deployment D of a k-agent fair strategy U is defined as a function D : V × N → N, where
0 ≤D(v, t) ≤ k is the number of agents which are stopped in node v in step t of the execution of the system. We denote by
delay(U) the set of all delayed deployments of strategy U , and by a slight abuse of notation refer to delayed fair strategies
D ∈ delay(U).

Delayed deployments may be conveniently viewed as algorithmic procedures for delaying agents, and are introduced for
purposes of analysis, only. This technique is captured by the following slow-down lemma, shown in [16] for the rotor-router
model. The slow-down lemma naturally generalizes to all fair strategies; for completeness, we provide a proof of this
generalized statement in Appendix A.

http://mostwiedzy.pl

806 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Lemma 2.1 (Slow-down lemma). Let U be a fair strategy and let D ∈ delay(U). Suppose that the delayed strategy D covers all the
nodes of the graph after T time steps, and in at least τ of these steps, all k agents were active in D. Then, the cover time tC of undelayed
strategy U can be bounded by: τ ≤ tC ≤ T .

3. Upper bound on cover time

In this section, we will show that any k-agent fair strategy explores any graph in O (mD/ log k) steps, regardless of
initialization. We start by providing an informal intuition of the main idea of the proof. After some initialization phase of
duration t0, but before exploration is completed at time tC , we consider a shortest path connecting the arc of the graph
which has already been visited many times at time t0, with an arc which will remain unvisited at time t0. We look at
the number of visits to consecutive arcs on this path. It turns out that any fair strategy admits a property which can be
informally stated as follows: if, up to some step t of exploration, an arc el+1 of the considered path has been traversed more
times than the next arc el on the path by some difference of δ, then in the next step t + 1 of exploration, at least δ − O (1)

agents will traverse arcs which have, so far, been visited not more often (up to a constant additive factor) than the arc el . In
this way, the larger the discrepancy between the number of visits to adjacent arcs, the more activity will the fair strategy
perform to even out this discrepancy, by traversing under-visited arcs. This load-balancing behavior of the system will be
shown to account for the �(log k)-speedup in cover time with respect to the case of a single agent.

We start by proving two structural lemmas which generalize the results of Yanovski et al. [26, Theorem 2]. The first
lemma establishes a connection between the existence of an arc entering a subset of nodes S ⊆ V that has been traversed
more times than all arcs outgoing from S , and the number of agents currently located within set S .

Lemma 3.1. For any (possibly delayed) fair strategy and for any time t ∈ N and d ∈ N, consider the partition of the set of nodes
V = S ∪ T such that each node in set S sent at most d agents to at least one of its outgoing arcs and each node in set T sent more than
d agents to each of its outgoing arcs, i.e., S = V (t)

d and T = V \ S. Suppose that for some two nodes v ∈ S, u ∈ T , and some δ ∈ N+ , we
have d(t)(u → v) ≥ d + δ. Then, at least δ − 1 agents are located at nodes from set S at the beginning of step t + 1.

Proof. Denote by S → T (resp., T → S) the set of arcs connecting nodes from S with nodes from T (resp., nodes from T
with nodes from S), and let l = |S → T | = |T → S|. By the basic property of a fair strategy, all arcs outgoing from any node
w have been traversed either d(t)(w) or d(t)(w) +1 times by the end of step t . From the definition of sets S and T it follows
that any arc outgoing from S was traversed at most d + 1 times and any arc outgoing from T was traversed at least d + 1
times. By assumption, the arc u → v ∈ T → S was traversed d + δ times. Hence:∑

e∈S→T

d(t)(e) ≤ l · (d + 1),

∑
e∈T →S

d(t)(e) ≥ (l − 1) · (d + 1) + d + δ ≥
∑

e∈S→T

d(t)(e) + δ − 1.

Thus, at least δ − 1 more agents moved from T to S than in the opposite direction until the end of step t . So, at the end of
time step t , we have at least δ − 1 agents located at nodes from set S . �

By an application of the above lemma, we obtain the key property of a pair of consecutive arcs which have a different
number of traversals at time t .

Lemma 3.2. For any undelayed fair strategy and for any undirected graph G = (V , E) let e2 = u → v, e1 = v → w be two consecutive
arcs of �G. Fix a time step t ∈ N+ . Then, for any x ≥ d(t)(e1) + 1, the number of agents that traverse arcs from set E(t)

x in time step t + 1
satisfies:∑

e∈E(t)
x

a(t)(e) ≥ d(t)(e2) − d(t)(e1) − 1.

Proof. We can assume that d(t)(e2) −d(t)(e1) ≥ 2, otherwise the claim is trivial. By equation (1), we know that 0 ≤ d(t)(e1) −
d(t)(v) ≤ 1 and d(t)(u) ≥ d(t)(e2) − 1 ≥ d(t)(e1) + 1 > d(t)(v). We now apply Lemma 3.1 for d = d(t)(v), putting S = V (t)

d and
T = V \ S . Note that v ∈ S , u ∈ T , and d(t)(u → v) = d + δ for δ = d(t)(e2) − d ≥ d(t)(e2) − d(t)(e1). It follows from Lemma 3.1
that during step t + 1, at least d(t)(e2) −d(t)(e1) − 1 agents traverse arcs outgoing from nodes from the set S . Since S = V (t)

d ,
all arcs e∗ outgoing from nodes from set S have a number of traversals which satisfies d(t)(e∗) ≤ d + 1 ≤ d(t)(e1) + 1, so
e∗ ∈ E(t)

d(t)(e1)+1
. Thus, d(t)(e2) − d(t)(e1) − 1 agents in step t + 1 traverse edges in E(t)

d(t)(e1)+1
, and moreover E(t)

d(t)(e1)+1
⊆ E(t)

x

for all x ≥ d(t)(e1) + 1. �

http://mostwiedzy.pl

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 807

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 1. An illustration of sets Ii and
l in the proof of Theorem 3.3. Dots represent arcs of the graph and their position represent the number of traversals
of the corresponding arcs.

The property of fair strategies captured by the above lemma is, in fact, sufficient to prove the main results of this
section, following the general approach outlined at the beginning of the section. To show a bound of tC ∈ O (mD/ log k), we
will apply two separate arguments, first one for the range of relative small k (k ∈ 2O (D) , which corresponds to tC ∈ �(m)),
and then one for values of k which are larger, but polynomially bounded with respect to n.

Theorem 3.3. Let G = (V , E) be any undirected graph with arbitrary initialization of pointers and let D be the diameter of G. If
k ≤ 216D , then a team of k agents performing in parallel any fair strategy, in particular the rotor-router movement, explores G in less
than 500mD/ log k steps, regardless of the initial positions of agents.

Proof. First, assume that k > 2160 and fix b = (log k)/2�. Consider the first t0 steps, where t0 = �2b+1mD/k�. Since in every
step there are exactly k arc traversals, the total number of them during the first t0 steps is at least 2b+1mD . We have 2m
arcs in total. Thus, there exists an arc e′ such that d(t0)(e′) ≥ 2b D . These first t0 steps we will call as a form of setup stage,
after which we begin to analyze the behavior of the process.

Denote by tC the cover time of G with k agents for a given initialization. We will assume that tC > t0, i.e., at least one
arc of the graph has not been explored at time t0; otherwise, tC ≤ t0 = �2b+1mD/k� ≤ �2mD/

√
k�, since b = (log k)/2�, and

the claim of the theorem holds for all k.
Take e′′ ∈ �E to be an arc which is explored for the first time in step tC , i.e., such that d(tC −1)(e′′) = 0. Since the diameter

of G is D , there exists a path P = 〈e′′ = e1, e2, . . . , eD ′ = e′〉 such that D ′ ≤ D + 2, and for each l ∈ [1, D ′], el = vl+1 → vl
where vl, vl+1 ∈ V .

Fix a time step t ∈ [t0, tC). We will place some of the arcs of path P in groups (buckets) I1, I2, . . . , Ib , such that all arcs
in bucket Ii have been traversed between 2i−1 D and 2i D times until step t . Formally, denote:

Ii =
{

l : d(t)(el) ∈ [2i−1 D,2i D)
}

⊆ [1, D ′], for i ∈ [1,b].
We now analyze to which buckets the successive arcs of the path P belong. For l ∈ [1, D ′), define

l =
{

[d(t)(el),d(t)(el+1)), if d(t)(el) < d(t)(el+1),

∅, otherwise.

Note that the union of all
l covers the interval [0, 2b D), since for any x ∈ [0, 2b D) there exists l∗ ∈ [1, D ′) such that x ∈
l∗
because d(t)(e1) = 0 and d(t)(eD ′) ≥ 2b D (see Fig. 1 for an illustration). The intuition of the proof is now as follows: Since
there are at most D ′ non-empty intervals
l spanning the total range [0, 2b D) of all buckets I1, I2, . . . , Ib , in a large number
(linear in b) of these buckets Ii , the average length of an interval
l starting in bucket Ii will be at least |Ii |b/D = 2i−1b, up
to a constant factor. The existence of such long intervals
l beginning in Ii will allow us to exploit Lemma 3.2 to show that
arcs el , el+1 differ in the number of traversals by a constant times 2i−1b. This implies that for the considered bucket indices
i, the number of agents active at time t on edges from buckets I1, . . . , Ii will be at least 2i−1b, up to constant factors and
minor shifts at bucket boundaries. We now proceed to formalize the above arguments.

For i ∈ [1, b], denote by Xi the set of intervals
l beginning in bucket Ii : Xi = ⋃
l∈Ii

l . Consider any x ∈ [0, 2b D), and
let l∗ be such that x ∈
l∗ . We have d(t)(el∗) ≤ x < 2b D , hence l∗ ∈ Ii∗ , for some i∗ ∈ [1, b], and x ∈Xi∗ . It follows that:

[0,2b D) ⊆
⋃

i∈[1,b]
Xi . (2)

For i ∈N, denote by a(t)
i the number of agents that traverse arcs from set E(t)

2i D
in step t + 1, a(t)

i = ∑
e∈E(t)

2i D

a(t)(e), and let

a(t)
−1 = 0. (We remark that E(t)

2i D
⊇ {e j : j ∈ I1 ∪ . . . ∪ Ii}.) First, note that for all i ∈ [1, b] and for l ∈ Ii , we have d(t)(el) < 2i D .

So, by Lemma 3.2:

a(t) ≥ d(t)(el+1) − d(t)(el) − 1 = |
l| − 1 =⇒ |
l| ≤ a(t) + 1. (3)
i i

http://mostwiedzy.pl

808 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Now, observe that for any i ∈ [1, b]:

maxXi = max
l∈Ii

(max
l) ≤ max
l∈Ii

(
d(t)(el) + |
l| − 1

)
< 2i D + a(t)

i , (4)

where we took into account inequality (3) and that d(t)(el) < 2i D for l ∈ Ii .
Next, we will show that for all i ∈ [1, b]:

2i−1 D − a(t)
i−1 ≤ |Xi| ≤ |Ii |(a(t)

i + 1). (5)

The right inequality in (5) is proved as follows: |Xi | ≤ ∑
l∈Ii

|
l| ≤ |Ii |(a(t)
i + 1), where the latter inequality is a consequence

of (3).
We now prove the left inequality in (5). If a(t)

i−1 ≥ 2i−1 D , then the bound is trivial. In the case when a(t)
i−1 < 2i−1 D , we

will first prove that:

[2i−1 D + a(t)
i−1,2i D) ⊆ Xi . (6)

To this end, take any x ∈ [2i−1 D +a(t)
i−1, 2

i D) and observe that by (2), there exists some j ∈ [1, b] such that x ∈X j . Moreover,
note that:

1. For any j < i, x /∈X j , because, by (4), maxX j < 2 j D + a(t)
j ≤ 2i−1 D + a(t)

i−1 ≤ x.

2. For any j > i, x /∈X j , because: minX j = minl∈I j ,
l �=∅ min
l = minl∈I j ,
l �=∅ d(t)(el) ≥ 2 j−1 D ≥ 2i D > x.

Thus, x ∈Xi , and (6) follows. Equation (6) implies that

|Xi| ≥ 2i D −
(

2i−1 + a(t)
i−1

)
= 2i−1 D − a(t)

i−1,

which completes the proof of (5). Next, by (5),

|Ii | ≥
2i−1 D − a(t)

i−1

a(t)
i + 1

for all i ∈ [1,b].

The buckets I1, I2, . . . , Ib are pairwise disjoint by definition and contain at most D ′ elements altogether, which gives:

D + 2 ≥ D ′ ≥
b∑

i=1

|Ii | ≥
b∑

i=1

2i−1 D − a(t)
i−1

a(t)
i + 1

≥
b∑

i=1

2i−1 D

a(t)
i + 1

− b,

where in the last inequality we used the fact that a(t)
i ≥ a(t)

i−1 for i ∈ [2, b]. Dividing the sum in the last inequality by bD , we
get the following expression for the arithmetic average of values 2i−1

a(t)
i +1

:

1

b

b∑
i=1

2i−1

a(t)
i + 1

≤ D + b + 2

bD
= 1

b
+ 1 + 2/b

D
<

9.2

b
,

where in the last inequality we took into account that k ≤ 216D and b ≤ (log k)/2 by assumption, hence D ≥ (log k)/16 ≥ b/8,
and that b = (log k)/2� ≥ 80. All the elements of the considered sum are positive, hence by Markov’s inequality, there
exists a subset of indices S(t) ⊆ [1, b], with |S(t)| ≥ b/2, such that for all j ∈ S(t) , value 2 j−1

a(t)
j +1

is at most twice the arithmetic
average:

2 j−1

a(t)
j + 1

≤ 2 · 1

b

b∑
i=1

2i−1

a(t)
i + 1

<
18.4

b
.

This implies that for all j ∈ S(t):

a(t)
j ≥ b

18.4 · 2 j−1 − 1 > b
25 · 2 j−1, (7)

where we again took into account that b ≥ 80. Observe that we showed equation (7) for any t ∈ [t0, tC).
We are ready to complete the proof of the theorem. Fix t1 = �100mD/b�. We now prove that

tC ≤ t0 + 2t1 + 4m. (8)

http://mostwiedzy.pl

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 809

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Suppose, by contradiction, that tC > t0 + 2t1 + 4m. We will say that an index j ∈ [1, b] is good after time t if j ∈ S(t) . Since
for all t ∈ [t0, tC) we have |S(t)| ≥ b/2 and S(t) ⊆ [1, b], by the pigeon-hole principle there must exist an index j∗ that is
good in at least (tC − t0)/2 > t1 + 2m steps in [t0, tC); we will call these steps good steps.

For an arc e of the graph, we denote by te the so called exit time step for arc e, after which the total number of traversals
of e for the first time exceeds 2 j∗ D: d(te)(e) ≤ 2 j∗ D < d(te+1)(e). The set of all exit time steps, taken over all arcs of the
graph, is denoted T̂ = {te : e ∈ �E}. Note that e ∈ E(t)

2 j∗ D
if and only if t ≤ te , and therefore we may write:

∑
t∈[0,tC)\T̂

a(t)
j∗ =

∑
t∈[0,tC)\T̂

∑
e∈E(t)

2 j∗ D

a(t)(e) ≤
∑
e∈�E

te−1∑
t=0

a(t)(e) ≤
∑
e∈�E

d(te)(e) ≤ 2m · 2 j∗ D. (9)

Now, recall that there are at least t1 + 2m good time steps t ∈ [t0, tC) for which index j∗ satisfies (7), and that |T̂ | ≤ 2m.
It follows that:∑

t∈[0,tC)\T̂

a(t)
j∗ > t1 · b

25
· 2 j∗−1 =

⌈
100mD

b

⌉
b

25
· 2 j∗−1 ≥ 2m · 2 j∗ D,

a contradiction with (9). Thus, we have proved (8). By (8), we obtain

tC ≤ t0 + 2t1 + 4m =
⌈

2b+1mD

k

⌉
+ 2

⌈
100mD

b

⌉
+ 4m ≤

≤ mD

log k

(
2b+1 log k

k
+ 200 log k

b
+ 4 log k

D
+ 3 log k

mD

)
. (10)

Taking into account that b = (log k)/2�, k ≤ 216D , and k > 2160, we obtain that the expression in the above bracket can be
bounded by a constant, giving: tC < 500 mD

log k . This completes the proof for the case k > 2160.

Suppose now that k ≤ 2160. Yanovski et al. [26] showed that a single agent explores the graph in at most 2mD steps
regardless of the initialization, and moreover, that adding agents cannot decrease the number of traversals on any edge. We
thus trivially obtain the claim: tC ≤ 2mD < 500 mD

log k . �
Now our goal is to extend the previous result for the case of k ≥ 216D . In the following lemma we will require the

property that at most one agent traverses an arc in a single step. In order to obtain this property in the rotor-router, it is
sufficient to obtain a state in which each agent occupies a distinct vertex. It is possible to prove that from such configuration
on, no arc is traversed by two agents simultaneously. However, for general fair strategies this may not be enough, as the
strategy might choose to select the same outgoing arc twice in a row. To deal with this we introduce a class of specific
delayed fair strategies called deferred fair strategies.

Definition 3.1. Let U∗ be a delayed deployment and let v be any node. For each time step t , let at ∈ N+ and 0 ≤ bt < deg(v)

be such that the total number of traversals of arcs outgoing from v by the beginning of step t is at · deg(v) + bt . We say
that U∗ is deferred if for each time step t the following conditions hold:

(i) if v contains at most deg(v) − bt agents, then all those agents are propagated in step t ,
(ii) if v contains more than deg(v) − bt agents, then deg(v) − bt agents are propagated in step t and all the remaining

agents are blocked at v during round t .

In the following lemma we show that if each agent starts from a distinct node, then deferred strategies propagate
agents efficiently, with only a constant factor delay with respect to an undelayed strategy, and moreover that in such a
deffered strategy no two agents ever traverse the same arc simultaneously. Denote by out(v, t) (in(v, t)) the total number of
traversals of arcs outgoing from (incoming to) v until the beginning of step t . By init(v) we denote the number of agents
initially located at v .

Lemma 3.4. For any deferred fair strategy starting from a configuration with each agent located at a distinct node:

1. each arc is traversed at most once in a time step,
2. at least k arc traversals are performed by agents in any two consecutive time steps in total,
3. for any vertex v and time t, we have out(v, t + 2) ≥ in(v, t) + init(v).

Proof. We will first show Claim 1. Consider a node v at the beginning of any time step t . Note that from the definition
of deferred strategies, from among the arcs outgoing from v only arcs with the same number of traversals are traversed in

http://mostwiedzy.pl

810 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

step t . Moreover, at most deg(v) agents are sent from v in time step t . Thus, in round t any arc outgoing from v is traversed
at most once.

To prove 2, we will show the following fact by induction on t: at the beginning of step t , any vertex v is in one of the
two following states, depending on whether deg(v) divides out(v, t), or not:

(∗) deg(v) � out(v, t) and at the beginning of step t at node v there are no agents that were delayed from previous rounds,
(∗∗) deg(v)

∣∣ out(v, t) and in v at the beginning of step t there are at most deg(v) − 1 agents that were delayed from
previous rounds.

At the beginning of steps 1 and 2 each node is in one of the above two states because each node initially contains no more
than one agent and so no agent is delayed during round 1. Assume that all nodes are in one of the states (∗) or (∗∗) at
the beginning of step t ≥ 2. Since each arc is traversed at most once in step t − 1, then x, the number of agents entering
v in step t satisfies x ≤ deg(v). If v is in state (∗∗) at the beginning of step t , then it contains z < deg(v) delayed agents
at the beginning of step t . If x + z > deg(v), then v during round t propagates deg(v) agents and the node remains in
state (∗∗) having x + z − deg(v) < deg(v) delayed agents. Otherwise, it propagates all its agents and changes its state to
(∗), unless x + z = deg(v) in which case it remains in state (∗∗). Thus, at the beginning of step t + 1, the node v is in one
of the states (∗) or (∗∗). Assume that v is in state (∗) at the beginning of step t . Let r be the remainder modulo deg(v)

of out(v, t). If x + r < deg(v), then all x agents are propagated during step t and the node remains in state (∗). Otherwise,
x + r − deg(v) < deg(v) agents are delayed and the node changes its state to (∗∗). Thus, in this case also at the beginning
of t + 1, node v is in one of the states (∗) or (∗∗).

Consider now the total number of edge traversals in steps t and t + 1. Observe that all agents that did not make a move
during round t are located at nodes that are in state (∗∗) at the beginning of round t + 1. A node in state (∗∗) containing z
delayed agents propagates at least z agents during round t + 1 thus in total during rounds t and t + 1 the total number of
traversals is at least k. This also shows 3, because the total number of exits from v until the beginning of step t + 2 equals
at least the total number of visits to v until the beginning of step t . �

This observation allows us to show the counterpart of Lemma 3.2 for deferred strategies.

Lemma 3.5. Let G = (V , E) be any undirected graph, let U∗ be any deferred strategy with each agent starting from a distinct node
and let e2 = u → v, e1 = v → w be two consecutive arcs of �G. Fix a time step t ∈N+ . Then, for any x ≥ d(t)(e1) + 2, the total number
of agents following U∗ , that traverse arcs from set E(t)

x in time steps t + 1 and t + 2 satisfies:∑
e∈E(t)

x

(a(t)(e) + a(t+1)(e)) ≥ d(t)(e2) − d(t)(e1) − 1.

Proof. We can assume that d(t)(e2) −d(t)(e1) ≥ 2, otherwise the claim is trivial. By equation (1), we know that 0 ≤ d(t)(e1) −
d(t)(v) ≤ 1 and d(t)(u) ≥ d(t)(e2) − 1 ≥ d(t)(e1) + 1 > d(t)(v). We now apply Lemma 3.1 for U∗ and d = d(t)(v), putting
S = V (t)

d and T = V \ S . Note that v ∈ S , u ∈ T , and d(t)(u → v) = d + δ for δ = d(t)(e2) − d ≥ d(t)(e2) − d(t)(e1). It follows
from the lemma that at the beginning of step t + 1, at least d(t)(e2) − d(t)(e1) − 1 agents are located in the nodes from the
set S . By Lemma 3.4, each agent traverses an arc during steps t + 1 and t + 2, in particular, each agent located at a node
in S traverses and arc. Consequently, at least d(t)(e2) − d(t)(e1) − 1 agents will traverse arcs outgoing from nodes from S in
steps t + 1 and t + 2.

Consider the number of traversals of arcs outgoing from S in at the beginning of steps t + 1 and t + 2. Since S = V (t)
d ,

each arc e∗ outgoing from a node in the set S has at the end of step t the number of traversals which satisfies d(t)(e∗) ≤
d + 1 ≤ d(t)(e1) + 1. Thus,

e∗ ∈ E(t)
d(t)(e1)+1

⊆ E(t)
d(t)(e1)+2

.

Thus, in total at least d(t)(e2) − d(t)(e1) − 1 agents in steps t + 1 and t + 2 traverse arcs in E(t)
d(t)(e1)+2

, and moreover

E(t)
d(t)(e1)+2

⊆ E(t)
x for all x ≥ d(t)(e1) + 2. �

To obtain our claim about the speedup of fair strategies, we first make an additional assumption that each agent starts
from a distinct node. We showed that for deferred strategies this additional assumption implies that no arc is traversed by
more than one agent in a single step. The proof then proceeds along similar lines as that of Theorem 3.3, and we show
that in many time steps t , there exists a pair of arcs el+1, el in P with a large difference in the number of traversals up
to time t . However, instead of counting the number of long arcs on path P belonging to a bucket Ii , in this proof we take
advantage of the fact that the length of the path D ′ ≤ D + 2 is small compared to log k, which can be used to infer the
existence of the sought arc pairs.

http://mostwiedzy.pl

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 811

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Lemma 3.6. Let G = (V , E) be any undirected graph with arbitrary initialization of pointers and let D be the diameter of G. If
k ≥ 216D , then a team of k agents performing in parallel any fair strategy, with each agent starting from a distinct node of the graph,
explores G in time 54mD/ logk.

Proof. Take the considered fair strategy U and construct its deferred counterpart U∗ . We will show the lemma for U∗ and
the lemma for U will follow from Lemma 2.1 since U∗ ∈ delay(U).

Denote by tC the cover time of graph G . Let

X =
⌊

k1/(2D+6)
⌋

and Yi = 2 +
i−1∑
j=0

X j = 2 + Xi − 1

X − 1
for i ∈ N+.

Note that since k ≥ 216D , we have:

X ≥ 2 and Yi < 2 + Xi for all i ∈N+. (11)

Similarly as in proof of Theorem 3.3, we first consider a setup phase, consisting of steps [1, t0) of exploration, this time
defining t0 as:

t0 = 2

⌈
m(X2D+5 + 2)

k

⌉
≤ 2

⌈
m

(
1

X
+ 2

k

)⌉
. (12)

During the setup stage, the total number of edge traversals is at least 2m(X2D+5 + 2) since by Lemma 3.4 in every two
consecutive steps, the agents are making at least k arc traversals. Thus, there exists an arc e′ such that d(t0)(e′) ≥ X2D+5 + 2.
There also exists an arc e′′ such that d(tC −1)(e′′) = 0. Thus, for each t ∈ [t0, tC),

d(t)(e′′) = 0 and d(t)(e′) ≥ X2D+5 + 2 > Y2D+5. (13)

Since D is the diameter of G , there exists a path P = 〈e′′ = e1, e2, . . . , eD ′ = e′〉, such that D ′ ≤ D + 2 and for all i ∈ [1, D ′),
ei = vi → vi+1 where vi, vi+1 ∈ V .

For each time step t and i ≥ 2, let a(t)
i be the number of agents that during step t + 1 traverse those arcs which were

traversed at most Yi times until the end of step t , a(t)
i ≡ ∑

e∈E(t)
Yi

a(t)(e). We have for any i ≥ 2:

tC −1∑
t=t0

a(t)
i ≤ 2m(Yi + 1) < 3mYi, (14)

and we prove the first inequality by contradiction. Thus, if the first inequality does not hold, then some arc e contributes at
least Yi + 2 to the above sum. Then, since in each time step t ∈N each arc is traversed at most once (by Lemma 3.4), there
exist Yi + 2 steps t1, . . . , tYi+2, where t0 < t1 < t2 < · · · < tYi+2 ≤ tC , in which e is traversed, and moreover e ∈ E

(tYi+2−1)

Yi
by

definition of a(t)
i . However, till the end of step tYi+2 − 1 ≥ tYi+1 the arc e has been traversed Yi + 1 times, so, e /∈ E

(tYi+2−1)

Yi
,

and we obtain a contradiction, proving (14).
We now prove that

tC ≤ t0 + 12

⌈
m

X − 1

⌉
. (15)

Suppose, by contradiction, that tC > t0 + 12�m/(X − 1)�.
For each time step t , we will call the set of arcs E(t)

Yi+1
\ E(t)

Yi
the i-th zone at time t , for i ≥ 2.

Each zone that does not contain any arc of path P in a given time step is called free. The path P has D ′ arcs and hence
at least D ′ zones with indices in the interval [2, 2D ′ + 1] are free in each time step. Thus, by the pigeonhole principle,
during the time period [t0, tC) there must exist an index i∗ ∈ [2, 2D ′ + 1] such that the i∗-th zone is free during a set of
time steps T ⊆ [t0, tC), with:

|T | ≥ (tC − t0)/2 > 6�m/(X − 1)�.
By (13), the arc e′ belongs to a zone with index at least 2D + 6 ≥ 2D ′ + 2 in each time step t ∈ T , while arc e′′ belongs to
zone 1. Since the i∗-th zone is free at each time t ∈ T , by following path P from arc e′ to e′′ , we will necessarily encounter
an index j ∈ [1, D ′), such that d(t)(e j+1) ≥ Yi∗+1 + 1 and d(t)(e j) ≤ Yi∗ , which gives:

d(t)(e j+1) − d(t)(e j) ≥ Yi∗+1 + 1 − Yi∗ = Xi∗ + 1.

By Lemma 3.5, for each t ∈ T , at least Xi∗ agents traverse arcs from set E(t)
Yi∗ in steps t + 1 and t + 2, i.e., (a(t)

i∗ +a(t+1)
i∗) ≥ Xi∗ .

Thus,

http://mostwiedzy.pl

812 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

∑
t∈T

(a(t)
i∗ + a(t+1)

i∗) ≥ |T |Xi∗ ≥ 6

⌈
m

X − 1

⌉
Xi∗ > 6mYi∗ ,

and we obtain

tC −1∑
t=t0

a(t)
i ≥ 1

2

∑
t∈T

(a(t)
i∗ + a(t+1)

i∗) ≥ 3mYi∗ .

This contradicts (14), completing the proof of (15).
Recall that X = k1/(2D+6)�. By (15), (12), and the definition of X , we have:

tC ≤ 2

⌈
m

(
1

X
+ 2

k

)⌉
+ 12

⌈
m

X − 1

⌉
≤ 14

m

X − 1
+ 4m

k
+ 14 ≤ mD

log k

(
log k

D(k1/(8D) − 2)
+ 4 log k

Dk
+ 14

)
.

Observe that for fixed D , the expression in the above bracket is strictly decreasing with k for k > 28D , and for k = 216D

takes a value of 54. Knowing that k ≥ 216D , we therefore obtain tC ≤ 54 mD
log k . �

It remains to consider the case not covered by the above lemma, when not all agents start from distinct positions. In fact,
we will reduce such a case to the one already considered by making use of the concept of delayed deployments discussed
in Section 2.

Lemma 3.7. Let R and R′ be two k-agent fair strategies with cover times tC and t′
C , respectively. Suppose that there exists a delayed

deployment D ∈ delay(R) whose execution transforms the starting configuration of R into the starting configuration of R′ in t̂ time
steps. Then, tC ≤ t̂ + t′

C .

Proof. Observe that the concatenation of the execution of deployment D for t̂ steps and R′ for t′
C steps is a delayed

deployment of R which explores the graph in tC ≤ t̂ + t′
C steps. The claim follows by Lemma 2.1. �

The next lemma provides an upper bound on the time of transforming any configuration of a fair strategy with k ≤ n
agents into one in which agents occupy distinct starting nodes.

Lemma 3.8. For any initialization R of a fair strategy with k agents, k ≤ n, there exists a delayed fair strategy D ∈ delay(R) which
terminates in a configuration in which all agents occupy distinct positions after ̂t ≤ k4 steps.

Proof. In deployment D, we release agents sequentially from their starting positions in R, moving one agent only at a
time until it is located at a node unoccupied by another agent. Consider the phase in which we move a fixed agent a
in this deployment. In the worst case, a has to explore the graph induced by all nodes occupied to date. The agent acts a
single-agent rotor router system with respect to this graph. Recall that the cover time of a graph with m edges and diameter
D by a single agent is at most 2mD , regardless of the initial configuration [26]. Since in the considered system there are at
most k occupied nodes with at most k2/2 edges between them, and the graph of occupied nodes has diameter at most k, a
finds an unoccupied node within 2 · k2/2 · k = k3 steps. This has to be done by each of k agents, thus the total time of all
phases of the delayed deployment is t̂ ≤ k4. �

When 1 < k ≤ �n1/5�, we can bound the time t̂ in the above lemma as:

t̂ ≤ k4 ≤ �n1/5�4 ≤ (n1/5 + 1)4 = n4/5 + 4n3/5 + 6n2/5 + 4n1/5 + 1 ≤ 16n4/5 ≤ 16n/k ≤ 32m/ log k.

Combining the above result with Lemmas 3.6 and 3.7, we obtain that for any fair strategy with arbitrary initialization
with k agents, k ≤ �n1/5� and k ≥ 216D , exploration is completed within time tC = t̂ + t′

C ≤ 32 mD
log k + 54 mD

log k = 86 mD
log k . On the

other hand, when k < 216D , by Theorem 3.3, the cover time is tC ≤ 500 mD
log k . It follows that the bound tC ≤ 500 mD

log k holds
for all starting configurations with k ≤ �n1/5�.

When k > �n1/5�, we can make use of a result of Yanovski et al. [26] (generalized in this paper to fair strategies), stating
that the worst-case initialization of a fair strategy system with k agents cannot have greater cover time than the worst-case
initialization of a system with k′ < k agents. Putting k′ = �n1/5�, for any k > �n1/5� we obtain: tC ≤ 500 mD

log k′ ≤ 2500 mD
log n .

Finally, combining the results for k ≤ �n1/5� and k > �n1/5� gives the following theorem.

Theorem 3.9. Let G = (V , E) be any undirected graph with arbitrary initialization of pointers and let D be the diameter
of G. A team of k agents performing in parallel any fair strategy, in particular the rotor-router movement, explores G in time
max{500mD/ log k, 2500mD/ log n}, regardless of the initial positions of agents. In particular, if k ≤ nc for some c > 0, then the
cover time is at most 2500c · mD/ log k. �

http://mostwiedzy.pl

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 813

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 2. Graph decompositions used in the proof of Theorem 4.1.

Theorems 3.3 and 3.9 imply that the cover time of the rotor-router is O (mD/ log k) for all graphs, whenever k ∈ 2O (D) or
k ∈ O (poly(n)).

4. Lower bound on cover time

Theorem 4.1. Let G = (V , E) be any undirected graph of diameter D. There exists a port labeling of the edges of G, an initialization
of pointers and an assignment of starting positions to a team of k agents, such that the exploration performed in parallel with the
rotor-router movement has cover time tC ≥ 1

4 mD/k.

Proof. If k > m, we make all agents start from an arbitrarily chosen single node, and choose an arbitrary pointer initial-
ization. In such scenario, the exploration will be completed after time at least D > mD

k . Thus, we can safely assume that
k ≤ m.

For any graph G = (V , E), as shown in [3, Theorem 2], there exists a partition of the edge set E = E1 ∪ E2, such that:

(i) |E1| ≥ m
2 ,

(ii) there exist V 1 ⊆ V and V 2 ⊆ V such that the subgraphs H1 = G[V 1] and H2 = G[V 2] are connected and their edge sets
are E1 and E2, respectively,

(iii) there exists a node v ∈ V 2 being at distance at least D
2 from each node of H1.

Fig. 2(a) illustrates such a partition. Denote by F ⊂ E2 the set of edges incident to some node from H1.
Now, let C = {e1, e2, . . . , e2|E1|} be a directed Eulerian cycle in �H1 (the bidirected subgraph corresponding to H1) travers-

ing every edge in E1 exactly once in each direction. To simplify notation, let
 =
⌊

2|E1|
k

⌋
. We choose an arbitrary set of

indexes 1 = j1 < j2 < . . . < jk ≤ 2|E1| such that they are spread (almost-)equidistantly in {1, . . . , 2|E1|}, that is:

∀i ∈ [1,k) ji+1 − ji ∈ {
,
 + 1} and j1 − jk + 2|E1| ∈ {
,
 + 1} .

This is possible because, due to (i), 2|E1| ≥ k.
We partition E1 into
 sets S1, . . . , S
 of size k:

Si+1 = {
e j1+i, e j2+i, . . . , e jk+i

}
, for 0 ≤ i <
,

and one set for all remaining edges: R = E1 \ ⋃

t=1 St . Informally, we divide the Eulerian cycle into segments of roughly

the same sizes and then S1 gets first edge from each segment, S2 gets the second edge from each segment and so on. As
the sizes of segments may differ by one, some segments may have an extra edge and those make up the set R .

We choose the starting positions of k agents, the port assignment, and the initialization of pointers for the edges in
E1 such that in their first
 + 1 steps, the k agents traverse all edges in E1 in the following delayed deployment: for
each t ∈ {1, . . . ,
}, in the t-th step, exactly the edges in St are traversed, whereas in the (
 + 1)-th step we delay some
agents so that exactly the edges in R are traversed. We achieve this by setting outgoing ports so that, for every node u in
H1, we order the edges in E1 incident to u by assigning smaller ports to edges in St than to the edges in St+1, for each
t ∈ {1, . . . ,
}, where S
+1 = R . Such a port ordering is enough to explore the graph H1, with delayed deployment, with
the property that every edge is visited once every
 + 1 steps.

Now we assign ports to the edges in F . To this end, we consider the subgraph of G , denoted by G̃ , consisting of the
edges in E1 ∪ F . In other words, we take H1 (together with the port assignment obtained above) and we add the edges in
F , obtaining G̃ . Note that, by (ii), each edge in F has one endpoint in V 1 and the other endpoint in V \ V 1. The ports in F

http://mostwiedzy.pl

814 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

are determined by analyzing the behavior of agents in the graph G̃ in the delayed deployment described above. Whenever
any set of agents are about to leave H1 and traverse any edge from F , we select a single agent in a deterministic way (for
example, by choosing the agent located on a node with the smallest index, having indexes assigned to nodes). We stop all
other agents and perform traversals only with the selected agent, until it returns to H1. We set the ports of the edges in
F so that whenever an agent leaves H1 through an edge (v → u) ∈ F (v ∈ V 1, u /∈ V 1), it returns to H1 through the edge
(u → v) (we call this property the property of return). Having the property of return, we achieve that the agents patrol E1,
and whenever an agent is about to leave H1, the other agents are delayed until the agent returns to the same node. Since
the selection of agents is done deterministically, the edges in F are always traversed in separated periods of time (when
one agent is traversing edges from F , all other agents are stopped) in a cyclic fashion, i.e., the sequence of traversal of
the edges in F is (f1, f ′

1, f2, f ′
2, . . . , f |F |, f ′|F |)∗ , where f ′ means the reversed edge to an edge f , i.e., if f = (u → v), then

f ′ = (v → u). Denote f i = (ui → vi) for each i ∈ {1, . . . , |F |}.
It remains to assign port labels to the edges in E2 \ F , and to initialize the remaining pointers for the nodes in V \ V 1.
This is done by first constructing a multigraph G ′ and then by analyzing a single agent movement in G ′ . The node set

of G ′ is {h} ∪ (V \ V 1). For each (u → v) ∈ E2 \ F , let (u → v) be an edge of G ′ , and for each i ∈ {1, . . . , |F |}, let (h, vi)

and (vi, h) be the edges of G ′ . In other words, we construct G ′ by taking G , leaving the edges in E \ E1 untouched, and
contracting (identifying) the nodes of H1 into the single node h (see Fig. 2(b)). (The loops at h formed by the edges in E1 are
discarded.) For each i ∈ {1,|F |}, the ports of (h → vi) and (vi → h) equal the ports of (ui, vi) and (vi, ui), respectively.

We set the remaining ports in G ′ and pointer initialization so that a single agent that starts at h explores G ′ in the
following way:

(a) The edges in F are traversed according to the order(
(h → v1), (v1 → h), (h → v2), (v2 → h), . . . , (h → v |F |), (v |F | → h)

)
.

Later on, we use the port labeling of G ′ to assign port labels to the edges in E2 \ F in G , and the above allows us to
maintain the return property in G .

(b) The agent requires D/2 traversals through at least one edge in F (and D/2 − 1 through every other edge from F). This
follows from the fact that, due to (iii), there exists a node in G ′ being at distance at least D/2 from h.

The above process assigns port labels to the edges in E2 and sets initial values of all pointers in G ′ , which completes the
construction of G and the initial setup of the rotor-router.

Now we analyze the delayed deployment performed by the k agents in G . We divide the exploration of G into phases.
The i-th phase starts in the step in which each edge in S1 is traversed for the i-th time, and ends in the step preceding the
beginning of the (i + 1)-th stage. Note that each stage contains at least
 steps in which all agent move simultaneously.
By (a), the property of return holds in G , and therefore each edge in F is traversed exactly once in each of the phases
except the 1st phase. (In the 1st phase, agents only traverse edges from E1.) Thus, by (b), at least D/2 − 1 + 1 full phases
are required in the delayed deployment to explore G (not counting the very last, partial phase in which the exploration of
last vertex happens, but counting the initial phase in which no edges from F are traversed). This means that we need τ
steps in which all agents move simultaneously to fully explore the graph G , where:

τ ≥
 · D/2 =
⌊

2|E1|
k

⌋
· D/2 ≥ ⌊m

k

⌋ · D/2 ≥ 1
4 mD/k

We can now apply Lemma 2.1 for the considered deployment, obtaining that the cover time of G is tC ≥ τ ≥ 1
4 mD/k. �

The bound in Theorem 4.1 is asymptotically tight, e.g., for the class of stars.

Proposition 4.2. Let G be a star on n nodes. A team of k ≤ n agents covers G in time tC ≤ 2�n/k�, for any initialization of the
rotor-router and any initial positions of agents. �
Appendix A. Proof of Lemma 2.1

We introduce the following auxiliary notation. For a (possibly delayed) strategy D, a node v and t ≥ 0, e(t)
D (v) =∑

u∈�(v) d(t)
D (v → u) denotes the total number of traversals of arcs outgoing from v until the end of step t for execu-

tion D, and by n(t)
D (v) = ∑

t′∈[0,t] |{i : r(t)
i = v}| we denote the total number of visits of an agent at node v in time steps up

to t inclusive; each visit is the result of edge traversal or initial placement. We start by making the following observation
about fair strategies.

Lemma A.1. For any (possibly delayed) fair strategy D, any t = 0, 1, . . . and any u ∈ V we have:

e(t+1)
D (u) = n(t)

D (u) −D(u, t + 1).

http://mostwiedzy.pl

D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816 815

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Proof. Observe that for an arbitrary agent, the difference between the number of times the agent enters node u in rounds
[0, t] (either by traversing an arc entering u or due to the initial placement at u) and the number of times the agent leaves
u in rounds [0, t + 1] by outgoing arcs is equal to either 1 or 0, depending on whether the agent is delayed at u in round
t + 1 or not. Summing over all agents, we obtain the claim. �
Lemma A.2. Let U be a fair strategy, and let D1, D2 ∈ delay(U) be two delayed deployments such that D1(v, t) ≥ D2(v, t) for all
v ∈ V and all rounds t. Then, for all v ∈ V and all rounds t, we have n(t)

D1
(v) ≤ n(t)

D2
(v).

Proof. The proof proceeds by induction on time t . First, let t = 0. By definition,

n(0)
D2

(v) − n(0)
D1

(v) =
∑

w∈�(v)

d(0)
D2

(w → v) −
∑

w∈�(v)

d(0)
D1

(w → v), for all v ∈ V . (16)

Since the same number of agents is initially placed in D1 and D2 at each node w , D1 and D2 have the same sequence
of exits (because D1 and D2 correspond to the same undelayed fair strategy) and D1(w, 0) ≥ D2(w, 0), we obtain that
d(0)

D2
(w → v) ≥ d(0)

D1
(w → v) for each v ∈ V and w ∈ �(v). Thus, by (16), the claim holds for t = 0.

Suppose that for some t ≥ 1, n(t−1)

D1
(v) ≤ n(t−1)

D2
(v) holds for all v ∈ V . Then, we have from Lemma A.1:

e(t)
D1

(v) +D1(v, t) ≤ e(t)
D2

(v) +D2(v, t)

and since, by assumption, D1(v, t) ≥D2(v, t), we obtain

e(t)
D1

(v) ≤ e(t)
D2

(v), for all v ∈ V . (17)

Now, since D1 and D2 have the same sequence of exits, (17) implies that

d(t)
D1

(v → w) ≤ d(t)
D2

(v → w), for all arcs v → w ∈ �E.

Now, fix an arbitrary node u and observe that the number of visits to node u within the interval [0, t] is equal to the
sum of the number of agents placed at u in round 0 (which equals i j = n(0)

D j
(u) − ∑

w∈�(u) d(0)

D j
(w → u) for deployment

D j , j ∈ {1, 2}), and the number of times an agent exited one of its neighbors v ∈ �(u) along an arc v → u in rounds [0, t].
Therefore,

n(t)
D1

(u) = i1 +
∑

w∈�(u)

d(t)
D1

(w → u) ≤ i2 +
∑

w∈�(u)

d(t)
D2

(w → u) = n(t)
D2

(u),

because i1 = i2 for deployments D1 and D2 of the same fair strategy. �
Lemma A.3. Let U be a fair strategy and let D ∈ delay(U). Let T be any fixed time round, and let τ be the number of rounds in the
interval [0, T] such that all the agents are active in D, i.e., τ = |{t ∈ [0, T] : ∀v∈V D(v, t) = 0}|. Then, for all nodes v ∈ V , we have:
n(τ)

U (v) ≤ n(T)

D (v) ≤ n(T)

U (v).

Proof. Let v ∈ V be selected arbitrarily. The right inequality follows directly from Lemma A.2. Consider a function f :
[0, τ] → [0, T], with f (i) being the i-th time round in which all agents are active in delayed deployment D.

To prove the left inequality, we argue by induction on i = 0, 1, . . . , τ that

n(f (i))
D (v) ≥ n(i)

U (v). (18)

For i = 0, since D and U have the same initialization of agents and D is delayed with respect to U , it holds that n(f (0))

D (v) ≤
n(0)

U (v).
Assume now that (18) holds for some for some i ≥ 0. Equation (18) provides a relation between the numbers of exits

from nodes in both processes till the end of round f (i + 1). More precisely,

e(f (i+1))
D (v) = n(f (i+1)−1)

D (v) ≥ n(f (i))
D (v) ≥ n(i)

U (v) = e(i+1)
U (v),

where the first equality is due to the fact that no agents are stopped at v in round f (i + 1) in D.
Therefore, since number of exists from each vertex in D in not smaller than in U and both deployments have the same

sequence of exits, we obtain a relation between a number of traversals of directed arcs. For all arcs u → v ∈ �E ,

d f (i+1)
D (u → v) ≥ d(i+1)

U (u → v).

Finally, we obtain a correspondence between the number of visits at v in D and U by taking into account that the number
of visits is correlated with the number of traversals of incoming arcs:

http://mostwiedzy.pl

816 D. Dereniowski et al. / Journal of Computer and System Sciences 82 (2016) 802–816

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

n(f (i+1))
D (v) = iD +

∑
w∈�(v)

d(f (i+1))
D (w → v) ≥ iU +

∑
w∈�(v)

d(i+1)
U (w → v) = n(i+1)

U (v),

where iD and iU are the numbers of agents initially placed at v in D and U , respectively. (Note that iD = iU .) This
completes the proof of (18).

By taking i = τ in (18), we obtain the sought inequality n(T)

D (v) ≥ n(f (τ))

D (v) ≥ n(τ)

U (v). �
Lemma A.3 immediately implies the claim of Lemma 2.1.

References

[1] H. Akbari, P. Berenbrink, Parallel rotor walks on finite graphs and applications in discrete load balancing, in: SPAA, 2013, pp. 186–195.
[2] N. Alon, C. Avin, M. Koucký, G. Kozma, Z. Lotker, M.R. Tuttle, Many random walks are faster than one, Comb. Probab. Comput. 20 (4) (2011) 481–502.
[3] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski, Euler tour lock-in problem in the rotor-router model, in: DISC, 2009,

pp. 423–435.
[4] E. Bampas, L. Gasieniec, R. Klasing, A. Kosowski, T. Radzik, Robustness of the rotor-router mechanism, in: OPODIS, in: LNCS, vol. 5923, 2009,

pp. 345–358.
[5] S.N. Bhatt, S. Even, D.S. Greenberg, R. Tayar, Traversing directed eulerian mazes, J. Graph Algorithms Appl. 6 (2) (2002) 157–173.
[6] A.Z. Broder, A.R. Karlin, P. Raghavan, E. Upfal, Trading space for time in undirected s-t connectivity, in: STOC, 1989, pp. 543–549.
[7] C. Cooper, D. Ilcinkas, R. Klasing, A. Kosowski, Derandomizing random walks in undirected graphs using locally fair exploration strategies, Distrib.

Comput. 24 (2) (2011) 91–99.
[8] J.N. Cooper, J. Spencer, Simulating a random walk with constant error, Comb. Probab. Comput. 15 (6) (2006) 815–822.
[9] D. Dereniowski, A. Kosowski, D. Pajak, P. Uznanski, Bounds on the cover time of parallel rotor walks, in: LIPIcs, in: STACS, vol. 25, Schloss Dagstuhl –

Leibniz-Zentrum fuer Informatik, 2014, pp. 263–275.
[10] B. Doerr, T. Friedrich, Deterministic random walks on the two-dimensional grid, Comb. Probab. Comput. 18 (1–2) (2009) 123–144.
[11] K. Efremenko, O. Reingold, How well do random walks parallelize?, in: APPROX-RANDOM, 2009, pp. 476–489.
[12] R. Elsässer, T. Sauerwald, Tight bounds for the cover time of multiple random walks, Theor. Comput. Sci. 412 (24) (2011) 2623–2641.
[13] U. Feige, A spectrum of time–space trade-offs for undirected s-t connectivity, J. Comput. Syst. Sci. 54 (2) (1997) 305–316.
[14] T. Friedrich, T. Sauerwald, The cover time of deterministic random walks, in: COCOON, in: LNCS, vol. 6196, 2010, pp. 130–139.
[15] A.E. Holroyd, J. Propp, Rotor walks and Markov chains, in: Algorithmic Probability and Combinatorics, American Mathematical Society, 2010,

pp. 904–4507.
[16] R. Klasing, A. Kosowski, D. Pajak, T. Sauerwald, The multi-agent rotor-router on the ring: a deterministic alternative to parallel random walks, in: PODC,

2013, pp. 365–374.
[17] S. Koenig, R.G. Simmons, Easy and hard testbeds for real-time search algorithms, AAAI 96 and IAAI 96, vol. 1, AAAI Press/The MIT Press, 1996,

pp. 279–285.
[18] A. Kosowski, D. Pajak, Does adding more agents make a difference? A case study of cover time for the rotor-router, in: ICALP, in: Lecture Notes in

Computer Science, vol. 8573, Springer, 2014, pp. 544–555.
[19] L. Levine, Y. Peres, Spherical asymptotics for the rotor-router model in Zd , Indiana Univ. Math. J. 57 (2008) 431–450.
[20] L. Levine, Y. Peres, The rotor-router shape is spherical, Math. Intell. 27 (3) (2005) 9–11.
[21] L. Levine, Y. Peres, Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile, 2007.
[22] V. Priezzhev, D. Dhar, A. Dhar, S. Krishnamurthy, Eulerian walkers as a model of self-organized criticality, Phys. Rev. Lett. 77 (25) (Dec 1996) 5079–5082.
[23] T. Sauerwald, Expansion and the cover time of parallel random walks, in: PODC, ACM, 2010, pp. 315–324.
[24] T. Shiraga, Y. Yamauchi, S. Kijima, M. Yamashita, Deterministic random walks for rapidly mixing chains, arXiv:1311.3749 [CoRR], 2013.
[25] I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Distributed covering by ant-robots using evaporating traces, IEEE Trans. Robot. Autom. 15 (1999)

918–933.
[26] V. Yanovski, I.A. Wagner, A.M. Bruckstein, A distributed ant algorithm for efficiently patrolling a network, Algorithmica 37 (3) (2003) 165–186.

http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A636F6E662F737061612F416B62617269423133s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A6A6F75726E616C732F6370632F416C6F6E414B4B4C543131s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib42484B4B523039s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib42484B4B523039s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib42474B4B523039s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib42474B4B523039s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib42686174744547543032s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib62726F646572s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib436F6F706572494B4B3131s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib436F6F706572494B4B3131s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A6A6F75726E616C732F6370632F436F6F706572533036s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib636F6E66s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib636F6E66s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A6A6F75726E616C732F6370632F446F657272463039s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib45523039s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A6A6F75726E616C732F7463732F456C736173736572533131s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib6665696765s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib46533130s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib486F6C726F796450726F7070s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib486F6C726F796450726F7070s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A636F6E662F706F64632F4B6C6173696E674B50533133s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib44424C503A636F6E662F706F64632F4B6C6173696E674B50533133s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib4B6F656E6967533936s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib4B6F656E6967533936s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib4B6F736F77736B69503134s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib4B6F736F77736B69503134s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib736861706532s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib736861706531s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib506879735265764C6574742E37372E35303739s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib536175657277616C643130s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib53686972616761594B593133s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib5761676E657239396469737472696275746564636F766572696E67s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib5761676E657239396469737472696275746564636F766572696E67s1
http://refhub.elsevier.com/S0022-0000(16)00018-0/bib59616E6F76736B6957423033s1
http://mostwiedzy.pl

	Bounds on the cover time of parallel rotor walks
	1 Introduction
	1.1 Related work
	1.2 Our results and overview of the paper

	2 Model and preliminaries
	3 Upper bound on cover time
	4 Lower bound on cover time
	Appendix A Proof of Lemma 2.1
	References

