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Abstract 

In the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the 

in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and 

its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order 

shear deformation theory (FSDT) such as needless of shear correction factor, containing less number of 

unknowns than the existing FSDT and strong similarities with the classical plate theory (CPT). The composite 

nanoplate consisted of BaTiO3-CoFe2O4, a kind of material by which coupling between piezoelectric 

and piezomagnetic in nanosize was established. The plate is surrounded by a motionless and stationary 

matrix that is embedded in a hygrothermal surround in order to keep it more stable, and to take into 

consideration the influences of the moisture and temperature on the plate’s mechanical behavior. The 

governing equilibrium equations for the smart composite plate have been formulated using the higher-

order nonlocal strain gradient theory within which both stress nonlocality and second strain gradient 

size-dependent terms are taken into account by using three independent length scale parameters. The 

extracted equations are solved by utilizing the analytical approaches by which numerical results are 
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obtained with various boundary conditions. In order to evaluate the proposed theory and methods of 

solution, the outcomes in terms of critical buckling loads are compared with those from several 

available well-known references. Finally, after determining the accuracy of the results of the new plate 

theory, several parameters are investigated to show the influences of material properties of the ceramic 

composite nanoplate on the critical buckling loads. 

Keywords: New first-order shear deformation theory; Piezo-magnetoelectric composite nanoplate; 

Higher-order nonlocal strain gradient theory; Critical buckling load 

 

1. Introduction 

The recognition of smart composite nanoceramics in material science and engineering applications in 

the last few years has been one of the most important achievements by researchers all over the world. 

The importance of smart ceramics such as piezoelectric and magneto-electro-thermal elastic ceramics in 

the development of advanced precise structures in material science and engineering technologies would 

be clearer when noting that access to High Tech in all areas without the use of a piece of smart ceramics 

in its original structures has not been possible before. The existence of electrical, electronic, chemical, 

mechanical, and magnetic properties of these materials have made them more and more widespread 

tendency in a wide range of applications as they not only transformed electronics, optics, and 

magnetism but also significantly changed their applications, resulting in constructing the small-scale 

devices with self-controlling and self-monitoring capabilities.  

Among the multi-ferroic composites nanoceramics, the BaTiO3 including ferroelectric with large 

piezoelectric effects and CoFe2O4 consisting ferromagnetic with large magnetostriction showed an 

effective and possible magneto-electric conversion with regards to the electrically/magnetically fields 

which led to solid deformation [1]. They have become a single composite material with both phases 

including magnetic and electric fields. This kind of material is interesting due to its capability to control 

the magnetization (or magnetic polarization) by an electric field or a magnetic one, respectively [2-3]. 

The coupling influences enabled the use of a multi-ferroic composite potential in electronics chips, 

transducers, capacitors and electromagnetic filters [4-5]. In order to produce such a smart composite 
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material, the BaTiO3 powder was mixed with CoFe2O4 powder and then they were sintered by common 

ceramic processing to create the BaTiO3-CoFe2O4 [6-10]. 

Discussions of mechanical behavior of smart piezo-magnetoelectric composite nanoplates (PMEN) 

have been intensively presented in the past investigations, especially on the basis of the lower-order 

theories such as nonlocal elasticity theory and strain gradient theories. Ke et al. [11-12] studied the 

nonlinear frequencies and also post-buckling of nonlocal moderately thick piezoelectric nanobeams 

subjected to electro-thermo-elastic loads. Jiang and Yan [13] established the stability and vibration of a 

nano ferroelectric plate by considering surface influences. The vibration of a non-homogeneous shell 

placed in a piezoelectric substrate was reported by Fang and Zhu [14]; in this study, nonlinear strains 

were embedded in shell theory and a numerical procedure was deployed in the equations in order to 

solve the simple edge condition. Fang et al. [15] utilized the surface energy influence on nonlinear 

frequencies of a piezoelectric nanoshells by considering orthotropic behavior. Jamalpoor et al. [16] 

considered biaxial stability and vibrations of a bi-layer electro/magneto nanosystem resting on a 

viscoelastic foundation using Eringen’s nonlocal continuum theory on the basis of Kirchhoff′s 

hypothesis. Gholami and Ansari [17] studied the buckling and post-buckling behaviour of a rectangular 

PMEN plate based on a higher-order shear deformation theory. They used Parabolic, Trigonometric, 

Hyperbolic and Exponential shear deformable theories with various edge conditions and the nonlocal 

continuum theory was used in order to consider the influences of nanoscale on the nonlinear post-

buckling behaviour of thick and moderately thick rectangular PMEN subjected to the compressive in-

plane loads. Arefi and Zenkour [18] investigated a PMEN plate under frequency and dynamic 

conditions and had a viscoelastic matrix under the nanoplate. In this study, the constitutive equations 

and boundary conditions were derived by classical continuum theory of plate, and Eringen’s nonlocal 

differential term has been implemented into the equations in order to examine the impact of the 

nanoscale on the vibration behavior of the plate. Sahmani and Aghdam [19] presented the post-buckling 

and buckling of a magneto-electric composite nanoshell by combining the classical plate theory and 

lower-order nonlocal strain gradient model; a perturbation method was considered to solve the related 
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equations. Gholami et al. [20] studied thermo-electro-mechanical vibration of post-buckled 

piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. The governing differential 

equations were discretized by using the general differential quadrature (GDQ) method and then were 

solved by applying Newton-Raphson technique. The most important results of this investigation showed 

that the dimensionless natural frequencies in the post-buckling domain related to the increase of positive 

voltages and the decrease of negative voltages as the magnitude of voltage gets larger, and this was 

contrary to those happened in pre-buckling domain. Ansari et al. [21] analyzed the size-dependent 

nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based 

upon the nonlocal elasticity theory. Whilst Sadeghi et al. [22] employed a third-order shear deformable 

theory for nonlinear forced vibration of nonlocal magneto-electro-thermo elastic nanobeams. They used 

nonlocal elasticity theory of Eringen and applied the GDQ for discretising the governing equations. 

Thereafter, using a Galerkin-based numerical technique, a set of nonlinear governing equations was 

reduced into a time varying set of ordinary differential equations of the Duffing type. The most 

important outcomes were presented that the natural frequency of nanobeams increased, whereas the 

amplitude peak decreased when the initial external magnetic potential became larger. Ansari and 

Gholami [23] considered a nonlocal nonlinear first-order shear deformable beam model for the post-

buckling analysis of magneto-electro-thermo-elastic (METE) nanobeams. A numerical solution 

procedure based on the GDQ was utilized and the Eringen’s nonlocal elasticity theory was applied. The 

results revealed that the critical buckling load and post-buckling load-carrying capacity of METE 

nanobeams decreased when there was an increase in the non-dimensional nonlocal parameter or when 

the temperature raised. Gholami et al. [24] presented a study on size-dependent higher-order shear 

deformable plate model for magneto-electro-thermo-elastic rectangular nanoplates by adopting the 

nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to 

consider the effects of transverse shear deformation and rotary inertia. They investigated parabolic, 

trigonometric, hyperbolic and exponential shear deformation plate theories. The results of simply-

supported nanoplates were obtained based upon using the Navier’s solution. Malikan [25] studied 

temperature influences on the shear stability of a piezoelectric nanoplate by applying a simple first-
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order shear deformation theory for various boundary conditions. Ansari and Gholami [26] investigated a 

nonlocal nonlinear first-order shear deformable plate model for investigating the buckling and post-

buckling of magneto-electro-thermo elastic nanoplates under magneto-electro-thermo-mechanical 

loadings. The nonlocal elasticity theory within the framework of the first-order shear deformation plate 

theory was used in conjunction with the generalized differential quadrature method. Ansari and 

Gholami [27] considered the small scale effect together with the influences of transverse shear 

deformation, rotary inertia and the magneto-electro-thermo-mechanical coupling, the linear free 

vibration of magneto-electro-thermo-elastic rectangular nanoplates with various edge supports in pre- 

and post-buckled states. The nonlinear governing equations and the corresponding boundary conditions 

were derived using Hamilton’s principle which were then discretized via the GDQ method. In addition, 

Ansari and Gholami [28] studied size-dependent geometrically nonlinear free vibration of magneto-

electro-thermo elastic nanoplates using the nonlocal elasticity theory. The mathematical formulation 

was developed based on the first-order shear deformation plate theory, von Kármán-type of kinematic 

nonlinearity and nonlocal elasticity theory. The GDQ method was utilized to reduce the nonlinear 

partial differential equations to a system of time-dependent nonlinear ordinary differential equations. 

Afterwards, the numerical Galerkin’s method and periodic time differential operators were employed to 

compute the nonlinear frequency versus the amplitude for the nanoplates.  

It is now clear that the lower-order nonlocal theories such as Eringen’s nonlocal elasticity theory have 

been widely employed for studying nanoscale materials. However, the ability of nonlocal elasticity 

theory in determining the size-dependence of nanostructures is limited due to that the strain gradient 

elasticity is not included in the energy density in Eringen’s formulation [29] and the fact is that it could 

be only possible to predict the interaction effects of atoms in a domain by using the stress gradient 

parameter. Unlike the nonlocal elasticity theory, the strain gradient theory enabled including the strain 

gradient parameter effect by utilizing an additional factor called strain gradient length scale (SGLS) 

parameter. On the other hand, the modified couple stress theories are forms of strain gradient theories 

but have been rarely used for nanoscale materials as they only included first strain gradient. In fact, the 
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couple stress theories are weak in examining nanomaterials due to the lack of surface nonlocality in the 

theory [30]. Surface nonlocality could be defined with second gradient parameters due to physical 

explanation of Laplacian and the couple stress theories just represented the material hardness increased 

with decreasing material size from macro to micro [25]. Micro and nano tests have shown that the 

material hardness increased with decreasing size [31-33]. Generally, the classical continuum theory is 

not able to predict the size dependency since it does not possess an intrinsic material length-scale. As an 

explicit definition of Laplacian operator, the Laplacian term in size-dependent theories means that the 

potential energy-density value at a reference point is equal to the average energy of all the points around 

it. In two dimensions, the around points are considered as a circle with radius R around the reference 

point. Using this assumption, it can be approved that both stresses and strains are in an average form of 

domain for a reference point in the nonlocal strain gradient theory. The major aim for using nonlocal 

strain gradient theory is to synthesize both second stress and strain gradient parameters in a unique 

theory. This might result in stronger nonlocality.  

Since the deformations of nanostructures are complex, applying continuum models with lower-order 

nonlocal deformation mechanism might be uncertain in order to correctly obtain the mechanical 

characteristics. The higher-order nonlocal strain gradient theory contained higher and lower-order 

nonlocal stresses and strains [34]. The higher-order nonlocal stresses are significant for analysing large 

deformations so there has been an urgent need to consider them. Therefore, in this research, the main 

motivation is to use the higher-order nonlocal strain gradient theory to differentiate between higher and 

lower-order stresses in some situations of the analysis.  

Since the nano materials are size-dependent ones, there are some additional parameters in constitutive 

equations to take into account their fundamental mechanical behavior in nanoscale when continuum 

models are used. The higher-order nonlocal strain gradient theory used in the current research to 

consider a new theory for nanomaterials. There are some interior parameters which could be appeared 

in the mathematical presentation of the results. In light of the fact that these determinative parameters 

could help predict mechanical behavior of nanostructures without spending high costs on the model in 
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experimental’s tests, so their adaptable values have to be used. However, there have never been such 

values available, although some researchers found close amounts [35-38]. In addition, the use of 

additional physical parameters in the formulation of the any theory usually leads to difficulties in 

determining suitable values for these parameters, e.g. SGLS parameter. This parameter showed effect of 

small size and could be taken values in between zero to unspecified positive micro/nano values which 

have to be determined in laboratory for various nanomaterials under many situations. It is known that 

for nanomaterials it has not been determined and there are only few materials for which the parameter is 

given based on experimental’s testing [35-38]. Therefore, the parameter could be chosen as a non-

dimensional changeable factor so that it could be applicable in the theory development [25]. Another 

parameter in the theory is nonlocal parameter which also defines the small size effect and depends on 

the crystal structure in lattice dynamics and the nature of physics of the material [39-43]. It is clear that 

determining values for such a parameter by either a laboratory work or in a computer simulation has 

many difficulties and high costs. Therefore, it could be possible by determining a good range of values 

for the parameter [42-43]. 

Most of the industrial environments are under humidity and heat conditions in which the materials or 

pieces of machines are confronted by critical conditions which lead to unpredictable damages. 

Therefore, mechanical stress induced in such conditions should be analyzed in order to take into 

account the impacts of moisture and temperature on the stress behavior. By placing the BaTiO3-

CoFe2O4 nanoceramics plate in a hygrothermal environment, it could be possible to gain more realistic 

outcomes [44]. 

In this paper, a new plate theory developed by reducing the unknown variables from a regenerated first-

order shear deformation theory is presented. A ceramic composite nanoplate using BaTiO3-CoFe2O4 is 

considered to be in a hygrothermal environment and is coupled by a polymer foundation. The nanoplate 

is subjected to biaxial compression, and an electric voltage and a magnetic potential are exerted on the 

model. Both stress and strain gradient parameters for the nano model are examined by using higher-

order nonlocal strain gradient (HONSG) theory which could result in new outcomes. Furthermore, 
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analytic approaches are employed to solve the critical buckling equations by assuming several boundary 

conditions for the nanoceramics plate. 

2. Formulation 

2.1 One Variable First-Order Shear Deformation Theory (OVFSDT) 

Fig. 1 shows an idealized and continuum PMEN presented in this article. The nanoplate is rested on the 

two-parameter foundation exposed to the outer in-plane mechanical load (N0) as well as the electric 

voltage φ0, and magnetic potential ψ0 between upper and bottom surfaces in the hygrothermal 

surrounds. The nanoplate has the length Lx, width Ly and thickness h associated with the x, y and z-axes 

of the right-hand coordinate system, respectively. 

Plates have been considered as important elements in engineering structures and thus have been paid 

significant attention by designers and researchers around the world. The extensively wide applications 

of the plates in several industries including aerospace, shipbuilding, reactors, constructions and other 

professions in recent years has required accurate approaches to analysis their mechanical behavior and 

begun to seriously push the boundaries of available studied methods. Heretofore, many methods have 

been presented for investigation of the plates. These methods included three-dimensional continuum 

theories and some two-dimensional procedures (the assumption that σz=0 has been used). Although 

three-dimensional elasticity analysis has confronted with complexities and difficulties, it has been so far 

considered as and the most realistic and precise one. The simplest theory for analysis of the plates is the 

classical hypothesis which is based on Kirchhoff’s assumptions in which the influences of transverse 

shear deformation are not taken into account. In this theory, it is supposed that each planar or 

perpendicular sections to the mid-plane remained perpendicular on the middle surfaces during loading. 

This is an appropriate theory in order to study thin plates; however, due to the ignorance of the shear 

and transverse strains along the thickness, this theory is accompanied with errors when using it for 

moderately thick and thick plates. In order to reduce the error in the analysis of relatively thick plates, 

another theory known as shear deformation theory is introduced. In this theory, the transverse shear 

effects are taken into consideration. With regard to the number of sentences placed in the expansion of 
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the displacement field along the thickness, the order of the theory (first, second, etc.) is determined. 

Although the shear deformation theories in the analysis of thick plates have shown capturing the 

transverse shear effects and consequently reasonable results, they are still far from obtaining exact 

results due to the non-consideration of the effect of transverse strain. The first-order of the shear theory 

called Mindlin’s is accompanied with a serious error (the assumption of constant value for shear stress 

along the thickness of plates from upper to bottom surfaces) and for that reason the shear correction 

parameter has been used. This means that the assumption of constant shear stress through the entire 

thickness is not always correct. To overcome this deficiency and maximize the accuracy for plate 

analysis, a new first-order shear deformation theory (S-FSDT) has been introduced. First, according to 

the first-order theory (FSDT), displacement field of the plate points could be defined as follows [45]: 

( )
( )
( )

( ) ( )
( ) ( )
( )

, , , ,

, , , ,

, , ,

U x y z u x y z x y

V x y z v x y z x y

W x y z w x y

φ

ψ

   + 
   

= +   
   
   

                                                                                                  (1a-c) 

 

Fig. 1. Configuration of BaTiO3-CoFe2O4 composite nanoceramics plate in a hygrothermal environment 

In Eqs. (1), the vector quantities of the neutral axis in the directions of x, y and z are u, v and w, 

respectively. Furthermore, parameters φ  and ψ are used for defining the twisting of plate’s elements 

around y and x-axis, respectively. First of all, the S-FSDT theory is reconsidered in which it is supposed 

that the deflection parameter could be expressed as follows [46-50]: 
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( ) ( ) ( ), , ,b sw x y w x y w x y= +                                                                                                                  (2) 

In which the wb (x, y) and ws (x, y) are the bending and shear components of deflection, respectively. On 

the other hand, the rotation parameters are expressed as follows: 

( )

( )

,

,

b

b

w x y
x

w x y
y

 
φ
ψ

 
    =  

∂


 

−
∂

∂
∂

− 


                                                                                                                          (3a-b) 

By replacing Eqs. (2-3) into Eqs. (1) the displacement field of the simple first-order shear deformation 

theory (S-FSDT) is rewritten [47-50]: 

( )
( )
( )

( ) ( )

( ) ( )

( ) ( )

,
,

,
, ,

, , ,

, ,
, ,

b

b

b s

U

w x

x  y  z

V x  y  z

y
u x y z

x
w x y

v x y z
y

W x y z
w x y w x y

 ∂ 
− ∂  

   ∂
= −   

∂   
   +

 
 

                                                                                            (4a-c) 

Using b sw w w= + might not be conceptual. Therefore, the S-FSDT will be obtained based on one 

variable in the following: 

( )
( )
( )

( ) ( )

( ) ( )

( )

,

, ,

,

,

,
,

, ,
, '

,

b

b

b

w x y
u x y z

x
w x y

v x

U x  y  z

V x y z
y

  

W x y z
w x

  z

y W

y

 ∂ 
− ∂  

   ∂
= −   

∂   
   +

 
 

                                                                                            (5a-c) 

In which W' is an indirect impact of shear deflection which would be determined. 

Here, by substituting Eqs. (4) into nonlinear strains of Lagrangian, the strain field of S-FSDT is 

obtained as follows: 
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2 22

2

2 22

2

2

1 1
2 2

1 1
2 2

2

b b s b s
xx

b b s b s
yy

s
yz

s
xz

b b s b s
xy

w w w w wz
x x x x x

w w w w wz
y y y y y

w
y

w
x

w w w w wz
x y x x y y

ε

ε

γ

γ

γ

 ∂ ∂ ∂ ∂ ∂   = − + + +    ∂ ∂ ∂ ∂ ∂   
    ∂ ∂ ∂ ∂ ∂ = − + + +    ∂ ∂ ∂ ∂ ∂   

∂ =
∂

 ∂
=

∂
  ∂ ∂ ∂ ∂ ∂ = − + + +   ∂ ∂ ∂ ∂ ∂ ∂  


                                                                              (6a-e) 

By substituting Eqs. (6) into Hook′s law, the stress field could be calculated as follows: 

 

xx xx

yy yy

yz yzijk

xz xz

xy xy

Q

σ ε
σ ε
σ γ
σ γ
σ γ

   
   
       =    
   
   
      

                                                                                                                           (7a-e) 

In which Qijk is the stiffness matrix for the material. After calculating Eqs. (7) from Eqs. (6) the stresses 

could be harvested and then by substituting Eqs. (7) into Eqs. (8) the S-FSDT stress resultants are now 

presented as follows: 
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 
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σ
σ

σ
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h

h
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−










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 
 
 

∫                                                                 (8a-h) 

Here, the fourth equation of FSDT’s governing equations [45] is adopted since it was simple to 

calculate ws (based on wb): 

0 xyx
x

MM Q
x y

∂∂
+ − =

∂ ∂
                                                                                                                             (9) 

Now by substituting Eqs. (8) on the stress resultants of Eq. (9) to have: 

( )
3 3

11 12 66 443 2 0 b b sw w wD D D A
xx x y

∂ ∂ ∂
+ + − =

∂∂ ∂ ∂
                                                                                           (10) 



By integrating Eq. (10) with respect to x, simplifying and also ignoring the integral constants, the shear 

deflection could be obtained as follows: 

2 2

2 2' b b
s

w ww W A B
x y

∂ ∂
= = +

∂ ∂
                                                                                                                    (11) 

In which, terms A and B are expressed as follows: 

12 6611

44 44
,   D DDA B

A A
+

= =                                                                                                                     (12a-b) 

Afterwards, the OVFSDT can be achieved in the following equations: 
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  z

V z
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W x y z
w x y w x y

w x y A B
x y

x  y  z

 ∂ −
 ∂     ∂ = = −   

∂   
   ∂ ∂ + +
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                                 (13a-c) 

By using the OVFSDT field which was mentioned in Eqs. (13), the impact of the shear deflection was 

embedded in the displacement field based on the bending deflection rather than using shear correction 

factor or ws variant. Afterwards, by using Lagrangian strains and implementing the von Kármán strains, 

the OVFSDT strains field are expressed as follows: 
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                                       (14a-e) 

Regarding Hamilton’s principle, the variation of total potential energy in whole domain of the plate (δV) 

is made available:  

0V Sδ δ δ= + Ω =                                                                                                                                     (15) 

In which S is the strain energy and Ω is works which are done by external forces.  
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The potential energy of external loads could be defined as follows [25, 45]: 

( )2
0 0 00 0

y xL L

G wk w k w w dxdyδ δΩ = ∇ −∫ ∫                                                                                                    (16) 

where kG and kW denote shear and stiffness modules of the elastic matrix [45]. The strain energy by 

kronecker delta is calculated in the equation below: 

( ) 0ij ij k k k k
v

S D E B H dVδ σ δε δ δ= − − =∫∫∫                                                                                             (17) 

where , , ,ij ij k k k  D , E  Bσ ε  and kH  are stress tensor, strain tensor, electric displacement, electric field, 

magnetic displacement and magnetic field respectively, and are defined as follows [16-18, 27, 47, 51-

52]. 

ij ijkl kl kij k kij k ij ij=C e E q H T Hσ ε λ χ− − − ∆ − ∆                                                                                          (18) 

i ikl kl ij k ij k iD =e E d H p Tε κ+ + + ∆                                                                                                         (19) 

i ikl kl ij k ij k iB =q d E H p Tε η+ + + ∆                                                                                                         (20) 

In which , , ,ijkl k ij k ij ij ij ij iC , e , q   d , pκ λ  and ∆H are elastic constant, piezoelectric constant, 

piezomagnetic constant, dielectric constant, electro-magnetic coupling, thermal moduli, pyroelectric 

constant and moisture concentration percentage, respectively. The tensors in Eqs. (18-20) are expanded 

in the following equations: 
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      (21a-d) 
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                                                         (22a-c) 
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                                                                                                                        (23a-j) 
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p p
p C ep = p  ,   ,  , ep C Cp Cp

λ χ
λ λ χ χλ

          = = − = +     +         

                                                    (24a-c) 

Regarding electro-magneto conditions, electric and magnetic potentials could be defined as linear 

functions in the following [16-18, 27, 47, 51-52].  

02 ( , , ) cos  ( , ) zzx y z x y
h h

ϕπ Φ = − Φ + 
 

                                                                                                (25a) 

02 ( , , ) cos  ( , ) zzx y z x y
h h

ψπ Ψ = − Ψ + 
 

                                                                                              (25b) 

The magnetic and electric functions in the mid-plane of the plate are  (x,y)Ψ  and  (x,y)Φ , the magnetic 

potential and electric voltage are 0ψ and 0ϕ , respectively. Thereafter, the piezo-magnetoelectric field 

components could be expressed as follows: 
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   ∂Φ∂Φ  
−    ∂∂       

     ∂Φ ∂Φ     = = − =      ∂ ∂      
        ∂Φ − Φ −   −   ∂    

                                                                               (26a-c) 
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     ∂Ψ ∂Ψ     = = − =      ∂ ∂      
        ∂Ψ − Ψ −   −   ∂    

                                                                             (27a-c) 

Applying the variational formulation (δV=0) the nonlinear governing equations are derived as follows: 
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∫                                               (28a-c) 

In which Ni, Mi, and Qi (i= x, y, xy) are nonlocal stress resultants, respectively [45]. Then, the electric 

and magnetic displacements are defined in the equations below [16-18, 27, 47, 51-52]: 
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                                   (30a-c) 

The coefficients in Eqs. (29-30) could be expressed as follows [16-18, 27, 47, 51-52]. 
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∫                                                                                                   (33a-d) 

The tensioning and flexural stiffness matrixes of the PMEN are expressed as follows: 
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= = = =∫ ∫                                                    (34a-b) 
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                                                                                                                         (35a-d) 



Here, the in-plane loads in pre-buckling conditions are described in the following equation: 

0
ij ij ij ij ij

Mech E Mag T HN N N N N N+ + + +     =                                                                                      (36) 

where , , , ,Mech E Mag T
ij ij ij ijN N N N and H

ijN are the in-plane mechanical, electric, magnetic, thermal and hygral 

loads which are expressed in the following equations below [16, 44, 47, 51]: 

,Mech Mech
x yN N N= −                                                                                                                                  (37a) 
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2.2 Higher-Order Nonlocal Strain Gradient Elasticity Theory (HONSG) 

It is clear that the length scales in Eringen’s nonlocal elasticity theory and the strain gradient theories 

(strain gradient and couple stress theories) represent two entirely different physical characteristics of 

materials at nanoscale. Therefore, there has been a serious need to apply both of the length scales into a 

single theory so that the true effect of the two length scales on the structural response could be assessed 

[53-55]. Nonlocal strain gradient theory opened a way to develop such a size-dependent theory for 

investigating the nanoplate’s behavior. According to this non-classical hypothesis the stress-gradient 

and strain-gradient parameters could be used together. In fact, by considering both second stress and 

strain gradient parameters there could be a strong nonlocality investigation for nanostructures. 

In the present paper, the higher-order size-dependent theory is considered in order to reveal the 

significance of higher-order length scale parameter in the aspect of the following equations [53-55]: 

2 2 2 2 2
1 0 1 01 1 1 1ij ijkl kl ijkl klC C lµ µ σ µ ε µ ε       − ∇∇ − ∇∇ = − ∇∇ − − ∇∇ ∇∇                                                      (38a) 
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2 2

0 0 1 1 2 2( ) , ( ) ,nm e a  nm e a  
x y

µ µ ∂ ∂
= = ∇∇ = +

∂ ∂
                                                                                       (38b) 

where μ0, μ1, and l are lower and higher-order stress nonlocality factors and SGLS parameter, 

respectively. e0 and e1 are nonlocal elasticity constants associated with the kinds of materials [45]. Also, 

a is an interior determined length regarding to intrinsic properties of the material such as lattice 

parameter, connection length of two atoms and etc. [45, 53-55]. As a matter of fact, these three small 

scale parameters are independent changeable factors for small scale effects which define the 

dependence of mechanical responses on the structure size. And using a single separate small scale 

parameter in size-dependent theories (Eringen’s nonlocal elasticity, couple stress and pure strain 

gradient theories) could not appropriately predict the wide range of small-scale phenomena behavior 

[56-57]. Therefore, a size-dependent theory with multiple length-scale parameters was necessary to 

capture the size effects of mechanical, electric and magnetic behavior of structures at nanoscale [58]. 

These parameters are directly related to internal properties of small size materials (granular distances, 

lattice parameter and many other properties [39, 59]). Moreover, a fixed value for these parameters are 

not always realistic because different problems could require different values.  

Eq. (38a) can be therefore converted into other forms of nonlocal theory:  

a) Eringen’s nonlocal elasticity theory (ENET) [60] (strong nonlocality considering second stress 

gradient parameter, that is suitable for nanostructures [59]). 

{ ( )2 2
1 00 1 ij ijkl kll Cµ µ σ ε= = → − ∇ =                                                                                                         (39) 

b) Strain gradient elasticity theory (considers the strain gradient parameter based on the first and 

second strain gradient parameters of Mindlin [61-62]). Noted that the couple stress theories are 

forms of strain gradient theories by taking the first strain gradient parameter of Mindlin [25, 47, 

63]. In couple stress theory the cell of the material can be interpreted as a molecule of a 

polymer, a crystallite of a polycrystal or a grain of a granular material [64-67]. In this theory, the 

unit cell is taken to be a parallelepiped in order to represent the unit cell of a crystal lattice. The 

potential energy-density is assumed to be a function of the strain and the curl of the strain 
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instead of the strain alone [64-67]. In the first strain gradient theory of Mindlin, the first gradient 

of the displacement enters the potential energy-density only in the symmetric form of strains. In 

fact, the potential energy-density depends on the gradient of the strain in addition to the strain 

itself [61-62]. 

{ ( )2 2
0 1 0 1ij ijkl klC lµ µ σ ε= = → = ± ∇                                                                                                       (40) 

It is now vivid that the nonlocal continuum mechanics has been treated with two different aproaches 

[68-69]; the integral nonlocality (Eq. (39)) [39-40, 59, 70] and the gradient elasticity theory (Eq. (40)) 

[71]. The strain gradient in Eq. (40) with negative sign was derived from the positive-definite 

deformation energy density, and this model of strain gradient is stable. However, the positive sign of the 

strain gradient term in the equation made this term destabilizing [72-73]. By consolidating Eqs. (38), the 

nonlocal strain gradient elasticity theory can be achieved in the equation below.  

c) Nonlocal strain gradient theory (LONSG)[74]: 

( ) ( )0 0 2 2 2 2
0 1

1 1

1 1ij ijkl kl
e a

C l
e a

µ
µ µ µ µ σ ε

µ

 = → = = → − ∇ = − ∇
=

                                                                 (41) 

By applying nonlocal strain gradient theory, the problem might have stronger nonlocality against cases 

a, b by having stress-gradient and strain-gradient as second gradient parameters. It was because stress 

and strain gradient tensors are coupled together in energy density of the nanoplate. Mathematically 

interpreted based on the Taylor series expansion, the strain gradient (second gradient of deformation) is 

reasonable to be included in energy density to characterize the size-dependent properties [58]. 

Here, using the HONSG theory the stress resultants could be derived as follows [55]: 

( )( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
1 0 1 01 1 1 1ij ijkl kl ijkl kl kij k kij k ij ij=C C l e E q H T Hµ µ σ µ ε µ ε λ χ− ∇ − ∇ − ∇ − − ∇ ∇ − − − ∆ − ∆     (42a) 

( )( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
1 0 1 01 1 1 1i ijkl kl ijkl kl ij k ij k iD =C C l E d H p Tµ µ µ ε µ ε κ− ∇ − ∇ − ∇ − − ∇ ∇ + + + ∆            (42b) 

( )( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
1 0 1 01 1 1 1i ijkl kl ijkl kl ij k ij k iB =C C l d E H p Tµ µ µ ε µ ε η− ∇ − ∇ − ∇ − − ∇ ∇ + + + ∆           (42c) 

The stress resultants in local forms are specified by the relations below [45, 75]: 

( )/2

/2
( , , ) , ,

h

x y xy x y xyh
N N N dzσ σ σ

−
= ∫                                                                                                     (43a)
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( )/2

/2
( , , ) , ,

h

x y xy x y xyh
M M M zdzσ σ σ

−
= ∫                                                                                                  (43b) 

( ) ( )/2

/2
, ,

h

x y xz yzh
Q Q dzσ σ

−
= ∫                                                                                                                   (43c) 

By using Eqs. (14) and Eqs. (43), the stress resultants could be obtained as follows: 
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                                                                                                                                                           (44a-h) 

Then, Eqs. (42) are used to rewrite the stress resultants in higher-order nonlocal (HON) forms: 

( )( ) ( ) ( )
2 2

2 2 2 2 2 4 2 2 2 2 2 2 0 0
0 1 0 1 1 0 11 12 31 312 21 1 1x

w w
M = l D D E F

x y
µ µ µ µ µ µ

 ∂ ∂ − + ∇ + ∇ − − ∇ − − ∇ ∇ + + Φ + Ψ    ∂ ∂ 
 

                                                                                                                                                              (45a) 

( )( ) ( ) ( )
2 2

2 2 2 2 2 4 2 2 2 2 2 2 0 0
0 1 0 1 1 0 21 22 31 312 21 1 1y

w w
M = l D D E F

x y
µ µ µ µ µ µ

 ∂ ∂ − + ∇ + ∇ − − ∇ − − ∇ ∇ + + Φ + Ψ    ∂ ∂ 
 

                                                                                                                                                              (45b) 



( )( ) ( ) ( )
2

2 2 2 2 2 4 2 2 2 2 2 2 0
0 1 0 1 1 0 661 1 1xy

w
M = l D

x y
µ µ µ µ µ µ

 ∂ − + ∇ + ∇ − − ∇ − − ∇ ∇     ∂ ∂ 
 

                                                                                                                                                              (45c) 

( )( ) ( ) ( )
3 3

2 2 2 2 2 4 2 2 2 2 2 2 0 0
0 1 0 1 1 0 44 15 153 21 1 1x

w w
Q = l H A B E F

x xx x y
µ µ µ µ µ µ

 ∂ ∂ ∂Φ ∂Ψ − + ∇ + ∇ − ∇ − − ∇ ∇ + − −    ∂ ∂∂ ∂ ∂ 
 

                                                                                                                                                              (45d) 

( )( ) ( ) ( )
3 3

2 2 2 2 2 4 2 2 2 2 2 2 0 0
0 1 0 1 1 0 44 15 152 31 1 1y

w w
Q = l H A B E F

y yx y y
µ µ µ µ µ µ

 ∂ ∂ ∂Φ ∂Ψ − + ∇ + ∇ − ∇ − − ∇ ∇ + − −    ∂ ∂∂ ∂ ∂ 
 

                                                                                                                                                              (45e) 
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( ) ( )

( ) ( )
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 ∂ ∂ ∂Φ ∂Ψ − ∇ − − ∇ ∇ + + +    ∂ ∂∂ ∂ ∂  
   ∂ ∂ ∂Φ ∂Ψ   − + ∇ + ∇ = − ∇ − − ∇ ∇ + + +      ∂ ∂∂ ∂ ∂   
  

− − ∇ − − ∇ ∇
2 2

0 0
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w wE E X Y
x y

 
 
 
 
 
 
 
  ∂ ∂  + − Φ − Ψ     ∂ ∂  

      (46a-c) 
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 ∂ ∂ ∂Φ ∂Ψ − ∇ − − ∇ ∇ + + +    ∂ ∂∂ ∂ ∂  
   ∂ ∂ ∂Φ ∂Ψ   − + ∇ + ∇ = − ∇ − − ∇ ∇ + + +      ∂ ∂∂ ∂ ∂   
  

− − ∇ − − ∇ ∇
2 2

0 0
31 31 33 442 2

w wF F Y Y
x y

 
 
 
 
 
 
 
  ∂ ∂  + − Φ − Ψ     ∂ ∂  

       (47a-c) 

Now, incorporating the Eqs. (37) and Eqs. (45-47) and then inserting them into Eqs. (28), the hygro-

thermo-electro-magneto-mechanical stability equations would be obtained. 

3. Analytical approaches 

3.1 Navier’s solution (A-I) 

In this subsection, the double series solution is employed in order to apply simple boundary condition 

and solve the stability equations. This method considers the dependency of displacement field of in-

plane coordinates as a set of harmonic sentences (sinusoidal series). This dependency had to be formed 

in such a way as to satisfy the essential boundary conditions (BCs).  
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Mathematically, the differential equations are of order 2n, the conditions of order 0 to n-1 are essential 

and the conditions of order n to 2n-1 are natural. The essential BCs are imposed directly in the solution 

imposed by the trial functions, which eventually are required to satisfy them. The natural BCs are 

imposed in the right hand side of the resulting system Kij×Uj=Fij (in which K is matrix of coefficients, F 

is vector of forces and U is set of displacements) and they are not necessarily satisfied by the trial 

functions. Indeed, they cannot be prescribed and with the use of the essential BCs, these are not needed 

in the solution [76]. Here, an investigation on the order of higher-order nonlocal strain gradient based-

stability equations shows the conditions with orders from zero to four are essential BCs to solve present 

equations (order=10, n=5).  

For bending moments Mx and My, the order is ten (Eqs. (45)) and would be natural BCs. To the best of 

the authors' knowledge, for some numerical solutions such as the differential quadrature method (DQM) 

in some special cases, there have been required to have some additional BCs which should be directly 

conjugated to the equations because of equalizing the number of unknowns with the number of 

equations [77]. The Navier’s method assumes the solution as a sum of mode shapes (Xm and Yn) of the 

plate which automatically satisfies all the essential BCs (Eqs. (48)). However, the BCs in Eqs. 50 are 

stayed as natural BCs due to their orders and the Navier’s approach cannot directly satisfy them for the 

OVFSDT. In conclusion, the natural BCs in some special cases can never be exactly satisfied by 

solutions with variables separable such as Navier’s, Ritz’s and or others [78]. 

First of all, the essential and natural BCs would be listed in the following sections: 

A) Essential BCs according to higher-order nonlocal strain gradient-based OVFSDT governing 

equations:  

Simply-supported: 

Ф (0, y) = Ф (Lx, y) = 0; Ψ (0, y) = Ψ (Lx, y) = 0; w0 (0, y) = w0 (Lx, y) = 0                                       (48a) 

Ф (x, 0) = Ф (x, Ly) = 0; Ψ (x, 0) = Ψ (x, Ly) = 0; w0 (x, 0) = w0 (x, Ly) = 0                                       (48b) 

Clamped: 

Ф (0, y) = Ф (Lx, y) = 0; Ψ (0, y) = Ψ (Lx, y) = 0; w0 (0, y) = w0 (Lx, y) = 0                                       (49a) 

Ф (x, 0) = Ф (x, Ly) = 0; Ψ (x, 0) = Ψ (x, Ly) = 0; w0 (x, 0) = w0 (x, Ly) = 0                                       (49b) 
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B) Natural BCs according to higher-order nonlocal strain gradient-based OVFSDT governing 

equations:  

Simply-supported: 

Mx (x, 0) = Mx (x, Ly) = 0                                                                                                                    (50a) 

My (0, y) = My (Lx, y) = 0                                                                                                                    (50b) 

Free: 

Mx (x, 0) = Mx (x, Ly) = 0                                                                                                                    (51a) 

My (0, y) = My (Lx, y) = 0                                                                                                                    (51b) 

Mxy (x, 0) = Mxy (x, Ly) = 0                                                                                                                (51c) 

Mxy (0, y) = Mxy (Lx, y) = 0                                                                                                                (51d) 

Qx (x, 0) = Qx (x, Ly) = 0                                                                                                                     (51e) 

Qy (0, y) = Qy (Lx, y) = 0                                                                                                                     (51f) 

And also the local BCs computed from calculus of variations are presented as follows:  

2 2

2 2

5 5 3 5 30
2 20 0 0 0 0 0

5 4 3 2 3 2

2

2 2 2

y y y xy

Lx

y

Q Q M M
A B

y xx y
dx

w w w w w wN B A B AB A
y y x y y x y x y

 ∂ ∂ ∂ ∂
+ + + + 

∂ ∂∂ ∂ 
  ∂ ∂ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∫                                   (52a) 

2 2
0

2 2

5 5 3 5 30
2 20 0 0 0 0 0

5 4 3 3 2 22 2 2

x x x
xy

Ly

x

wQ Q MA B N
x yx y

dy
w w w w w wN A B A AB B
x x x y x x y x y

 ∂∂ ∂ ∂
+ + + + 

∂ ∂∂ ∂ 
  ∂ ∂ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∫                                  (52b) 

Here, the displacement field and potential functions utilizing Navier’s approach can be expanded in the 

following forms [47]: 

( ) ( )0 0
1 1

mn m n
m n

w W X x Y y
∞ ∞

= =

=∑∑                                                                                                                 (53a) 

( ) ( )0
1 1

mn m n
m n

X x Y y
∞ ∞

= =

Φ = Φ∑∑                                                                                                                  (53b) 

( ) ( )0
1 1

mn m n
m n

X x Y y
∞ ∞

= =

Ψ = Ψ∑∑                                                                                                                  (53c) 
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In which W0mn, Ф0mn, and Ψ0mn are the displacement and potentials unknown variables. The mode 

shapes to satisfy essential simply-supported boundary conditions are selected as follows [54]: 

( ) sin( )m
x

mX x x
L
π

=                                                                                                                                (54a) 

( ) sin( )n
y

nY y y
L
π

=                                                                                                                                  (54b) 

Functions Xm (x) and Yn (y) represent ideally the buckled shape when the number of half-waves in x and 

y directions are m and n. Substituting Eqs. (54) into stability equations, the algebraic equations can be 

obtained: 

011 12 13

21 22 23 0

31 32 33 0

0
mn

mn

mn

WK K K
K K K
K K K

  
  Φ =  
  Ψ  

                                                                                                                  (55) 

The coefficients Kij (i, j=1, 2, 3) are extracted in the Appendix A. 

3.2 Galerkin’s integral method (A-II) 

Another analytical solution is considered to implement various boundary conditions in the Table 1 [25, 

47]. 

Table 1. Various admissible and suitable functions by which all of the essential boundary conditions 

could be satisfied [25, 47].  

 Boundary conditions The function Xm (x) and Yn (y) 

Notation x=0 y=0 x=Lx y=Ly Xm (x) Yn (y) 

SSSS S S S S sin( )
x

m x
L
π  sin( )

y

n y
L
π  

CCCC C C C C 2sin ( )
x

m x
L
π  2sin ( )

y

n y
L
π  

SCSC S C S C sin( )
x

m x
L
π  2sin ( )

y

n y
L
π  

CSCS C S C S 2sin ( )
x

m x
L
π  sin( )

y

n y
L
π  

SFSF S F S F sin( )
x

m x
L
π  2 2sin ( ) 1 cos ( )

y y

n ny y
L L
π π 

+ 
  
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FSFS F S F S 2 2sin ( ) 1 cos ( )
x x

m mx x
L L
π π 

+ 
 

 sin( )
y

n y
L
π  

CFCF C F C F 2sin ( )
x

m x
L
π  2 2sin ( ) 1 cos ( )

y y

n ny y
L L
π π 

+ 
  

 

FCFC F C F C 2 2sin ( ) 1 cos ( )
x x

m mx x
L L
π π 

+ 
 

 2sin ( )
y

n y
L
π  

Now by substituting Xm (x) and Yn (y) into stability equations, the algebraic equations would be 

obtained: 

011 12 13

21 22 23 0

31 32 33 0

0
mn

mn

mn

WR R R
R R R
R R R

  
  Φ =  
  Ψ  

                                                                                                                    (56) 

The coefficients Rij (i, j=1, 2, 3) are expanded in the Appendix B.  

To solve the Eqs. (55, 56), the determinant of the matrix of Kij and Rij must be set to zero. By doing so 

and after some algebraic manipulation, the critical buckling load is obtained. 

4. Numerical results 

First of all, the accuracy of the numerical results originated from the OVFSDT had to be compared and 

validated against other theories. In particular, it is very important to understand what the difference is 

made between the results of different theories. Table 2 presents critical buckling loads of nanoplates 

collated from several well-known references [79-81] ranging from the FSDT, S-FSDT and molecular 

dynamics simulation (MD); these are compared with results obtained by the new theory, namely 

OVFSDT, proposed in this paper. It is clearly seen that the results of critical buckling load with an 

increase in length value of the plate are closer to MD outcomes. Generally, Table 2 shows the close 

numerical results between the present theory and others from which the theory could be approved. 

Further comparisons are shown in Table 3 where the present OVFSDT’s biaxial buckling loads are 

validated against those obtained by the DQM [80] and the MD [81]. In the Table 3, the amounts have 

further differences versus Table 2; however, there is an adaptable agreement and the accuracy of the 

new theory is confirmed.  
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In order to have a comparison for critical buckling loads of the PMEN, buckling results of the PMEN 

obtained by utilizing various plate theories as calculated in ref [17] are illustrated. The critical buckling 

load considered as a non-dimensional factor corresponding to various length-to-thickness ratios and 

non-dimensional lower-order nonlocal (LON) parameters for fully simply-supported boundary 

conditions are tabulated in Table 4. As shown in the Table, the non-dimensional critical buckling loads 

computed by the current plate theory are in excellent agreement with those given in [17]. For the larger 

amounts of the nonlocal parameter, the difference between the critical buckling loads of present study 

with those predicted by [17] are becoming smaller and smaller. This is because the nonlocal parameter 

reduced external impacts whether they are mechanical or non-mechanical forces. On the other hand, for 

the thin PMEN, the difference between results is negligible in contrast to those of moderately thick 

plates between local and nonlocal analyses. These confirm that the new theory proposed in this study is 

able to gain appropriate and accurate results by carrying out and refining the errors, despite the fact that 

developing a complete theory is not within the scope of this study.   

Table 2. Results of buckling loads for a nanoplate developed from the DQM [79-80], and the MD 

simulation [81].  

E=1TPa, υ=0.16, ks=5/6, μ=1.81nm2, SSSS 

Biaxial buckling load (nN/nm) 
Present FSDT-DQM 

[79] 
FSDT-DQM 

[80] 
MD results 

[81] 
Lx=Ly 
(nm) A-I A-II 

1.02740 1.09473 1.0749 1.0809 1.0837 4.99 
0.62151 0.66171 0.6523 0.6519 0.6536 8.080 
0.43832 0.41208 0.4356 0.4350 0.4331 10.77 
0.26122 0.26969 0.2645 0.2639 0.2609 14.65 
0.17075 0.17168 0.1751 0.1748 0.1714 18.51 
0.11963 0.12009 0.1239 0.1237 0.1191 22.35 
0.08856 0.08808 0.0917 0.0914 0.0889 26.22 
0.06918 0.06925 0.0707 0.0705 0.0691 30.04 
0.05568 0.05579 0.0561 0.0560 0.0554 33.85 
0.04488 0.04453 0.0453 0.0451 0.0449 37.81 

Table 3. Results of biaxial buckling loads and comparisons with the DQM [80] and the MD [81] for a 

nanoplate. 
 E=1TPa, υ=0.16, ks=5/6, μ=1.81nm2, SSSS 

Biaxial buckling load (nN/nm) 
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Present FSDT [80] MD results [81] Lx/Ly A-I A-II 
0.52449 0.50894 0.5115 0.5101 0.5 
0.56223 0.54239 0.5715 0.5693 0.75 
0.64225 0.62217 0.6622 0.6595 1.25 
0.75576 0.81835 0.7773 0.7741 1.5 
1.01340 1.06650 1.0222 1.0183 1.75 
1.17030 1.14031 1.1349 1.1297 2 

Table 4. Comparisons of the non-dimensional biaxial critical buckling loads of fully simply-supported 

the PMEN computed by various plate theories (h=10 nm, φ0=-0.3 V, ψ0=0.01 A, ∆T=100 K, 

Γ0=µ0/Lx, 0 0 11/P N A=  ) [17]. 

 Non-dimensional biaxial buckling load (P0) 

Lx/h Reference Theory Non-dimensional nonlocal parameter (Γ0) 
0 0.01 0.02 0.03 0.04 

8 

Present, 
OVFSDT, 
ENET*1 

A-I 
A-II  

21.4653 
21.6211 

21.4586 
21.5741 

21.3995 
21.4542 

21.2211 
21.2746 

20.9757 
21.0980 

[17]-ENET*1 

KPT*2 23.9006 23.8593 23.7365 23.5349 23.2592 
MPT*3 21.8250 21.7877 21.6768 21.4948 21.2459 
RPT*4 21.8447 21.8074 21.6963 21.5141 21.2648 

PSDPT*5 21.8393 21.8020 21.6910 21.5088 21.2596 
TSDPT*6 21.8489 21.8116 21.7006 21.5183 21.2690 
HSDPT*7 21.8666 21.8294 21.7187 21.5370 21.2885 
ESDPT*8 21.8589 21.8216 21.7105 21.5282 21.2787 

12 

Present A-I 
A-II 

26.7203 
26.6210 

26.6820 
26.5818 

26.5618 
26.4751 

26.3590 
26.2736 

26.1315 
26.0120 

[17] 

KPT 27.6888 27.6475 27.5245 27.3228 27.0469 
MPT 26.6753 26.6360 26.5191 26.3273 26.0650 
RPT 26.6842 26.6449 26.5280 26.3361 26.0737 

PSDPT 26.6817 26.6425 26.5255 26.3337 26.0712 
TSDPT 26.6862 26.6469 26.5299 26.3380 26.0756 
HSDPT 26.6946 26.6553 26.5384 26.3466 26.0843 
ESDPT 26.6908 26.6515 26.5346 26.3426 26.0801 

20 

Present A-I 
A-II 

39.7291 
39.5855 

39.5684 
39.4254 

39.4276 
39.3049 

39.1298 
39.0978 

38.8589 
38.8273 

[17] 

KPT 39.8097 39.7683 39.6450 39.4427 39.1661 
MPT 39.3684 39.3280 39.2078 39.0106 38.7408 
RPT 39.3719 39.3315 39.2112 39.0140 38.7441 

PSDPT 39.3709 39.3305 39.2103 39.0130 38.7432 
TSDPT 39.3726 39.3322 39.2120 39.0147 38.7449 
HSDPT 39.3787 39.3389 39.2213 39.7208 38.7752 
ESDPT 39.3744 39.3340 39.2138 39.0165 38.7466 

30 

Present A-I 
A-II 

44.8205 
44.8894 

44.7622 
44.8291 

44.6527 
44.7089 

44.5038 
44.5117 

44.2281 
44.2421 

[17] 

KPT 45.9379 44.8576 44.7635 44.5699 44.4315 
MPT 44.9031 44.8627 44.7425 44.5453 44.2755 
RPT 44.9067 44.8663 44.7460 44.5488 44.2790 

PSDPT 44.9057 44.8653 44.7451 44.5478 44.2780 
TSDPT 44.9074 44.8670 44.7468 44.5496 44.2797 
HSDPT 44.9137 44.8741 44.7577 44.5599 44.2949 
ESDPT 44.9093 44.8689 44.7487 44.5514 44.2816 
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1 Eringen’s nonlocal elasticity theory (Γ0≠0, Γ1=0, l=0) 
2 Kirchhoff’s plate theory 
3 Mindlin’s plate theory 
4 Reddy’s plate theory 
5 Parabolic shear deformable plate theory 
6 Trigonometric shear deformable plate theory 
7 Hyperbolic shear deformable plate theory 
8 Exponential shear deformable plate theory 

 

 

Table 5. Properties of Barium titanate–cobalt ferrite composite ceramic nanoplate [16-18, 82-85] 

 

 

To show the behavior of the half-waves, Figs. 2a-d are examined for A-I and A-II solutions. Fig. 2a 

represents the shape of the half-waves within which the curves are similar to trigonometric ones. In fact, 

 Elastic properties (GPa) 

BaTiO3-CoFe2O4 

C11=C22=226, C12=125, C13= C23=124,  
C33=216, C44= C55=44.2, C66=50.5 

Piezoelectric quantities (C/m2) 

e31= e32=-2.2,  e15= e24=5.8, e33=9.3 

Dielectric quantities (C/V.m) 

κ11= κ22=5.64e-9, κ 33=6.35e-9 

Piezomagnetic quantities (N/A.m) 

q31= q32=290.1, q33=349.9, q15=275 

Magnetoelectric quantities (N.s/V.C) 

d11= d22=5.367e-12, d33=2737.5e-12 

Magnetic quantities (N.s2/C2) 

η11= η22=-297e-6 , η33=83.5e-6 

Thermal modulus (N/m2.K) 

λ11= λ22=4.738e5, λ33=4.529e5, 

Pyroelectric quantities (C/N) 

p1=p2=p3=0.25e-4 

Hygral expansion coefficient 

( )
( )

1
11

1
33

3 5939

64 355

2

2

. w t.%H O

. w t.%H O

χ

χ

−

−

=

=
 

 Other quantities 
h=4nm, Lx=Ly=60nm,  

kW=1.13GPa/nm, kG=1.13Pa.m, 
P0=N0/A11, l*=l/h, β=Lx/Ly 
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the curves in this figure are the responses of the solutions in such a situation and every point on the 

curves can be an answer of those solutions and therefore the curves include the exact result. By 

considering Figs. 2b and 2c, it is observed that if β is larger than 1, the critical load can decrease or 

increase with the plate length. By attending to Fig. 2d, it can be mentioned that the results of A-II are 

smaller than the A-I in these cases; however, both of them are in excellent agreements to each other. 

 
Fig. 2a. The number of half-waves versus different analytical solutions (μ0= 0.2 nm, μ1= 0.4 nm, 

l=0.5h, φ0=0.01 V, ψ0=0.1 A, Hy=40%, Ly=60nm, β=1, ∆T=400 K, SSSS) 

 
Fig. 2b. The number of half-waves versus different aspect ratios (μ0= 0.2 nm, μ1= 0.4 nm, l=0.5h, 

φ0=0.01 V, ψ0=0.1 A, Hy=40%, Ly=60nm, ∆T=400 K, A-I, SSSS) 
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Fig. 2c. The number of half-waves versus different aspect ratios (μ0= 0.2 nm, μ1= 0.4 nm, l=0.5h, 

φ0=0.01 V, ψ0=0.1 A, Hy=40%, Ly=60nm, ∆T=400 K, A-II, SSSS) 

 

 
Fig. 2d. The number of half-waves versus different aspect ratios (μ0= 0.2 nm, μ1= 0.4 nm, l=0.5h, 

φ0=0.01 V, ψ0=0.1 A, Hy=40%, Ly=60nm, ∆T=400 K, SSSS) 
 

Figs. 3a and b depict the SGLS factor versus several Winkler elastic foundation values by assuming 

medium hygral and ΔT=400 K; such a temperature is chosen because it was unable to enter to much 

higher heat due to unpredictable thermal buckling occurring in great temperatures. As expected, by 

growing SGLS parameter, the stiffness-hardening of the size-dependent plate increased [25]. As it is 

shown, the buckling load is declining when the elastic substrate is removed. This outcome could be 

reversed while the matrix is appeared. Hence, the significance of foundation used is vividly illustrated 
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through this figure. It can be further observed that the absence and presence of the foundation in m=n=1 

are more tangible than m=n=2. 

 
Fig. 3a. The SGLS parameter versus different Winkler coefficients (μ0=0.5 nm, μ1=0.1 nm, φ0=0.1 V, 

ψ0=0.1 A, ∆T=400 K, Hy=40%, m=n=1, β=1, A-I, kG=1.13GPa, SSSS) 

 
Fig. 3b. The SGLS parameter versus different Winkler coefficients (μ0=0.5 nm, μ1=0.1 nm, φ0=0.1 V, 

ψ0=0.1 A, ∆T=400 K, Hy=40%, m=n=2, β=1, A-I, kG=1.13GPa, SSSS) 

To consider several situations of nonlocality for electric and magnetic potentials Figs. 4a-e are 

displayed. The major aim of these figures is to compare the important conditions as described below. 

First off, HON parameter has been investigated by exerting various exterior electric voltages in solution 

A-II for two half-waves. As can be seen in Fig. 4a, with an increase in the external electric voltage, 

critical buckling loads are slowly reducing; however, this trend for m=n=2 in Fig. 4b is more 
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appreciable. Fig. 4c reveals HON parameter impact on several boundary conditions. It can be proved 

that in A-II the other boundary conditions have more decreasing effect versus SSSS in m=n=1. On the 

whole, the conditions with clamped boundaries have been further impressed by HON parameter which 

can be seen in FCFC, CFCF and CCCC, respectively. The graphs in Figs. 4d and 4e are plotted for A-I 

which show the same behavior with Figs. 4a and 4b, namely, increasing electric voltage decreasing 

critical buckling loads, but that diminish influence is not as much as the decreasing effect of the HON 

parameter on the critical buckling loads. Generally, the HON parameter in A-II solution has further 

decreasing effect versus A-I on the outcomes. 

 

Fig. 4a. The HON parameter versus different external electric voltage (μ0=0.2 nm, l=0.5h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-II, SSSS) 
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Fig. 4b. The HON parameter versus different external electric voltage (μ0=0.2 nm, l=0.5h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-II, SSSS) 

 

Fig. 4c. The HON parameter versus several boundary conditions (μ0=0.2 nm, l=0.5h, φ0=0.05 V, 

ψ0=0.05 A, ∆T=400 K, Hy=40%, m=n=2, β=1, A-II)  

 

Fig. 4d. The HON parameter versus different external electric voltage (μ0=0.2 nm, l=0.5h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-I, SSSS)    D
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Fig. 4e. The HON parameter versus different external electric voltage (μ0=0.2 nm, l=0.5h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-I, SSSS) 

Figs. 5a-d show evaluation of characteristic situations by which ENET has been reviewed due to 

μ1=l=0 nm. It can be seen that the numerical values in Fig. 5b are lower than the Fig. 4e which lead to 

the conclusion that the use of HONSG theory increased the stiffness of the nanoplate. Although the 

presence of the SGLS factor might increase the stiffness, the HON parameter has considerable 

influences. Observations from Fig. 5a and 5c which represent the changes in the external magnetic 

potential show the profound impact of magnetic field versus electric one in Figs. 4 in light of the 

distances of the results. In fact, the difference between the critical buckling loads when the magnetic 

potential is considered, is much more than when the external electric potential is evaluated. Thus, it can 

be stated that the magnetic potential influences are much more than the electric potential effects on the 

critical buckling load. Fig. 5d illustrates the same result with Fig. 4c in which the greater amplitude for 

critical buckling loads are for boundary conditions with clamped edges by changes in LON. 

It is worth noting that increasing the magnetic potential increases critical buckling loads; this is very 

different to the results of changing the electric potential which could be an attractive consequence. It is 

well-known that the carrier of all forces within the atoms is electromagnetic, so, the coupled 

electromagnetic potential affects the bonds between atoms and leads to softening or hardening of the 

nanoplate. The electromagnetic force emits two forms of electric force and magnetic one, which are two 
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different aspects of one thing (electromagnetic force) and therefore inherently related to each other. In 

the current model the material used is a ferromagnetic material (presence of Fe and Co); and in such a 

material, vectors of magnetic moments are isometric and tend to be aligned, so this material is highly 

magnetized by applying a small magnetic field. As the hardness of the model increased with enlarging 

magnetic field, it can be claimed that the vectors of magnetic moments do not tend to align with 

displacement vectors of the nanoplate’s atoms which result in increasing critical buckling loads with an 

increase in the magnetic parameter. 

The effects of the nanoplate’s crystals for converting the electrical energy into deformation is lower 

than magnetic energy. This means that the crystals can absorb magnetic energy further than electric one 

leads to be more impressed by magnetic field. As an physical interpretation, after applying a potential 

difference on the two opposite faces of the model (e.g. top and bottom) the faces of cell of crystals have 

asymmetrical behavior which produce electric moments within which the model is deformed. Hereon, 

the external electric field as a compatible and actuator factor helps to change the deflection of the plate, 

which naturally leads to a rise in deflection values and leads to a reduction in critical buckling loads in 

stability analyzes.  

 
Fig. 5a. The LON parameter versus different external magnetic potential (μ1=l=0 nm, φ0=0.05 V, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-I, SSSS) 
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Fig. 5b. The LON parameter versus different external electric voltage (μ1=l=0 nm, ψ0=0.05 A, ∆T=400 

K, Hy=40%, m=n=2, β=1, A-I, SSSS) 

 
Fig. 5c. The LON parameter versus different external magnetic potential (μ1=l=0 nm, φ0=0.05 V, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-II, SSSS) 
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Fig. 5d. The LON parameter versus different boundary conditions (μ1=l=0 nm, φ0=0.05 V, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-II) 

Fig. 6a-f indicate the condition of LONSG theory by a change in electric and magnetic potentials. 

Initially, by comparing Fig. 5b with Fig. 6b, it is noted that the LONSG condition (μ0= μ1= μ, l≠0) has 

bigger amplitude and this is contrary to the ENET condition (μ0≠0, μ1=l=0 nm), indicating that the 

LONSG case has more impacted on the critical buckling loads of the nanoplate subjected to electric and 

magnetic potentials. As a matter of fact, this is because of the large range of the results (e.g. φ0=0.05 V, 

Fig. 5b; from 0.13812 to 0.13421, Fig. 6b; from 0.13857 to 0.13386) which clearly illustrated the major 

conclusion that the decrease of critical buckling loads by increasing LON parameter under LONSG 

condition would be further than the decrease of critical buckling loads by growing LON parameter 

under ENET condition. Although, the value 0.13857 in condition l=0.2h, µ=0 is bigger than the 

condition l=µ0=µ1=0 (0.13812) in light of the SGLS parameter, the value of 0.13386 in condition 

l=0.2h, µ=2nm is smaller than 0.13421 (µ0=2nm, µ1=0, l=0) which proves the claim. 
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Fig. 6a. The LONSG condition versus different external electric voltage (μ0= μ1= μ, l=0.2h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-I, SSSS) 

 
 

Fig. 6b. The LONSG condition versus different external electric voltage (μ0= μ1= μ, l=0.2h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-I, SSSS) 
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Fig. 6c. The LON parameter versus different external magnetic potential (μ0= μ1= μ, l=0.2h, φ0=0.05 V, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-I, SSSS) 

 
Fig. 6d. The LON parameter versus different external electric voltage (μ0= μ1= μ, l=0.2h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-II, SSSS) 
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Fig. 6e. The LON parameter versus different external magnetic potential (μ0= μ1= μ, l=0.2h, φ0=0.05 V, 

∆T=400 K, Hy=40%, m=n=1, β=1, A-II, SSSS) 

 
Fig. 6f. The LON parameter versus different external magnetic potential (μ0= μ1= μ, l=0.2h, φ0=0.05 V, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-II, SSSS) 

Figs. 7a and 7b examine various boundary conditions by changing in electric and magnetic potentials 

under LONSG situation. The results follow the outcomes of previous figures by which it is now proved 

that the increase of potential field has softener influence on the plate and vice versa the grow of the 

magnetic field will lead to the harder plate. These results are similar for various boundary conditions 

and are in linear ascent or descent shapes which are because of using linear electric and magnetic 

potentials in the paper. One of the most complexities results in terms of these graphs could be due to 

linear form of the curves, which leads to very small quantities of the critical buckling loads by 
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increasing electric voltages. This means that in such a case for large values of the voltage, the critical 

buckling load will be an insignificant value and the nanoplate will buckle by a very small load. 

 
Fig. 7a. The electric voltages versus different boundary conditions (μ0= μ1= 0.5 nm, l=0.2h, ψ0=0.05 A, 

∆T=400 K, Hy=40%, m=n=2, β=1, A-II) 

 
Fig. 7b. The magnetic parameter versus different boundary conditions (μ0= μ1= 0.5 nm, l=0.2h, 

φ0=0.05 V, ∆T=400 K, Hy=40%, m=n=2, β=1, A-II) 

 

The impact of thermal environment on the results of critical buckling loads of PMEN by considering 

several boundary conditions has been shown by Fig. 8. The HONSG condition is applied and the 

temperature influences are examined. It can be clearly seen that the temperature differential has not a 

great influence on the critical buckling loads, and increasing the heat decreases the critical buckling 
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loads slightly, which leads to monotonously reducing. In other words, the thermal environment 

influence is similar for all boundary conditions.  

 
Fig. 8. Temperature changes versus different boundary conditions (μ0= 0.2 nm, μ1= 0.4 nm, l=0.05h, 

φ0=0.1 V, ψ0=0.1 A, Hy=40%, m=n=2, β=1, A-II) 

 

The influences of moisture concentration versus different temperatures (9a) and different boundary 

conditions (9b) on the buckling behavior of the nanoplate are demonstrated. One of the most important 

observations from the figures is the major impact of hygral environment on the stability conditions of 

the nanoplate, that is, the stiffness of the nanoplate is markedly reduced by an increase in the moisture 

percentage. This is very important to notice that the impact of thermal environment is a negligible effect 

in comparison with that of the hygral one. In addition, it is worth noting that the slope of the results in 

both graphs is a linear drop. If the results of ∆T=200 K are doubled and the outcomes of ∆T=400 K are 

halved, the subfigure in the Fig. 9a will be turned up by which it is shown that the slopes of curves are 

not similar to one another. This means that the impact of moisture in lower temperatures is more 

considerable than that in high ones which can be an important finding. 
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Fig. 9a. The percent of moisture versus various temperatures (μ0=0.1 nm, μ1=0.2 nm, l=0.02h, φ0=0.05 

V, ψ0=0.05 A, m=n=1, β=1, A-II, SSSS) 

 

Fig. 9b. The percent of moisture versus several boundary conditions (μ0=0.1 nm, μ1=0.2 nm, l=0.02h, 

φ0=0.05 V, ψ0=0.05 A, ∆T=200 K, m=n=2, β=1, A-II) 

To see the effects of HON and LON parameters, Fig. 10 is carried out. When the results of various 

cases among the three length scale parameters; μ0, μ1, and l, are reported, some exceptional conclusions 

could be harvested. Of these results are the ones between cases μ0=0.5nm, μ1=1nm and μ0=1nm, 

μ1=0.5nm and also cases μ0=1nm, μ1=2nm and μ0=2nm, μ1=1nm. It can be simply seen that by an 

increase in the SGLS factor the results of both cases are becoming closer and closer to each other. This 

means that greater stiffness of the nanoplate (which here results from a change in the SGLS parameter) 
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gives the same influences for the HON and LON factors on stability conditions. This phenomenon 

terminates the discussion that the HON is a tremendous operant in nanostructures analysis. And 

HONSG theory is strongly recommended for investigation of nanosize-dependent materials. On the 

other hand, Fig. 10 shows that the μ0 decreased the critical loads more than μ1 which leads to a point that 

whenever the HONSG condition is taken into consideration, the lower critical buckling loads occurred 

due to greater μ0. 

 
Fig. 10. The SGLS factor versus HON and LON parameters (l*=l/h, φ0=0.05 V, ψ0=0.05 A, ∆T=400 K, 

Hy=40%, m=n=2, β=1, A-I, SSSS) 

 

Fig. 11 illustrates an unpredictable impact of the SGLS parameter by which the stiffness of the 

nanoplate can increase or decrease by a change in SGLS. In A-I solution it was shown that the SGLS 

parameter has only increasing effect that in A-II some half-waves have decreasing and others have 

increasing influences. In fact, A-II might be more rational and reasonable than A-I because of the fact 

that such an assumption within which there has been supposed that in LONSG theory the length scale 

term in the left of the equation (LON parameter) has only softening effect and the length scale term in 

the right of the equation (SGLS parameter) has only hardening effect, cannot be true. Since either of the 

parameters has both increasing and decreasing effects regarding different conditions and situations. All 

in all, based on the given argument the importance of using SGLS is now clear.  
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Fig. 11. The SGLS factor versus different half-waves (μ0=0.2 nm, μ1=0.4 nm, l*=l/h, φ0=0.05 V, 

ψ0=0.05 A, ∆T=400 K, Hy=40%, β=1, A-II, SSSS) 

 

5. Conclusions 

This article studied the critical stability of a piezo-magnetoelectric composite ceramic nanoplate resting 

on an elastic matrix subjected to external in-plane mechanical forces as well as electric and magnetic 

potentials between the upper and bottom faces in a hygrothermal environment. To achieve this aim, a 

novel first-order shear deformation theory was formulated to derive the stability relations. The 

influences of nanoscale were considered by using the higher-order nonlocal strain gradient theory. 

Furthermore, the Navier’s and Galerkin’s solutions were employed and utilized to solve the stability 

equations to obtain the numerical results with taking into account several boundary conditions. The new 

proposed theory was first validated by comparing the obtained critical buckling loads with those from 

well-known available studies in the literature. Finally, influences of key parameters including low- and 

higher-order nonlocal, strain gradient parameters, elastic foundation coefficients, aspect ratio and 

environmental conditions to the nanoplate’s buckling behavior were evaluated. According to the 

numerical results of the present study, some notable points could be expressed as follows: 

* The magnetic potential has more significant influence on the critical buckling loads than the electric 

voltage. 
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* An increase in the magnetic potential led to a significant increase in the critical buckling loads and 

whilst an increase in the electric potential caused a decrease in the critical buckling loads. 

* Thermal environment had an insignificant effect on the critical buckling loads and that was contrary 

to the tremendous impact of the hygral region. In particular, the stiffness of the nanoplate was 

significantly reduced by increasing the moisture percentage which was more noticeable in lower 

temperatures than in high temperatures. 

* The influences of the HON and LON parameters were similar when the nanoplate’s stiffness was 

increased. In fact, the HON parameter could be remarkably effective for large deformations (low 

stiffness of the plate) and therefore, the HONSG theory was strongly recommended for study of nano 

size-dependent materials. It should be noted that the objective of stiffness in current research is not 

related to high modules of elasticity and is a relative definition according to several conditions.   

* The boundary conditions in which clamped edges are accompanied have been more affected by the 

HON parameter. 
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