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A B S T R A C T

The results of experimental and numerical tests of a single corrugated sheet silo column’s buckling resistance
are presented in this study. The experiments were performed in a real silo with and without bulk solid (wheat).
A very positive impact of the bulk solid on the column buckling resistance occurred. The experimental results
were first compared to the buckling resistance calculated by Eurocode 3 formulae. The comparison revealed
that code formulae were overly conservative for the empty and pre-filled silo. The experiments were next
simulated using the finite element method (FEM) with initial geometric imperfections, based on geodetic
measurements or linear bifurcation analyses. The bulk solid’s behaviour was described by two different linear
elastic approaches. For real geometric imperfections, the FE computations and experimental findings were in
good agreement (particularly for an empty silo). For the pre-filled silo with the code elasticity of the bulk solid
and the geodetic amplitude of geometric imperfection of the empty silo, the numerical buckling resistance was
too low as compared to the experimental outcomes. In addition, the model tests were performed for a single
column with a corrugated sheet at the laboratory scale.
1. Introduction

Silos are engineering structures used in industries and farms to
store, feed, and process bulk solids. They are utilized in agricultural,
mining, mineral processing, chemical, and shipping industries, among
others [1–4]. Bulk solids are frequently stored in metal cylindrical
silos. Because of a compressive vertical force induced by bulk material
friction on silo walls, these structures are prone to stability failure [5–
8]. The loss of silo stability most frequently occurs during asymmetric
filling and emptying, which is caused by the heterogeneous character
of bulk solids [9,10].

To reduce material use, the walls of metal silos are made of corru-
gated sheets strengthened around the perimeter of silos with columns of
the same spacing, connected to sheets with bolts. The corrugated sheets
transmit the horizontal tensile forces from the bulk material pressure to
the silo walls, and the columns transfer the vertical compressive forces
from the bulk material friction against the walls [11]. According to
Eurocode [12] and the amendments [13], the design criteria, based on
the stability theory of the orthotropic shell or the theory of stability of a
column on the elastic ground depend on the spacing of vertical columns
arranged along the silo perimeter. Determining the buckling resistance
of silos using the finite element method based on nonlinear static anal-
yses of the equilibrium path between load and displacement requires
complex 3D silo models, a very huge number of finite elements, and
hence a long calculation time.
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The simplified relationships for evaluating the standard buckling
resistance of silos given in [12,13] are conservative, as they do not take
into account the actual spatial strength of entire silo structures. The
findings of buckling calculations using the finite element method (FEM)
in [14–22] and the results of experimental studies in [23] revealed that
the solutions using the Eurocode approach differed significantly from
FE solutions. The noticeable underestimation of the buckling resistance
of silo structures was observed for a high separation of vertical columns.
The disadvantage of the approach in [12] was also the lack of continu-
ity of the solution between the two Eurocode approaches in terms of
the spacing of columns [15,16,20]. The papers [16,20,21,24] and [25]
proposed changes to standard procedures, based on comprehensive
numerical FE analyses of silos. The research [25] proposed e.g. a new
formula for calculating the stiffness of the elastic foundation supporting
the vertical silo column in the form of a corrugated sheet, which took
into consideration the curvature of the cylindrical silo mantle. The
formula significantly improved the standard results of the buckling
resistance as compared to FEM [16]. However, the underestimation
of buckling resistance of silo structures still occurred since the length
of the buckling half-wave in the circumferential direction assumed in
Eurocode was still too large. This solution was comparable to that in the
amendment introduced to Eurocode 3 [13]. The paper [15] suggested
a simplified silo model in the form of a silo segment containing 3 or
4 columns with appropriate boundary conditions along the vertical
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edges, allowing for the buckling resistance similar to FE results for
entire silos. The effect of different wave geometry of corrugated sheets
was numerically investigated in [20]. The silos with the narrow wall
corrugation and high corrugation amplitude had a buckling resistance
higher by 50%–100% than with the wide corrugation and low cor-
rugation amplitude [20]. A positive effect of different vertical and
horizontal corrugation-shaped stiffeners on the strength of thin-walled
cylindrical shell models under external pressure was experimentally
found in [26,27].

The current article presents the results of experiments and FEM
calculations for the buckling of a single silo column on a laboratory
scale and in a real silo. The laboratory tests were performed with a
single column with and without a corrugated sheet. Column buckling
experiments in a real silo were carried out for an empty silo and a pre-
filled silo with wheat. First, the experimental results were compared
with the Eurocode results [12,13]. Next, the experimental results on a
laboratory and natural scale were simulated with non-linear stability
FE calculations, where initial geometric imperfections were taken into
account based on geodetic measurements of the empty silo or linear
bifurcation analysis (LBA). FE analyses of a real silo additionally took
into account the presence of the bulk solid, using two different lin-
ear elastic models, i.e. Winkler–Pasternak foundation and continuum
solid material. The numerical results showed satisfactory agreement in
comparison with the experiments, particularly for an empty silo. The
numerical and experimental results in a real silo differed from those in
Eurocode [12,13].

Innovative elements in our research are: (1) experimental results for
a single column in a corrugated steel silo at the natural scale versus nu-
merical non-linear stability outcomes (scientific literature lacks similar
experimental results) and (2) inclusion of the bulk solid in FE analyses,
which rarely take into account the positive effect of bulk solid stiffness
on silo buckling resistance.

2. Experimental stands

2.1. Single column with corrugated sheet on laboratory scale

The goal of the lab tests was to evaluate the buckling resistance
of a single column with a corrugated sheet as compared to a column
without a corrugated sheet under the effect of a concentrated force.
The lab test included two spans of the silo mantle with a total width of
1600 mm (with a column spacing of 800 mm) and a height of 1588 mm
(Figs. 1 and 2). The radius of curvature of the corrugated sheet was R
= 6240 mm. The base of this test stand-up was a steel frame freely
resting on a rigid base, consisting of C-profiles with a cross-section
height of 150 mm and a wall thickness of 4 mm ‘‘a’’ (Fig. 1). The frame
constituted support for the outermost edges of the corrugated sheet ‘‘b’’
(Fig. 1). The connection of the corrugated sheet with the steel frame
was made by using M10 bolts with a spacing of 76 mm along the entire
length of the outer sheet edge (as in real silos). The examined steel
column ‘‘c’’ (Fig. 1) was made of a steel flat bar with a cross-section of
50 × 6 mm2. The cross-section of the column had low bending stiffness
compared to the bending stiffness commonly used in corrugated sheet
silos columns to buckle it under a relatively low load. The column was
connected to the corrugated sheet along its entire length with M10
screw connectors at a spacing of 76 mm. The compressive force was
introduced by hand into the flat bar by using the M16 threaded steel
tie-rod ‘‘d’’ attached to the outermost profiles ‘‘g ’’ (Fig. 1), connected
to the flat bar at its ends. The outermost nodes ‘‘f’’ (Fig. 1) provided
rigid support for the compressed flat bar, allowing free displacement
along the action of loads. To limit the rotations of outermost nodes, an
additional stiffening C-profile ‘‘e’’ was used (Fig. 1). The compressed
flat bar was attached at both ends to the nodes ‘‘f ’’ (Fig. 1), which were
later replaced in static calculations (Section 6) with elastic supports.

The introduced axial load to the flat bar was controlled by measur-

ing the deformation in the tie-rod using resistance wire strain gauges

2

Fig. 1. Test stand of silo column connected to corrugated sheet on laboratory scale
((A) view and (B) scheme): (a) steel frame, (b) corrugated sheet, (c) column-flat bar
with cross-section of 50 × 6 mm2, (d) steel tie-rod M16, (e) C-profile stiffening steel
frame, (f) outermost rigid support nodes and (g) C-profile connecting flat bar with
tie-rod.

with a resistance of 120 𝛺 glued to the properly prepared surface of
the threaded tie-rod. Based on the measured deformations, the tie-
rod cross-section (diameter 16 mm) and Young’s modulus of the steel
(210 GPa), the force acting in the tie-rod was determined. Additionally,
the outermost displacements of the flat bar nodes were measured
with the use of two inductive sensors of the Peltron PS×20 type. The
difference in the distance caused by tie-rod compression was measured
between the stiff node ‘‘f’’ and the profile connecting the flat bar to
the tie-rod ‘‘g’’ (Figs. 1 and 2). The data acquisition system was the
8-channel universal measurement amplifier Quantum. Measurement
results were recorded with a frequency of at least 0.5 Hz.

2.2. Real silo

The entire experimental stand-up consisted of two full-scale steel
cylindrical silos with a capacity allowing the storage of 35 tons of
wheat in each of the silos. One of the silos was used to perform the
experiments (Fig. 3A), while the other silos stored wheat. The silos were
designed and used to measure the pressure of bulk material against the
silo wall during gravity filling and emptying [28]. The height of the
cylindrical part of the silos was 7.6 m, and the diameter was 2.68 m.
The radius of the cylindrical wall (R = 1340 mm) was about 4.7 times
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Fig. 2. Static scheme of silo fragment test stand-up at laboratory scale: (a) with corrugated sheet and (b) without corrugated sheet ((c) — flat bar with cross-section of 50 × 6 mm2,
g) C-profile connecting flat bar with tie-rod M16, P — compressive force in flat bar introduced by tie-rod, 𝐾1 — elastic foundation in form of corrugated sheet, 𝐾2.1 and 𝐾2.2 —

elastic supports).
smaller than in the laboratory. The silos were made of corrugated
sheets 0.75 mm thick, stiffened with six vertical columns spaced 1.4 m
along the perimeter. The vertical columns were made of thin-walled
C-profiles with a wall thickness of 1.5 mm and 4 mm. The silo had a
conical roof with a slope of 25◦. Two horizontal bulk material convey-
ors (upper and lower redler with a capacity of 150 t/h) and a vertical
bucket elevator were used to fill the silos. Emptying the silos was done
by gravity. Due to the dimensions of the structure and the possibility
of introducing the failure load, the experiments were performed for a
single column that was modified as compared to the original one (C-
profile). A flat bar of 50 × 6 mm2 (the same as in laboratory tests) was
adopted at a height of 0.84 m to 3.33 m, measured from the junction
of the silo mantle with the conical hopper. The flat bar was connected
to the silo shell along its entire height with screw connectors with a
spacing of 76 mm (equal to the corrugated sheet wavelength). Fig. 3B
shows a schematic of the experimental stand-up, in which the existing
thin-walled C-column at a height of 2508 mm was dismantled. A rigid

node ‘‘f ’’ was attached to the remaining part of the existing column

3

‘‘a’’, which rigidly connected the movable element of the test stand-
up in the form of a C-profile ‘‘e’’ placed inside while allowing freedom
of displacements along the load axis. The C-profile ‘‘e’’ connected the
compressed flat bar ‘‘c’’ with two tie-rods M16 ‘‘d’’ using which the load
was introduced to the structure. The load was again introduced by hand
alternately through two tie-rods as a result of the rotation of nuts. The
introduced compressive load for the analysed column was measured
by measuring the deformation in tie-rods (analogous to the test stand-
up at the laboratory scale). Regardless of the control of the introduced
compressive force, the axial force and bending moments in the mid-
span of the flat bar were also controlled. The internal forces in the
flat bar were determined based on the measurement of deformations
on the outermost opposite flat bar cross-sections. The deformation was
determined using two resistance wire strain gauges with a resistance of
120 𝛺. Based on the geometry of the cross-section of the flat bar and
Young’s modulus of steel (210 GPa), the stress distribution in the cross-
section of the flat bar was determined, followed by the internal forces

(axial force and bending moment). Two inductive displacement sensors
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Fig. 3. Experimental silo ((A) view and (B) scheme): (a) C-profile column with thin-walled section, (b) corrugated sheet, (c) flat bar with cross-section of 50 × 6 mm2, (d) two
16 steel tie-rods, (e) C-profile connecting flat bar with tie-rod and (f) outermost rigid support nodes.
T
l
1

.

f the Peltron PS×20 type (transformer linear displacement transducer
VDT) were used to measure the displacements. Displacement sensors
ere placed at fixed nodes ‘‘f ’’, measuring the difference in distance
etween the movable element ‘‘e’’ and the fixed element ‘‘f ’’.

.3. Geodetic measurements in real silo

To determine the amplitude of initial geometrical imperfections, a
can of the silo stand was performed using a 3D laser scanner ‘‘Leica
canStation C10’’. Fig. 4a presents the view of the grid of measurement
oints for the entire test stand, based on the ground-based laser scan of
he structure (the silo was empty). Due to the difficult measuring access
o the experimental column (column 𝑆1 in Fig. 4b), the geometric
mperfections were analysed in detail on the adjacent column 𝑆2 and a
ragment of the silo shell 1.0 m wide between vertical sections ‘‘A’’ and
‘B’’ close to the column 𝑆1 (Fig. 4b). The obtained geometry was then
ompared with the surface of an ideal cylinder inscribed in the silo base
nd presented in the form of a deviation map of the actual geometry
f the analysed fragment of the silo shell. Additionally, preliminary
eometric imperfections of the adjacent column (column 𝑆2 in Fig. 4b)
ere analysed and compared with the surface of an ideal column in the

orm of a C-profile (Fig. 4c). Fig. 4d shows the vertical sections ‘‘A’’ and
‘B’’ through the silo shell along with the actual geometry deviations
rom the ideal cylinder geometry and the deviations of the adjacent
olumn 𝑆2 in the radial (outside the silo) direction. In the vicinity of the
nalysed column (cross-section ‘‘B’’ in Fig. 4b), a horizontal deviation
rom the vertical of the actual structure of the silo shell equal to approx.
=10–15 mm was observed. The maximum deviation of the silo shell

rom the vertical was about 𝑤 = 30 mm and occurred in its upper part.
he maximum amplitude of the imperfection of the corrugated sheet in
he close vicinity of the measuring column was approximately 15 mm.
he measured amplitude, 𝑤 = 15 mm, was used in the FE calculations
or the empty and pre-filled silo (Section 6).
4

3. Experimental results

3.1. Experiments with column with corrugated sheet on laboratory scale

The results of the experimental tests on a laboratory scale are
presented in Fig. 5. Fig. 5A shows the dependence of the compressive
horizontal force N in the tie-rod on the introduced horizontal displace-
ment u for a column with a corrugated sheet (‘a’ curve) and for a
column without a corrugated sheet ‘b’ curve) for one exemplary test
(during loading and unloading).

The distortions in force–displacement diagrams happened because
the flat bar was compressed by hand tightening the tie-rod. The max-
imum force for a column with a corrugated sheet was 𝑁 = 16.5 kN
(curve ‘a’). In the case of a column without a corrugated sheet, the
maximum force N was lower by about 50%, i.e. 8.4 kN (curve ‘b’).

he deformation of the analysed system under the influence of the
oad is shown in Fig. 5B for a column with a corrugated sheet (𝑢 =
5.5 mm) and a column without a corrugated sheet (𝑢 = 22.7 mm). The

experiments were performed on 8 trials, in which similar results were
obtained (a maximum difference was 7%–10%). The deformation of the
column with a corrugated sheet (Fig. 5Ba) and without a corrugated
sheet (Fig. 5Bb) corresponded to a half-wave with a plastic hinge in
the mid-span of the compressed flat bar ‘‘c’’ and in connections of the
flat bar with the C-profile ‘‘g ’’ (Fig. 1). Without the corrugated sheet,
1.5-times greater deformation was achieved for a twice lower failure
force.

The standard buckling resistance of a single column with a corru-
gated sheet was determined with the formula for the stability of the
equivalent orthotropic shell (Appendix B) (p.5.3.4.3.3 of Eurocode [12])
The standard buckling resistance (without considering plasticity) was
equal to 𝑁 = 47.8 kN, i.e. it was 2.5 times higher than the experi-
mental one. When plasticity was taken into account during eccentric
compression, the ultimate force was 𝑁 = 8.6 kN (2 times lower than

http://mostwiedzy.pl
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Fig. 4. Geodetic measurements of experimental real silo: (a) view of measuring points for entire test stand, (b) map of deviations (geometric imperfections) from ideal cylinder
geometry for analysed fragment of silo mantle (𝑆1 - measuring flat bar column and 𝑆2 - adjacent column with C-profile cross-section), (c) measured deformation of adjacent 𝑆2
column and (d) amplitudes of initial geometric imperfections in vertical sections ‘A’ (blue) and ‘B’ (red) of fragment of silo mantle and adjacent column 𝑆2 (black colour). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the experimental one). The standard buckling resistance of the single
column without the corrugated sheet was 𝑁 = 7.7 kN [29] and was
10% lower than in the experiments (𝑁 = 8.4 kN).

3.2. Experiments in real silo

The experiments were performed for the empty silo (2 tests) and
for the pre-filled silo with wheat (2 tests), where similar results were
obtained (difference up to 10%). The stability test results in the real
5

silo are presented in Fig. 6. Fig. 6A shows the relationship between the
vertical compressive force N in the tie-rod (‘a’ curve) and in the flat
bar (‘b’ curve) and the displacement u (shortening) of the tie-rod for an
empty silo (‘E’) and a silo pre-filled with wheat (‘F’). The distortions in
force–displacement diagrams again happened because the flat bar was
compressed by hand tightening the tie-rods. Noticeable breaks in on
the initial linear part of the test graphs for the tie-rod and flat bar were
caused by the presence of gaps in screw connections (unavoidable in
experiments). For an empty silo, the maximum measured compressive
force was N = 49 kN (tie-rod) and N = 39 kN (flat bar). The difference

http://mostwiedzy.pl
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Fig. 5. Experimental tests for column at laboratory scale: (A) dependence of compressive horizontal force N in tie-rod on horizontal displacement u (’a’ - column with corrugated
heet and ‘b’ - column without corrugated sheet) and (B) deformation of column in post-critical state ((a) with corrugated sheet for 𝑢 = 15.5 mm and (b) without corrugated sheet
or 𝑢 = 22.7 mm).
l
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T
c
t
b
c
w
m

etween the compressive force measured in the tie-rod and the flat
ar was because the part of the load was transferred to adjacent
olumns through the corrugated sheet. The presence of wheat in the silo
ncreased the maximum compressive force up to N = 59 kN in the tie-
od (increase by about 20%) and up to N = 57 kN in the flat bar (growth
y about 45%). The deformation of the analysed experimental system
or the empty silo is shown in Fig. 6Ba. The flat bar with the support
ode in the lower and upper zones was deformed, moving inside the silo
o a depth of about 40 mm (in the lower zone) and 10 mm (in the upper
one). At a distance of about 300 mm from the rigid nodes (upper and
 w

6

ower), a bulge appeared outside the silo with an amplitude of about
0 mm in the lower zone and 5 mm in the upper zone of the flat bar.
he length of the vertical buckling half-wave was about 380 mm, which
orresponded to 5 distances of screw connectors. The deformation of
he silo with wheat (Fig. 6Bb) was similar to that of the empty silo
ut with about 4-times lower amplitude of horizontal displacements
aused by the stiffness of the wheat. In addition, for this silo, there
ere local dents on the corrugated sheet at the place where the silo
antle connected the flat bar. The length of the horizontal buckling
ave in the circumferential direction was about 700 mm.
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Fig. 6. Experimental tests in real silo: (A) dependence of vertical compressive force
on vertical displacement u (‘a’ — force in tie-rod, ‘b’ — force in flat bar, ‘E’ —

mpty silo and ‘F’ — silo pre-filled with wheat) and (B) deformation of column and
orrugated sheet ((a) empty silo and (b) silo pre-filled with wheat).

The buckling resistance of a column in an empty silo was deter-
ined with code formulae for the stability of a single column based on

n elastic foundation in the form of a corrugated sheet (Appendix A)
p.5.3.4.3.4 of the code [13]). The code buckling resistance was only
= 20.9 kN and was almost two times lower than the experimental

ne in the flat bar (39 kN). The main reason for such a clear difference
omes from the incompatibility of the buckling form assumed by Eu-
ocode [12,13] in the circumferential direction with the experimental
uckling form (which was significantly smaller than this in the code for
he assumed geometry of silo) (see Section 5.2).

There are no code formulae [30,31] for the buckling resistance of a
olumn in a silo pre-filled with bulk solid.

. Input data in FE analyses

Numerical FE analyses were carried out with the Abaqus pro-
ram [32]. In numerical calculations, geometrically and material non-
inear (GMNA) analyses were performed, taking into account pre-
iminary geometric imperfections. The following material parameters
ere adopted for structural steel: modulus of elasticity 𝐸 = 210 GPa,

Poisson’s ratio 𝑣 = 0.3, and yield point 𝑓𝑦 = 355 MPa. In the FE
imulations, the elastic-perfectly plastic model of the material was
7

adopted. To determine the dependence of loads on displacements in the
structure, the implicit dynamic analysis (IDA) [33] was used, where the
increase in displacements was controlled at a speed of 0.4 mm/s. The
use of dynamic numerical analysis allows for a better convergence of
the solution compared to static methods [17,33].

4.1. Input data for column with corrugated sheet on laboratory scale

Numerical FE simulations were carried out using two models with
varying degrees of detail. In the first model (the so-called simplified
model), bar elements were adopted (Fig. 7a). Two end C-profiles ‘‘g ’’

ere taken into account, rigidly connected to the flat bar ‘‘c’’ (Figs. 1
nd 2) on the eccentricity of the connection as in the experiment.
he division of bar elements into 32 finite elements was applied. The
orrugated sheet was considered an elastic foundation with 𝐾1 stiffness
Fig. 2). The stiffness of the elastic foundation was determined on
he basis of the code procedure [13] (Eq. (2) in Appendix A) and
he procedure proposed in [25] (Appendix C). The stiffness 𝐾1 was

determined for a sheet with a radius of 𝑅 = 6240 mm, thickness 𝑡 =
1.5 mm, wave length 𝑙 = 76 mm, and wave height ℎ = 18 mm. The
tiffness 𝐾1 was equal to 1.5831 N/mm2 according to [13] and 1.6012
/mm2 according to [25].

The second numerical model (the so-called detailed model) (Fig. 7b)
onsisted of shell elements (corrugated sheet, flat bar and steel frame C-
rofiles) and solid elements (steel nodal plates and outermost C-profiles
f the flat bar). The FE model used 4-node shell elements with reduced
ntegration ‘‘S4R’’ and tetrahedral solid finite elements ‘‘C3D10’’ (based
n previous calculations [33]). The numerical model contained a total
f 155,809 finite elements. The entire steel frame rested freely at the
utermost points of the steel frame. In the numerical model, the shape
f the initial geometric imperfection was adopted on the basis of the
bserved deformations in experiments (Fig. 8a), which were obtained
s a result of the analysis of photographs during the experiments. The
ariable amplitude of geometric imperfections ranging from 1–20 mm
as assumed. Additionally, FE calculations were performed with initial
eometric imperfections based on LBA (Fig. 8b).

.2. Input data for real silo

Numerical models with two levels of detail were again adopted. The
irst bar model (the so-called simplified model) (Fig. 9a) reflected a
ingle silo column with a cross-section partially changed in height to
flat bar. The corrugated sheet was defined by means of horizontal

lastic supports, the stiffness of which was determined similarly to the
D laboratory model, i.e. based on code procedures [9]. The stiffness of
he linear elastic support 𝐾1 (Fig. 2) was determined for a corrugated
heet with a radius 𝑅 = 1338 mm, thickness 𝑡 = 1.5 mm, wave length
= 76 mm, and wave height ℎ = 18 mm. The stiffness 𝐾1 was similar,

.e. 𝐾1 = 0.57725 N/mm2 following the standard procedure [13] and
1 = 0.5653 N/mm2 according to the formula in [25]. In total, 562

inite elements were used in the simplified model.
The detailed model of the silo, taking into account the entire

tructure of the silo with the flat bar column, is shown in Fig. 9b. The
odel used shell 4-node finite elements with reduced integration ‘S4R’

nd solid tetrahedral finite elements ‘C3D10’ (based again on previous
alculations [33]). A total of 300,939 finite elements were used in the
odel. The shape of the assumed geometrical imperfections for the real

ilo was re-assumed on the basis of deformations in the silo structure
or the failure load (Fig. 10a) and in accordance with the first LBA
ode (Fig. 10b). The initial amplitude of geometric imperfections was

ssumed in the range of 1–15 mm.
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Fig. 7. Numerical FE model of silo fragment at laboratory scale: (a) simplified 2D bar model and (b) detailed 3D shell model.

Fig. 8. Initial geometrical imperfection assumed in numerical FE simulations of experimental silo fragment at laboratory scale (detailed model) based on: (a) experimental
deformation and (b) first LBA mode.
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Fig. 9. Numerical FE model of real silo: (a) simplified 2D bar model and (b) detailed
3D shell model.

5. FE analysis results

5.1. FE results for column with corrugated sheet on laboratory scale

Results of FE analyses for the column without and with a corrugated
sheet at the laboratory scale are presented in Figs. 11–13 (using the

shell and bar model in Fig. 7).

9

Fig. 11 shows the dependence of the vertical compressive force N
n the vertical displacement u for a detailed numerical model (Fig. 7b)
ith initial geometric imperfection in the form of deformation of the
xperimental system after failure (Fig. 8a) with initial amplitudes equal
o w = 0–10 mm as compared to experimental results. The following
ltimate buckling forces were calculated for the different amplitudes:

= 18.9 kN (𝑤 = 0 mm), 𝑁 = 17.1 kN (𝑤 = 2.5 mm) and
𝑁 = 17.0 kN (𝑤 = 10 mm). The best agreement of the numerical
solution with the experimental tests (𝑁 = 16.5 kN) was, thus, obtained
for 𝑤 = 2.5–10 mm (5% difference). The imperfection amplitude
t the level of e.g. w≥2.5 mm was consistent with the actual state.

The analysed corrugated sheet segment, consisting of two overlapped
sheets and a non-rigid flat bar, which had initial imperfections resulting
from the processing of elements, had an impact on the formation of
imperfections with an amplitude of w≥2 mm. In the case of applying
the imperfection according to the first LBA mode (Fig. 8b) for the initial
imperfection amplitude 𝑤 = 10 mm, the ultimate compressive force
𝑁 = 15.9 kN was obtained, i.e. about 7% less than in the case of
imperfection being related to the deformation of the real system. For a
column without a corrugated steel sheet, the compressive ultimate force
from FEM was solely 𝑁 = 4.0–5.0 kN (for 𝑤 = 2.5–10 mm) - equal
to 50%–60% of the experimental force (𝑁 = 8.4 kN). With the rigid
support, the higher ultimate force N was computed as 𝑁 = 6.0–8.0 kN
(closer to the experimental force). The shape of deformations based on
FE analyses (Fig. 12) corresponded to the experimental deformations
(Fig. 5B). The calculated deformation of the column with a corrugated
sheet (Fig. 12a) and without a corrugated sheet (Fig. 12b) corresponded
to a half-wave with a plastic hinge at the mid-span of the flat bar ‘‘c’’
between points connecting the flat bar to the C-profile ‘‘g ’’ (Fig. 1).

The FE results for the simplified 2D model (Fig. 7a) in comparison
with the experimental results are presented in Fig. 13. The ultimate
compressive force in the column for the initial amplitude of geometric
imperfection equal to 𝑤 = 0 mm was 𝑁 = 42 kN, i.e. it was 2.5 times
greater in relation to the experimental results (𝑁 = 16.5 kN) and to the
result of the ‘3D’ detailed model (𝑁 = 17 kN). However, it was only
about 10% lower than the ultimate force on the basis of Eurocode [12]
(curve ‘c’ in Fig. 13). The FE results similar to the experiments were

obtained for the initial imperfection amplitude 𝑤 = 20 mm (Fig. 13).
Fig. 10. Initial geometric imperfection assumed in numerical analyses of real silo (detailed model) based on: (a) experimental deformation and (b) first LBA mode.
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Fig. 11. FE results of detailed 3D model of silo fragment on a laboratory scale:
dependence of compressive force N in tie-rod on its horizontal displacement u ((a)
olumn with corrugated sheet, (b) column without corrugated sheet, ‘continuous line’ —
xperimental results, ‘dashed line’ — FE results for geometric imperfections according
o Fig. 8a, dash-dot line’ — FE results for geometric imperfections according to Fig. 8b
dotted line’ — FE results for geometric imperfections according to Fig. 8a for rigid
upport).
10
Fig. 13. FE results of simplified 2D model of silo fragment at laboratory scale:
dependence of horizontal compressive force N in tie-rod on horizontal displacement
u ((a) column with corrugated sheet and (b) column without corrugated sheet,
‘continuous line’ — experimental results, ‘dashed line’ — FE results, ‘c’ — standard
buckling resistance of column with corrugated sheet [13] and ‘d’ — plastic bending
resistance of column).
Fig. 12. FE results of silo fragment at laboratory scale: deformation with von Mises stress map [MPa] ((a) column with corrugated sheet and (b) column without corrugated sheet).
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Fig. 14. FE results for 3D shell model of real empty silo: (A) dependence of vertical compressive force N in tie-rod on vertical displacement u ((a) tie-rod force, (b) flat bar
force, ‘continuous line’ - experimental results, ‘dashed line ’- FE results for experimental geometric imperfection according to Fig. 10a and’ dash-dot line ’- FE results for geometric
imperfection according to LBA (Fig. 10b), * - FE result without corrugated sheet) and (B) silo deformation with map of von Mises stresses [MPa].
c
5.2. FE results for real empty silo

The results of numerical analyses for a real empty silo are shown
in Figs. 14 and 15 using the detailed shell model (Fig. 14) and the
simplified bar model (Fig. 15) from Fig. 9.

For the detailed shell model of the empty silo with the initial
amplitudes w of geometrical imperfections in the form of deformation
of the experimental system at the failure (Fig. 10a), the following
amplitudes were assumed w = 1 mm, w = 10 mm, and w = 15 mm. For
the initial imperfection amplitude w = 15 mm (consistent with geodetic
measurements, Fig. 4), the ultimate vertical forces were N = 58 kN in
he tie-rod (dashed curve ‘a’) and N = 44 kN in the flat bar (dashed
11
urve ‘b’) (Fig. 14A). Compared to the experimental tests (N = 49 kN
and N = 39 kN), the higher numerical ultimate forces were obtained
by approx. 20% in the tie-rod (continuous ‘a’ curve) and approx. 10%
in the flat bar (continuous ‘b’ curve). The deformation shape based
on numerical analyses of the empty silo (Fig. 14B) corresponded to
the deformation in the experiments (Fig. 6) - a vertical buckling half-
wave in the lower region of the flat bar (inward buckling of the flat
bar at the lower node ‘‘f’ ’’ of Fig. 3). The length of the buckling half-
wave in the circumferential direction (about 600 mm) was similar as
in the experiment (about 700 mm) (Fig. 14B). For initial geometric
imperfection by the first buckling mode from LBA (Fig. 10b), much
lower ultimate vertical forces N (differences of 100%) were obtained
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Fig. 15. FE results for simplified 2D silo model: (a) experimental force N in tie-rod, (b)
experimental force N in flat bar, (c) calculated force for initial geometric imperfection
amplitude 𝑤 = 0 mm, (d) calculated force for 𝑤 = 5 mm, (e) calculated force for

= 10 mm, (f) calculated force for 𝑤 = 5 mm (modified stiffness of elastic foundation)
and (g) standard buckling resistance [13] (u – vertical displacement).

for the amplitude w = 15 mm than for the experimental imperfection
ype (Fig. 14).

For the simplified numerical model (Fig. 9a), the buckling resistance
as much lower compared to the experimental one and the detailed
umerical model (Fig. 15). For the imperfection amplitude equal to
= 0 mm, the maximum force N was 24 kN (curve ‘c’), i.e. 2 times

ower than the experimental value. Subsequently, for the amplitudes of
eometric imperfections equal to 𝑤 = 5 and 𝑤 = 10 mm, the maximum
orces were reduced to 𝑁 = 14 kN and 𝑁 = 10 kN (curves ‘d’ and

‘e’). The difference in the results of the simplified model in relation to
the experimental results was caused by assuming too low stiffness of
the elastic foundation according to Eurocode. Other numerical calcu-
lations based on the LBA indicated that in the tested silo there was
a global buckling mode other than assumed in the standard, which
was characterized by a buckling half-wave shorter than the column
spacing and consistently higher stiffness of the subsoil. The curve ‘f ’
orresponded to the simplified model for the assumed stiffness of the
lastic foundation in accordance with the buckling form of the analysed
ilo. For the stiffness of the elastic foundation K, calculated on the
asis of Eurocode, taking into account the buckling half-wave length in
he circumferential direction based on LBA, the ultimate vertical force
as approximately 𝑁 = 38 kN (approximately 20% less than in the

xperimental tests, 𝑁 = 49 kN). For the flat bar, not connected to the
orrugated sheet, the maximum compressive force in the tie-rod was
nly 𝑁 = 4 kN (curve ‘a*’ in Fig. 14), i.e. 10% of the buckling resistance
f the column with the corrugated sheet.

Fig. 16 compares the buckling deformation form of the silo in the
ircumferential direction according to Eurocode [13] (corresponding to
he curve ‘g ’ in Fig. 15) and in numerical calculations using a simplified
ilo model (corresponding to the curve ‘f ’ in Fig. 15). The silo schemes
or calculating the stiffness of the elastic foundation K are also shown.
n the numerical silo model, the 3D buckling deformation of the real
ilo with LBA of Fig. 10a was taken into account (Fig. 16a). The sup-
orts were assumed at the places where the buckling displacements of
he 3D silo were zero for preserving the same buckling form (Figs. 16a
nd 16c). It may be seen that the length of the buckling half-wave
n the numerical model (Fig. 16c) is significantly lower (by factor 2)
han in Eurocode [13] (Fig. 16b). This length difference causes the 12-
imes growth of the numerical foundation stiffness K as compared to
urocode [13].
12
Fig. 16. Silo buckling forms in circumferential direction and simplified silo models for
calculating stiffness of elastic foundation K : (a) buckling form from 3D LBA simulations
(Fig. 10b), (b) Eurocode model [13] (case ‘g’ in Fig. 15) and (c) numerical model (case
‘f’ in Fig. 15) (length of buckling wave is in [mm], K=P/u, P - force, u - displacement).

5.3. FE results for real silo pre-filled with wheat

In numerical analyses of the real silo, the behaviour of wheat was
taken into account in a simplified way. In the first case, the elastic
Winkler–Pasternak foundation and in the second case, elastic solid
finite elements were used. The use of a nonlinear model in a stability
analysis to describe the complex behaviour of bulk solids, by taking into
account the effect of density, pressure, and direction of deformation
(using a hypoplastic constitutive law [34]) was described in [30,31].
The stability simulations with a non-linear hypoplastic model are more
realistic but extremely time-consuming (they are foreseen in the next
research step).

Winkler–Pasternak foundation
The bulk solid (wheat) was simulated as a two-parameter elastic

Winkler–Pasternak foundation (Fig. 17a). For this foundation, horizon-
tal springs with a constant 𝐾𝑊 defined the stiffness of the Winkler
foundation and inclined springs with a constant 𝐾𝑃 defining the stiff-
ness of the Pasternak foundation were defined. The elastic constants
𝐾 and 𝐾 were determined from the analysis of the axial-symmetric
𝑊 𝑃
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Fig. 17. Axial-symmetric Winkler–Pasternak foundation: (a) scheme and (b) test for equivalent elastic Winkler–Pasternak foundation from unit concentrated load (displacement u
mm]).
isplacements of the numerical model of the bulk material inside the
ilo and loaded with unit values of a linear load of 1 N/mm and a local
oad of the same value distributed over a length of 76 mm. The effective
odulus of elasticity of the bulk solid 𝐸𝑠𝑈 for the simplified model was
etermined according to the formula [11]:

𝑠𝑈 = 𝜒 ⋅ 𝑝𝑣𝑓𝑡, (1)

here 𝑝𝑣𝑓𝑡 – the vertical component of bulk material pressure and
- the calibration coefficient expressed by the formula 𝜒 = 7𝛾3∕2,

where 𝛾 is the volumetric weight of the stored [kN/m3]. The effective
modulus of elasticity of wheat was 𝐸𝑠𝑈 = 2.76 MPa. Its value was
etermined for the vertical component of the bulk material pressure
𝑣𝑓𝑡 = 16.62 kPa [11] in the mid-span of the compressed flat bar. The
inkler’s foundation stiffness was equal to 𝐾𝑊 = 15.26 N/mm:

= 𝑘 ⋅ 𝑙 ⋅ ℎ (2)
𝑊 𝑊 1 1

13
with

𝑘𝑤 = 𝑝∕𝑢𝑙𝑖𝑛𝑒𝑎𝑟, (3)

where 𝑙1 = 70 mm – the spacing of nodes along the silo circumference,
ℎ1 = 76 mm – the spacing of nodes in the wave valleys of the
corrugated sheet, 𝑝 = 1 N/mm2 – the unit load, 𝑢𝑙𝑖𝑛𝑒𝑎r = 348.7 mm –
the calculated displacement in the axially-symmetric numerical model
of the bulk solid for a unit load p. The stiffness of the Pasternak
foundation was assumed to be 𝐾𝑃 = 74.77 N/mm. This value was
determined by a calibration process in such a way that the displace-
ments in the equivalent Winkler–Pasternak foundation from the unit
local load were consistent with the displacements obtained in the axial-
symmetric numerical model of the bulk solid. For the assumed stiffness
of the Winkler–Pasternak foundation, a comparative deformation anal-
ysis of the foundation under the influence of a unit concentrated load
was carried out in comparison to the deformation obtained for the
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Fig. 18. Continuum FE model for bulk solid: (a) cross-section view and (b) detailing of FE mesh in region of analysed column.
Fig. 19. FE results for detailed 3D model of real silo with wheat: dependence of vertical
compressive force N on vertical displacement u (‘a’ — force in tie-rod, ‘b’ — force in
lat bar, ‘continuous line’ — experiments, ‘dotted line’ — without silo fill, ‘ dash–dot
ine’ — FE result with elastic Winkler–Pasternak foundation and ‘dashed line’ — FE
esult with elastic solid elements).

xial-symmetric material model under plane strain (Fig. 17b). The
isplacement differences were solely 2%.
14
Solid finite elements
An elastic continuum model for wheat consisting of 3D solid finite

elements was adopted (Fig. 18a). The material stiffness for solid ele-
ments was assumed as for the Winkler–Pasternak model (with Young’s
modulus E𝑆𝑢 = 2.76 MPa by Eq. (1)). The solid model of wheat was
adjusted to the shape of the corrugated sheet in the horizontal plane of
the analysed column (Fig. 18b). In the remaining fragments, the wheat
came into contact with the corrugated sheet only in its valleys.

For the analysed elastic models, both the Winkler–Pasternak model
and the solid continuum, model, the contact between the elastic foun-
dation and the surface of the corrugated sheet was used that assumed
that the mutually contacting surfaces of the silo fill and walls might
undergo separation despite initial connection. The occurrence of tensile
stresses in wheat was excluded.

FE results
The FE analyses for the silo with wheat were carried out for a

detailed numerical model with the initial amplitude of geometric im-
perfections 𝑤 = 15 mm (Fig. 9b), based on geodetic measurements for
the empty silo (Fig. 4). The dependence of the compressive force N on
the vertical displacement u is shown in Fig. 19.

The compressive force in the tie-rod increased in calculations up
to 𝑁 = 69 kN for the solid model (the dashed curve ‘a’ in Fig. 19)
and up to 𝑁 = 65 kN for the elastic Winkler–Pasternak foundation
(the dash-dot curve ‘a’ in Fig. 19). As compared to the empty silo
(𝑁 = 58 kN), the calculated increase of the force N in the tie-rod (by
about 10%–20%) was lower than in the experiments (by 20%). The
calculated compressive force in the flat bar was lower and amounted
to 𝑁 = 50 kN (solid model) and 𝑁 = 52 kN (Winkler–Pasternak

foundation) (dashed and dash-dot curves ‘b’ in Fig. 19), which caused
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Fig. 20. FE results for real silo with wheat: deformation with global displacement map [mm] ((a) Winkler–Pasternak elastic foundation model and (b) elastic foundation in form
of solid elements).
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an increase as compared to the empty silo (𝑁 = 44 kN) by about 15%–
20% (less than in the experiments where it was 45%). As compared
with the experimental results of N (𝑁 = 49 kN and 𝑁 = 39 kN),
the computed mean buckling resistance was higher by about 35% in
the tie-rod and by 30% in the flat bar. The numerical curves N = f(u)
are slightly different for two elastic models of wheat with w = 15 mm
Fig. 19) due to a different spacing of springs and size of solid finite
lements.

The deformations obtained on the basis of numerical analyses are
hown in Fig. 20a (solid continuum model of wheat) and Fig. 20b
Winkler–Pasternak foundation). The obtained length of the buckling
alf-wave was approximately 340 mm (Fig. 20a) for the model with
olid finite elements and approximately 300 mm (Fig. 20b) for the
inkler–Pasternak bedding model (on average respectively 5% and

7.5% less than in experiments, Fig. 6b). Better accordance of the
eformation with the experiment (Fig. 6a) was obtained, thus, for solid
inite elements.

For the empty silo and the silo pre-filled with the bulk solid,
he calculated length of the buckling half-wave in the circumferential
irection was approximately two times smaller than assumed in the
urocode procedure. Therefore, the buckling resistance calculated by
urocode was underestimated.

The reasons for discrepancies between experimental and numerical
esults of the compressive force N are probably caused by the assump-

tion of a too high initial amplitude of geometric imperfections w in
he pre-filled silo. In those silos, bulk solid pressure usually smoothens
xisting geometric imperfections [5]. For the amplitude w = 7.5 mm,
he calculated force N = 60 kN in the flat bar was 20% higher than for
= 15 mm (N = 52 kN), and the buckling resistance was solely 10%

ower than in the experiment.

. Conclusions

Based on the conducted experiments and non-linear stability FE
alculations, the following conclusions can be offered concerning the
uckling resistance of single columns with corrugated sheets in silos:
15
• The presence of wheat in the silo increased the buckling resistance
f the column by about 45% in the experiments. The increase in the
uckling resistance of the column in FE computations resulting from the
doption of a linear elastic foundation simulating wheat was less (15%–
0%), caused probably by the assumption of the too high amplitude of
nitial geometric imperfections.

• The buckling resistance of the real silo without a bulk solid by
urocode 3 was two times lower than the experimental one (following
he standard procedure for the sparse column spacing for which the silo
ualified). Thus, the Eurocode formula needs further improvements.
he most similar results obtained in the FE analyses of the empty silo
ompared to the experiments (differing by 10%–20%) were obtained
or the 3D shell model with the initial geometric imperfection shape
rom the experiment (with the amplitude equal to 15 mm). The bar
odel of the column was two times less accurate than the shell model.
• The length of the buckling half-wave in the circumferential direc-

ion obtained in the experiments in the real silo and numerical analyses
f those experiments was about two times shorter than thus assumed
y Eurocode 3. The higher circumferential length of the buckling
alf-wave caused the lower buckling resistance.
• The assumption of initial geometrical imperfections corresponding

o the first LBA mode with the amplitude of 15 mm resulted in a
oo extensive reduction of the buckling resistance (by 100%) as com-
ared to the imperfections consistent with the experimental structure
eformation at the failure.
• The experimental buckling resistance of a single column with a

orrugated sheet on a laboratory scale was two times higher than that
f a column without a sheet in tests at the laboratory scale. Without
he corrugated sheet, 1.5-times greater deformation of the column was
chieved for a twice lower failure force.
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Appendix A

Code formulae for calculating the stability of a single column based
on an elastic foundation in the form of a corrugated sheet for a large
column spacing [13]: (see Box I).

𝑁𝑏,𝑅𝑘 = 2
√

𝐸𝐽 ×𝐾, (A.1)

with

𝜙 =
𝑑𝑠
𝑟
, (A.3)

𝑓 = 1
4
{

(4𝑔2 + 1) (2𝜙 + sin 2𝜙) + 4𝑔 (1 − cos 2𝜙) − 2 sin 2𝜙
}

, (A.4)

𝑔 =
𝐷𝑦 sin

2 𝜙 − 𝑟2𝐶𝑦 [(1 − cos𝜙) (1 + 3 cos𝜙) − 𝜙 sin 2𝜙]

𝐷𝑦 (2𝜙 + sin 2𝜙) − 𝑟2𝐶𝑦 [2𝜙 (2 + cos 2𝜙) − 3 sin 2𝜙]
, (A.5)

where
EJ - the flexural rigidity of the stiffener for bending out of the plane of
the wall,
Cy - the shell membrane stiffness of the corrugated wall sheet for
circumferential stretching,
Dy - the shell bending flexural rigidity of the corrugated wall sheet for
circumferential bending,
ds - the circumferential separation of vertical columns,
r - the silo radius.
 a

16
Appendix B

Code formulae for calculating the stability of the equivalent or-
thotropic shell for a small column spacing [12]:

𝑛𝑥,𝑅𝑐𝑟 = min
(

1
𝑗2𝜔2

(

𝐴1 +
𝐴2
𝐴3

))

(B.1)

with

𝜔 = 𝜋𝑟
𝑗𝑙𝑖

, (B.2)

𝐴1 = 𝑗4
[

𝜔4𝐶44 + 2𝜔2 (𝐶45 + 𝐶66
)

+ 𝐶55
]

+ 𝐶22 + 2𝑗2𝐶25, (B.3)

𝐴2 = 2𝜔2 (𝐶12 + 𝐶33
) (

𝐶22 + 𝑗2𝐶25
) (

𝐶12 + 𝑗2𝜔2𝐶14
)

−
(

𝜔2𝐶11 + 𝐶33
) (

𝐶22 + 𝑗2𝐶25
)2 − 𝜔2 (𝐶22 + 𝜔2𝐶33

) (

𝐶12 + 𝑗2𝜔2𝐶14
)2 ,

(B.4)

𝐴3 =
(

𝜔2𝐶11 + 𝐶33
) (

𝐶22 + 𝐶25 + 𝜔2𝐶33
)

− 𝜔2 (𝐶12 + 𝐶33
)2 , (B.5)

𝐶11 = 𝐶𝜙 + 𝐸𝐴𝑠∕𝑑𝑠, (B.6)

𝐶12 = 𝑣
√

𝐶𝜙𝐶𝜃 , (B.7)

𝐶14 =
𝑒𝑠𝐸𝐴𝑠
(

𝑟𝑑𝑠
) , (B.8)

𝐶44 =

[

𝐷𝜙 + 𝐸𝐼𝑠
𝑑𝑠

+ 𝐸𝐴𝑠𝑒2𝑠
𝑑𝑠

]

𝑟2
, (B.9)

𝐶22 = 𝐶𝜃 + 𝐸𝐴𝑟∕𝑑𝑟, (B.10)

𝐶33 = 𝐶𝜙𝜃 , (B.11)

𝐶25 =
𝑒𝑟𝐸𝐴𝑟
(

𝑟𝑑𝑟
) , (B.12)

𝐶55 =

[

𝐷𝜃 +
𝐸𝐼𝑟
𝑑𝑟

+
𝐸𝐴𝑟𝑒2𝑟
𝑑𝑟

]

∕𝑟2, (B.13)

𝐶66 =
[

𝐷𝜙𝜃 + 0, 5
(

𝐺𝐼𝑡𝑠
𝑑𝑠

+
𝐺𝐼𝑡𝑟
𝑑𝑟

)]

∕𝑟2, (B.14)

where
li — the half wavelength of the potential buckle in the vertical
direction,
j — the critical circumferential wave number of the potential buckle
form,
As — the cross-sectional area of a stringer stiffener,
I s — the second moment of area of a stringer stiffener about the
ircumferential axis (vertical bending),
s — the separation between stringer stiffeners,
ts — the uniform torsion constant of a stringer stiffener,
s — the outward eccentricity from the shell middle surface of a
tringer stiffener,
r — the cross-sectional area of a ring stiffener,
r — the second moment of area of the ring stiffener about the vertical
xis (circumferential bending),
𝐾 = 1
𝑟

{

2𝐶𝑦𝐷𝑦

𝑓𝐷𝑦 + 𝑟2𝐶𝑦
{

𝑓 + 𝜙 cos2 𝜙 (tan𝜙 + 2𝑔)2 − 2
[

2𝑔2 sin 2𝜙 − 2𝑔(cos 2𝜙 − cos𝜙) − sin𝜙(cos𝜙 − 1)
]}

}

, (A.2)

Box I.
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dr — the separation between ring stiffeners,
I tr — the uniform torsion constant of the ring stiffener,
er — the outward eccentricity from the shell mid-surface of the ring
stiffener,
C𝜙 — the sheeting stretching stiffness in the axial direction,
C𝜃 — the sheeting stretching stiffness in the circumferential direction,
C𝜙𝜃 — the sheeting stretching stiffness in membrane shear,
D𝜙 — the sheeting flexural rigidity in the axial direction,
D𝜃 — the sheeting flexural rigidity in the circumferential direction,
D𝜙𝜃 — the sheeting twisting flexural rigidity in twisting,
r — the silo radius.

Appendix C

Formulae for calculating the stiffness of the elastic foundation K
proposed in [25]:

𝐾 =
8 ⋅𝐷𝑦

𝑌
(C.1)

ith

= 𝑟3
(

2𝐴1 − 16𝑋 + 24𝐴1𝑋
2 + 16𝐵1𝑋

)

+ 𝑟2(−4𝐿 + 3𝐵1𝐿 + 16𝑋𝑓 − 16𝐿𝑋2 − 32𝐴1𝑋
2𝑓 )

+ 𝑟2
(

8𝐴1𝐿𝑋 − 16𝐵1𝑋𝑓 + 4𝐵1𝐿𝑋
2)

+ 𝑟
(

𝐴1𝐿
2 − 2𝐿2X + 16𝐿𝑋2𝑓 − 8𝐴1𝐿𝑋𝑓

)

(C.2)

𝑋 =
𝐶2 + 𝐶3

𝐶1
, (C.3)

1 = 4𝐿𝑓 + 𝑟2 sin
(

2𝐴1
)

+ 6𝐴1𝑟
2 + 4𝐴1𝑓

2 − 4𝐿𝑟 − 8𝐴1𝑟𝑓 , (C.4)

2 =
𝑟2 cos

(

2𝐴1
)

2
+ 𝑓

(

2𝑟 cos
(

𝐴1
)

− 2𝑟 + 𝐴1𝐿
)

, (C.5)

𝐶3 =
3𝑟2
2

− 2𝑟2 cos
(

𝐴1
)

− 𝐴1𝐿𝑟 + 𝐿𝑟 sin
(

𝐴1
)

, (C.6)

1 = arcsin
( 𝐿
2𝑟

)

, (C.7)

1 =
√

1 − 𝐿2

4𝑟2
, (C.8)

here:
y — the shell bending flexural rigidity of the corrugated wall sheet

or circumferential bending,
— the length of the arc between the two columns,
— the silo radius,

— the height of the arch.
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