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Abstract. The present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform 
compression using the modified couple stress theory with various boundary conditions. For this purpose, the top 
and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are 
investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing 
differential equations are obtained using the Hamilton’s principle by considering the Von-Karman’s nonlinear 
strains. An analytical approach is applied to obtain exact results with different boundary conditions. Due to the fact 
that there is no research on the stability of micro/nano sandwich plates based on S-FSDT including the couple stress 
effect, the obtained results are compared with the FSDT studies which use the Eringen nonlocal elasticity. 

 
Keywords: Thick sandwich plate; Modified couple stress theory; S-FSDT. 

1. Introduction 

   The graphene structures represent 2D plane sheets of covalently bonded carbon atoms that form ideal hexagonal crystal 
lattices with the low weight and the high strength. The graphene specimens typically exist as either monolayers attached to 
substrates made of another material [1]. Due to the ultrahigh strength of the graphene, its inclusions are effectively used in the 
enhancement of both strength and fracture toughness in composite materials [2]. For instance, in order to improve the fracture 
toughness of ceramic materials, several research groups fabricated nano composites consisting of ceramic matrixes and 
inclusions in the form of graphene platelets [2, 3]. Moreover, inclusions in the form of graphene sheets provided enhancement 
of mechanical characteristics in the polymer-based nano composites [4]. For instance, partially oxygenated graphene sheets 
were dispersed in the polymer matrix, and mechanical characteristics of resultant nano composites with various graphene 
contents were examined [5].  
  The micro/nano composite material is a type of the sandwich formed from two thin skins of graphene bonded to a polymer 
or soft metal core in a continuous process under controlled pressure, heat, and tension. The most commonly used sandwich 
theory is linear and is an extension of first order beam theory. The linear local buckling sandwich theory is importance for the 
design and analysis of sandwich plates which are used in the building construction, the vehicle construction, the airplane 
construction and the refrigeration engineering [6]. 
   Polymers are used in a broad range of applications especially due to their light weight, low cost, flexibility and easy 
processing. However, compared to ceramics and metals, polymers have weaknesses in terms of low stiffness and strength 
which limit their use. Therefore, adding rigid fillers in the nanometer size to reinforce the polymer matrices leads to a new 
class of materials [7]. 
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   Due to difficulties encountered in the experimental characterization of nano material, the theoretical approach is employed. 
Heretofore, the micro/nano sandwich plate with graphene coating that oriented theoretically by using new methods (to the best 
of the author's knowledge) is not taken into consideration. On the contrary, regarding the mechanical behavior of nano sheets, 
extensive and theoretical studies in the last several years have been conducted. Malekzadeh et al. [8] considered the small scale 
effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nano 
plates embedded in an elastic medium via the classical plate theory. Zenkour and Sobhy [9] analyzed the thermal buckling of a 
rectangular nano graphene sheet based on the Winkler-Pasternak foundation. The sine function and the sinusoidal plate theory 
were used to derive the equations. Murmu et al. [10] conducted the buckling analysis of the bi-layer nano graphene in the 
nonlocal theory under the biaxial compression via the analytical solution using the classical plate theory with linear strains. It 
also demonstrated that the nonlocal critical load was always less than the local critical load. Wang et al. [11] investigated the 
thermal buckling of the nano scale plate via the classical and Mindlin plate theory by using simply supported boundary 
condition. Malekzadeh and Alibeygi [12] analyzed the thermal buckling of an orthotropic single layer graphene sheet using the 
nonlinear elastic foundation. The classical theory and the differential quadrature method were used together with the Winkler 
elastic foundation which was modeled with the nonlinear spring. This method serves as a bench mark for future research. 
Mohammadi et al. [13] studied the shear buckling of an orthotropic rectangular single layer nanoplate in the thermal 
environment by the classical plate theory. They showed that the difference between the shear buckling load calculated by 
isotropic and orthotropic plates decreased by increasing the nonlocal parameter. Radic et al. [14] published a study on the 
mechanical buckling of the multi-layer rectangular graphene sheet based on an elastic foundation and found that the nonlocal 
effect had great influence on higher buckling modes. The exact solution for vibrations and the biaxial buckling of multi-layer 
graphene sheet based on the Winkler elastic foundation were investigated by Murmu et al. [15]. The presented equations 
utilized the classical plate theory and proved that the critical temperature and natural frequencies were further affected by 
reducing the Winkler coefficient in high modes. Anjomshoa et al. [16] derived mechanical buckling equations of the multi-
layer rectangular graphene sheet placed on an elastic foundation using the classical plate theory and the finite element 
numerical method. Radebe and Adali [17] studied the buckling of rectangular nanoplates with uncertain orthotropic material 
properties using the non-local theory. They considered the nanoplate as a non-local plate to take the small-size effects into 
account along with the small-scale parameter also to be taken as uncertain. They studied the effect of the small scale on natural 
frequencies. A new analytical solution for the buckling and vibration analysis of functionally graded sandwich beams using a 
quasi-3D shear deformation theory was presented by Nguyen et al. [18]. Golmakani and Rezatalab [19] conducted a study on 
the biaxial buckling of a single layer graphene plate by considering the elastic foundation and the non-uniform mechanical load. 
The results showed that by neglecting the elastic foundation, when the small scale effects were reduced, the critical load also 
decreased. Jamali et al. [20] presented the uniaxial buckling analysis comparison of the nanoplate and the nanocomposite plate 
with the central square cut out by using the domain decomposition method. They showed that the existence of a hole in the 
plate causes defect in the system and weakens the buckling behavior. Radic and Jeremic [21] studied the thermal buckling of 
double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-
order shear deformation theory. Their results showed that in nonlinear distributions of temperature all over the thickness of the 
plate, a higher value of critical buckling temperatures is obtained for lower values of the aspect ratio. The dynamic buckling of 
embedded laminated nanocomposite plates based on the sinusoidal shear deformation theory was studied by Zarei et al. [22]. 
Malikan et al. [23] published the buckling of the double-layered nanoplate under shear and thermal loads based on the elastic 
matrix using the differential quadrature method. They showed that the effect of the type of shear loading on the nonlocal results 
was more significant than local results. Moreover, while in the thermal buckling analysis the most important results implied 
whether the boundary conditions had more flexibility, by increasing the dimension’s ratio, the results of critical temperature 
were tightly close together in the nonlocal and local analysis. 
   The main aim of this study is to give a brief overview of new theoretical considerations on nanocomposite sheets under the 
biaxial buckling. Regarding FSDT, we could not get the right value for the shear correction factor to consider the shear stress 
distribution in the thickness direction. Therefore, the simplified first order shear deformation theory (S-FSDT) that provides a 
welcome alternative to solve this problem is investigated. In the following section, the nonlinear strain of Von-Karman is 
considered. In addition, in order to study the length scale, the modified couple stress effect is employed because there is a 
difficulty in the Eringen nonlocal elasticity to consider nano materials behavior. The Eringen nonlocal elasticity is applied on 
the nonlocal stress resultants to derive governing equations because the nonlocal parameter is variable. Moreover, the exact 
solution is used to solve the stability equations. Finally, the effects of different parameters including changes in the core 
thickness, the aspect ratio and boundary effects of edges in various conditions under the nonuniform in-plane loads are 
demonstrated. 

2. Formulation 

A rectangular sandwich panel is considered with the thickness t1 for faces, t2 for the core (h=2t1+t2), the length 
Lx, and the width Ly as shown in Fig.1. Of the many shear deformable plate theories proposed over the years, the FSDT is 
fundamentally simpler to adopt for modelling the shear deformation behavior of plates. FSDT, is widely used even today 
because of its simplicity. Nowadays, it is well-known that in the plate analysis, shear deformation effects are important not 
only for thick plates but even for thin plates [24]. As the classical plate theory (CPT) does not take into account shear effects, 
many theories got evolved to address the deficiency. According to the FSDT, the following displacement field can be expressed 
as: 

     , , , ,U x y z u x y z x y   (1a) 
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     , , , ,V x y z v x y z x y   (1b) 

   , , ,W x y z w x y  (1c) 
 

 

Fig. 1. Schematic diagram of the sandwich plate 

Where u, v and w are the displacement components along x, y and z directions, respectively. Moreover,  and  are the 
rotational displacement along the y and x directions, respectively. In this theory, the shear stress in the thickness direction is a 
constant value which in fact is not true. On the contrary, in the S-FSDT theory it is assumed that the transverse displacement 
(w) is divided into the bending component (wb) and the shear component (ws) which means that [25]: 

( ) ( )w w bending w shear   (2) 

Moreover, the rotation variable in the S-FSDT is expressed in terms of the bending components as follows: 
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By substituting Eqs. (2, 3) into Eq. (1) the S-FSDT displacement field can be written as follows: 
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   In recent years, various size dependent continuum theories such as the couple stress theory, the modified couple stress 
theory, the strain gradient theory and the nonlocal elasticity theory have proposed. These theories are comprised of information 
about the inter-atomic forces and internal lengths. Among these theories, the nonlocal elasticity theory of Eringen has been 
widely applied. But in this theory, unique results cannot be found, because the nonlocal parameter variable has to be used. The 
classical couple stress theory is one of the higher order continuum theories which contains two additional material length scale 
parameters along with the classical constants for the elastic material, as elaborated by Mindlin and Tieresten [26], Toupin [27], 
and Koiter [28]. In fact, the couple stress theory is a special case of Micropolar theory proposed by Cosserat brothers [29]. 
Recently, a modified couple stress theory, which contains only one additional material length scale parameter in addition to the 
classical material constants, was proposed by Yang et al. [30]. The modified couple stress theory is more useful than the 
classical one due to the symmetric couple stress tensor. According to this higher-order continuum theory and using the 
Hamilton’s principle, the governing equations as well as the related boundary conditions along the edges of the rectangular 
nanoplate can be derived. The equations of the total potential energy (V) are expressed as follows: 

V U    (5) 

where U is the strain energy and Ω is the work done by external loads. The virtual strain energy can be calculated as follows 
[31-33]: 

  0ij ij ij ij

v

U m dV       (6) 

where σij, εij, mij, χij are the stress tensor, the strain tensor, the deviatoric part of the couple stress tensor, and the symmetric 
curvature tensor, respectively [30-34]. 
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kk ij= +2  ;ij ij     
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2
ji k k
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j i i j

uu u u
=

x x x x


   
       

 (7) 

22ij xy ijm G l   (8) 

   , ,
1 1

2 2ij i j j i=  ; Curl u      (9) 

where λ and μ are Lame constants, l is a material length scale parameter that is related to the size effect, and θ is the rotatio
n vector. The tensors associated in the displacement field in Eqs. (7-9) are as follows: 
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 (11a-e) 

By using the principle of the minimum potential energy (δV=0), the nonlinear constitutive equations are derived as: 

x,x xy,y , ,
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In the following equations, Ni, Mi and Qi (i= x, y, xy) and Yij (i= x, y, xy) are the stress resultants and non-zero curvature 
resultants respectively. 
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In the following equations, the governing equations (Eq. 12) for the rectangular nanoplate can be rewritten as: 
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The axial and flexural rigidities of orthotropic and isotropic nanoplates are given by: 
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   In Eq. (16), Aij, Bij and Dij are the extensional stiffness, the bending stiffness and the extension-bending coupling matrix, 
respectively. Moreover, Ex, Ey and E are the Young's elasticity modules, νxy, νyx and ν are the Poisson's ratio and Gxy, Gxz and 
Gyz and G are the shear modules for orthotropic and isotropic materials, respectively. The stress resultants in Eq. (13) in the 
displacement field by using Eq.16 are defined as: 
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 (17) 

The nonuniform in-plane forces in pre-buckling conditions are as follows. Parabolically varying in-plane load [35]: 
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Sinusoidal varying in-plane load [36]: 
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Linearly varying in-plane load [36-37]: 
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 (20) 

As afore-mentioned about the linear load, η=0 (Uniform load), η=1 (Triangular load). Moreover, N0 is the critical in-plane 
load in buckling conditions. By substituting Eqs. (17) and (18-20) in Eq. (15), and also by considering the pre-buckling 
condition, the stability equations in the form of displacement components based on S-FSDT and including couple stress effect 
are expressed as follows: 
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(21a-b) 
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3. Exact solution procedure 

In this study, different analytical boundary conditions are applied to solve the obtained stability equations which can be 
written in an explicit mathematically form as [32-33]: 

Free edge (F): 2 2sin ( ) 1 cos ( )i i i i iX x x  ; i=1,2      (22a) 

Clamped (C): 2sin ( )i i iX x  ; i=1,2  (22b) 

Simply supported (S): sin( )i i iX x  ; i=1,2  (22c) 

Where m and n are the half wave numbers, α1=mπ/Lx, α2=nπ/Ly, x1=x, and x2=y or terms used in the x and y direction to 
represents the displacement functions. The displacement function is used in the following form: 

 ,k k i jw x y W X X  ; k=s,b; i=1,2 ; j=1,2  (23) 

By substituting the expression of wk in Eq. (21), the explicit relation for buckling loads with various boundary conditions can 
be obtained. The stability equations and closed-form boundary conditions yield a set of following algebraic equations: 

11 12

21 22

.20

.20
b

s

Wk kEq a

Wk kEq b

   
    

     
 (24) 

where kij (i, j=1, 2) are the coefficients of constants terms. To obtain the critical load the following equation is employed: 

   .21 .21 , b sq Eq a Eq b  u W W   (25) 

   , det 0J jacobian q u J    (26) 

 

4. Results and Discussion 

   The validation and comparison of the obtained results with other research results should obviously be carried out before 
investigating various parameters of this study. Therefore, Fig. 2 is presented to compare and validate these formulation results 
with those of other articles. As shown in Fig. 2, the results are obtained in two ways by means of the analytical solution. 
However, in order to compare results in Tables 1 and 2, the results of [19] and [38] studies are employed while they are 
obtained using the first order shear deformation theory, the differential quadrature method (DQM), as well as the Eringen 
nonlocal elasticity theory. The result of [39] study is added for further confirmation due to the minor errors in the numerical 
solutions while its results are obtained through the molecular dynamics solution. Therefore, observing only Fig. 2 does not 
enable us to ascertain the fact that the present results are validated due to the difference between the results in both cases. 
However, by examining Tables 1 and 2, one can strongly express that the modified first order shear deformation theory (S-
FSDT) results appropriately correspond to the molecular dynamic results. Since this solution is an exact one, the proximity of 
the results clearly confirms this premise that accurate and appropriate results are obtained by combining the modified first 
order shear deformation theory and the exact solution of the results. Comparing Fig. 2 with the results shown in Tables 1 and 2 
confirms that the removal of the shear stress correction factors in moderately thick plates affects the critical load results. 
Because, the generated difference in the contractual FSDT by employing this factor when compared with the accurate results is 
removed in the S-FSDT. According to Tables 1, 2 and Fig. 2, the thinner we assume the plate, the closer the results become to 
the FSDT results and the numerical solution, while their accuracy decreases; because, FSDT is not applicable to analyze thin 
plates and the classical plate theory (CPT) is more applicable in this case. 
 
E=1TPa, υ=0.3, h=0.34 nm, μ=1.81nm2, β=Lx/Ly=1, k1=1, k2=1, ks=5/6, SSSS [19, 38-39] 
 
E=1TPa, υ=0.3, h=0.34 nm, β=1, k1=1, k2=1, l=2.91nm, η=0, SSSS [Present] 
 
Figs. 3a and 3b are presented to show the impact of uniaxial and biaxial loadings. The sandwich panel is determined as square 
and rectangular in the first and second figure, respectively. This investigation is carried out under monotonic and linear 
loadings due to the changes in m and n parameters. In the first figure, the critical load results obtained from k1=0, k2=1 fully 
corresponds to the results of k1=1, k2=0; whereas, by investigating the second figure and rectangular plates, it is observed that 
the results obtained from k1=0, k2=1 show higher values. Moreover, it is observed that the critical load increases with an 
increase in m and n values. 
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Fig. 2. Comparison of S-FSDT with FSDT in local conditions for the sandwich plate (Lx=15h, η=1, k1=k2=1, SSSS, Al) 

Table 1. Comparison of results for the critical biaxial buckling load for the single-layered graphene sheet and all edges simply supported 
obtained from DQ method [19, 38], and the molecular dynamics simulation [39]. 

 
Critical buckling load (Pa.m)  

Present study 
FSDT-DQM 

[19] 
FSDT-DQM 

[38] 
MD results 

[39] 
Lx=Ly 

(nm) 

1.0835 1.0749 1.0809 1.0837 4.99 

0.6538 0.6523 0.6519 0.6536 8.080 

0.4330 0.4356 0.4350 0.4331 10.77 

0.2615 0.2645 0.2639 0.2609 14.65 

0.1720 0.1751 0.1748 0.1714 18.51 

0.1198 0.1239 0.1237 0.1191 22.35 

0.0896 0.0917 0.0914 0.0889 26.22 

0.0696 0.0707 0.0705 0.0691 30.04 

0.0559 0.0561 0.0560 0.0554 33.85 
0.0454 0.0453 0.0451 0.0449 37.81 

 
Table 2. Comparison of the present results with those of DQ method [38] and the molecular dynamics (MD) simulation [39] for different 

aspect ratios of orthotropic single-layered graphene sheets under the uniform biaxial compression. 
 

Critical buckling load (Pa.m) 

FSDT-DQM [38] MD results [39] 
S-FSDT, Exact 
Present study 

Lx/Ly 

0.5115 0.5101 0.5105 0.5 
0.5715 0.5693 0.5698 0.75 
0.6622 0.6595 0.6599 1.25 
0.7773 0.7741 0.7747 1.5 
1.0222 1.0183 1.0180 1.75 
1.1349 1.1297 1.1301 2 

 

Table 3. Mechanical properties of the sandwich plate 

Section Material Elasticity parameters 

Faces  Graphene sheet [23] Ex=1765Gpa, Ey=1588Gpa, vxy=0.3, vyx=Ey×vxy/Ex 

Core 
Epoxy resin E=2.8Gpa, v=0.35 

Aluminum alloy E=70Gpa, v=0.33 
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In Fig. 4a, the changes of the length scale parameter against the changes in t1 to t2 thickness ratio are investigated while t2 is 

alterable. As can be seen, the critical load increases with an increase in l parameter. This parameter will increase more when T 
value becomes smaller and core to face thickness ratio increases as well. In fact, one can conclude according to this figure that 
the impact of the length scale parameter on the critical load resulted from various thickness is not significant. However, these 
results are different in Fig. 4b.  

Fig. 4b is presented according to different boundary conditions. As can be seen, the critical load results at a variety of 
boundary conditions increases with an increased l parameter as compared with the case in which this impact is disregarded 
(l=0). According to Fig. 4b, the highest critical load is obtained at the CFCF boundary condition and the lowest one is obtained 
at the SFSF boundary condition. In conclusion, the impact of the length scale parameter on the boundary condition is much 
higher than its impact on other parameters. According to Fig. 4b, a thicker core exhibits higher impact force.  

 
Fig. 3a. The effect of the load direction versus wave numbers on two thickness for the core (β=Lx/Ly=1, l=2h, Lx=15h, SSSS, Epoxy, η=0) 

 
Fig. 3b. The effect of the load direction versus wave numbers on the rectangular plate (β=2, T=1, l=2h, Lx=15h, SSSS, Epoxy, η=0) 

Fig. 5 indicates changes in the sandwich panel by using two core materials. This is obvious that a stronger core increases 
the critical load. However, investigating the graph indicates that with h>0.08µm thickness, the graph line shows a steep upward 
trend. This increasing level occurs in the graph of both cores but Lx=20h. In fact, the increase in the length and the width of 
high thickness plates provides higher critical loads. 

In order to determine the impact of the length scale parameter (l) on buckling results, Fig. 6 is provided. To this aim, two 
boundary conditions of CCCC and SSSS with two loading modes are investigated. As the results indicate, the critical load 
value at CCCC boundary condition is higher than SSSS value. When we disregard the impact of the length scale, the impact of 
the loading and the boundary condition type is insignificant at larger T values, but the increased length parameter results in 
higher difference between any loading type results at two boundary conditions. This can be inferred from the difference 
between the results of CCCC that η=0 and SSSS, η=0.5 at l*>7. 
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Fig. 4a. The length scale parameter versus the thickness (β=1, T=t1/t2, Lx=20h, η=0, k1=k2=1, l*=l/h, m=n=1, SSSS, Epoxy) 

 

 
Fig. 4b. Length scale parameter versus boundary conditions (β=1, T=0.1, Lx=20h, η=0, k1=k2=1, l*=l/h, m=n=1, Epoxy) 

 
Fig. 5. Variation of the panel thickness versus various core materials (β=1, η=1, Lx=15h, k1=k2=1, l=0.5h, m=n=1, CFCF) 

 

In Fig. 7, the changes in the ratio of the face thickness to the core are investigated when the core thickness is assumed as 
variable against two boundary conditions. The results are obtained where the core is made of aluminum alloy and sandwich 
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panel has a lower thickness (Lx=20h). As the Figure indicates, the critical load decreases when core thickness value 
approaches to the face thickness value; moreover, the difference in the results is insignificant at two boundary conditions of 
SSSS and SFSF. In fact, the impact of the core thickness on the boundary condition is obvious. Therefore, the impact of the 
core thickness in critical load results is higher than those of the loading type as well as the boundary condition. 

 
 

Fig. 6. Variation of the length scale parameter versus the loading type on the critical load in various boundary conditions (β=1, Lx=20h, 
k1=k2=1, T=0.1, l*=l/h, m=n=1, Epoxy) 

 

 
 

Fig. 7. The effect of the loading type on the critical load in various boundary conditions (β=1, Lx=20h, k1=k2=1, l=h, m=n=1, Al) 
 

   The impact of loading types on the sandwich panel with the thickness change of the panel at two boundary conditions of 
CFCF and SSSS are investigated in figure 8a and 8b, respectively. To this aim, the Epoxy for the core in the first Figure and 
the aluminum alloy in the second figure are used; however, the thicker panel is used in the second figure. As can be seen, at 
CFCF boundary condition, critical load changes are more irregular compared with those of SSSS boundary condition. In fact, 
at CFCF boundary condition within the range of 10<h<20 nm, the highest irregularity is observed in the graph. The direct 
effect of thickness on the length scale parameter in the formulation of the modified couple stress theory is observed. As a 
matter of fact, as it is known, when returning to the Eringen nonlocal theory in which the small scale is directly related to the 
length of the plate, the couple stress theory is dependent on the thickness of the plate. The second reason is the unforeseen 
behavior of free edges after deformation which leads to the irregular curve. In fact, this boundary condition includes erratic 
outcomes. 
   Given the loading type, this is clear that in the case of a linear and nonuniform triangular loading, the highest critical load 
will be obtained. In addition, when loading is considered as a hyperbolic function, the critical load has the lowest value. In fact, 
in linear loading, as the in-plane load gets farther from the plate center, the critical load will increase. A possible reason can be 
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the combination of the in-plane torsion to the in-plane pressure. Consequently, the pressure decreases as the load center 
distances from the plate center in x and y directions and it is substituted by the in-plane torsion while the plate buckles as it 
twists. Clearly, a higher in-plane torsional force is needed to move the plate into the bucking region. 
 

 
 

Fig. 8a. The effect of various loading versus panel thickness on critical load (β=1, Lx=15h, k1=k2=1, l=0.5h, m=n=1, CFCF, Epoxy) 
 

 
 
Fig. 8b. The effect of various loadings versus the panel thickness on the critical load (β=1, Lx=10h, k1=k2=1, l=0.5h, m=n=1, SSSS, Al) 
 

The thickness change of t2 against the change in β parameter is shown in Fig. 9. To this aim, the boundary condition of 
CFCF and the Epoxy for the core are applied. As can be seen, the increase in β results in decreased critical load. The critical 
load amount decreases more slowly from β =5 onward, and the highest slope of graph is as 1<β<3 in which the critical load 
slope is very steep. 
   In order to investigate the impact of increasing the thickness, layers of the sandwich panel of Fig. 10 are investigated. The 
graph indicates that the impact of an increase in the core thickness is higher than that of the faces thickness. As the core gets 
thicker, the impact will be higher than the factor t2/t1=1.5. In fact, according to the Figure, the impact of the core thickness on 
increasing the plate's resistance against in-plane loads is higher than that of the face when the face materials have a higher 
strength. The reason probably is that, by increasing the core thickness, faces will have a greater distance from the plate center 
in z direction, and their moment resistance increases the strength of the sandwich plate.  
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Fig. 9. Variation of the aspect ratio versus the core thickness on the critical load (Ly=15h, l=h, η=1, k1=k2=1, CFCF, Epoxy) 

 

 
Fig. 10. Variation of the core thickness versus the face thickness (l=h, Lx=15h, η=1, k1=k2=1, SSSS, Epoxy) 

5. Conclusion 

  This study investigated the buckling of micro/nano graphene-coated sandwich panels. For this purpose, the simplified first 
order shear deformation theory was employed to obtain the governing equations by taking into account the Von-Karman 
nonlinear strains. The impact of the small scale was investigated by using the modified couple stress theory. Moreover, the 
exact solution was used to extract the results by changing various parameters. In conclusion, some of the important results 
achieved from the present study are as follows: 
 The maximum critical load value is at the CFCF boundary condition and the minimum is at the SFSF boundary condition. 
 The impact of the core thickness increase on increasing the value of the critical load is higher if the face has higher 

strength even if the core is soft and with a low strength. It means that if the face material is strong, it increases the plate 
strength against in-plane loads and a stronger core is not required. 
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