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Abstract

We present a computational framework based on geometric structures. No quantum mechanics

is involved, and yet the algorithms perform tasks analogous to quantum computation. Tensor

products and entangled states are not needed — they are replaced by sets of basic shapes. To test

the formalism we solve in geometric terms the Deutsch-Jozsa problem, historically the first example

that demonstrated the potential power of quantum computation. Each step of the algorithm has

a clear geometric interpetation and allows for a cartoon representation.
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I. INTRODUCTION

Thinking of quantum computation one typically has in mind a quantum computer — a

device based on and limited by the laws of the microworld. But the same laws that allow for

quantum computation state that the noise occuring in actual systems may make the com-

putation more or less unrealistic. The two recent US and UE strategic reports [1] show how

the level of practical difficulties varies from implementation to implementation. The goal of

our paper is to show that perhaps one should also look for non-microworld implementations

of quantum computation. More precisely, we present a framework for quantum-like algo-

rithms that does not refer to quantum mechanics, and involves only geometric structures

algebraized by means of geometric algebras (GA). To prove that the new framework indeed

works we solve in a GA way the celebrated Deutsch–Jozsa (DJ) problem [2].

There are some trivial ways of including GA in quantum computation [3], but this is not

what we want to do. The GA algorithm we present below is not just a simple translation

of the quantum one. As opposed to quantum computation the basic operation is not the

tensor product but the geometric (Clifford) product (the map that forms an oriented square

from two vectors, a cube from a vector and a square, a square from a vector and a cube,

and so on, as shown on the figures). In quantum computation we are bound to use unitary

operations (quantum dynamics is unitary) and projectors (measurements are represented

by projections). Binary numbers are built by tensoring qubits with one another. All these

operations are higly counterintuitive.

In GA computation the operations are different and there is nothing counterintuitive

about them. After a necessary amount of exercise the operations can be visualized without

great difficulty. Binary numbers are coded directly in terms of basic geometric shapes, with

no tensor product or quantum entanglement. Parallel processing is performed on ‘bags of

shapes’. In GA computation one can really see the solution.

II. ELEMENTS OF GA

Let us now recall those basic facts about GA that are important for our purposes [4,

5, 6, 7, 8, 9]. One begins with an n-dimensional Euklidean space Vn whose orthonormal

basis is {e1, . . . , en}. The associative geometric product ab of two vectors a =
∑n

k=1 akek,
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b =
∑n

k=1 bkek, is defined by linearity from the Clifford algebra

ekel + elek = 2δkl1 (1)

of the basis. Here 1 is the neutral element of the GA: a1 = 1a = a. Directed subspaces are

then associated with the set of blades defined as geometric products of different basis vectors

supplemented by the identity 1, corresponding to the basic oriented scalar (analogous to a

charged point). The blades include vectors (oriented line segments), bivectors (oriented

plane segments), trivectors (oriented volume segments), and so on. A general element A of

GA, called a multivector, is a linear combination of the blades

A = A01+
∑

k

Akek +
∑

k<l

Aklekel + · · ·+ A1...ne1 . . . en,

where the coefficients are real.

Figures 1–2 explicitly illustrate the geometry behind multivectors and their geometric

products in a plane. Geometrically the basic blades and their negatives in 2D are: 1 = ◦,
e1 =→, e2 =↑, e12 = �, −1 = •, −e1 =←, e2 =↓, −e12 = �. Here ◦ and • denote the two

oppositely ‘charged’ points.

Note that the dimension of the space of shapes associated with the plane is four. Mul-

tivectors are ‘bags of shapes’ and the high dimensionality is similar to the one known from

configuration spaces in mechanics. As one does not have problems with imagining a 3N -

dimensional space representing configurations of N particles, there is no difficulty with

visualizing the 4-dimensional space representing the ‘bags’ in Figure 2.

The first element that seems new and is beyond the standard presentation of GA is the

binary parametrization of blades and the role it plays for the geometric product. Denote:

1 = e0...0, e1 = e10...0, e2 = e010...0, . . . , e125 = e110010...0, . . . , e12...n−1,n = e11...11. The notation

shows that there is a one-to-one relation between an n-bit number and an element of GA

based on Vn. Geometric product in the binary parametrization reads [10, 11]

eA1...An
eB1...Bn

= (−1)
P

k<l BkAle(A1...An)⊕(B1...Bn), (2)

where (A1 . . . An)⊕(B1 . . . Bn) means componentwise addition mod 2, i.e. the n-dimensional

XOR. The geometric product may be thus regarded as a projective representation of XOR.

This observation is the deperture point for our GA computational framework.
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III. DJ PROBLEM IN GA FRAMEWORK

Assume f : {0, 1}n → {0, 1} is a constant or balanced function. Consider an (n + 1)-

dimensional Euclidean space Vn+1 with orthonormal basis {e1, . . . en+1} and its associated

GA. Let En+1 denote the sum of all the blades,

En+1 =
∑

A1...An+1

eA1...An+1
. (3)

Employing (2) we find, for en = e0...010,

En+1en =
∑

A1...An+1

(−1)An+1eA1...An+1
. (4)

This step is analogous to the first step of the DJ quantum algorithm [2]. Indeed, let Un+1

be the tensor product of n+ 1 Hadamard gates. Then one begins with

Un+1|0 . . . 01〉 =
1√
2n+1

∑

A1...An+1

(−1)An+1 |A1 . . . An+1〉.

Note the difference in location of 1 in e0...010 and |0 . . . 01〉. Now assume there exists an

oracle Ef that performs

EfeA1...AnAn+1
= eA1...AnAn+1

e0...0f(A1...An) (5)

The action of the oracle reduces either to the multiplication by the (n + 1)th basis vector

en+1 = e0...01, if f(A1 . . . An) = 1, or to the trivial multiplication by 1 = e0...0 in the opposite

case. Accordingly

EfEn+1en =
∑

A1...An

(−1)f(A1...An)(eA1...An0 − eA1...An1).

This step is analogous to the oracle action in the quantum algorithm, where

UfUn+1|0 . . . 01〉 =
1√
2n+1

∑

A1...An

(−1)f(A1...An)
(

|A1 . . . An0〉 − |A1 . . . An1〉
)

The final step is performed by means of

Fn+1 =
∑

A1...An

e
†
A1...An0

, (6)

essentially the reverse [12] of En:

Fn+1EfEn+1en =
1

∑

A1...An=0

(−1)f(A1...An)e0...0 + . . . ,
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where the dots stand for the combination of all the blades different from 1 = e0...0. If Π

projects on e0...0, then

ΠFn+1EfEn+1en =







(−1)f(0...0)2n1 for constant f

0 for balanced f

Looking at the e0...0 component we conclude that f is constant if the component is nonzero,

and balanced if the component is zero. We have achieved the same goal as the quantum

algorithm.

IV. CARTOON ALGORITHMS

Cartoon versions of the 2-bit GA algorithm are shown on Figures 3–5. All the three

figures involve the same first step, but the oracles are different. The projection Π means

that we select from the final bag the dots. If the dots are black the function is constant

with f(0) = 1; white dots mean constant function, f(0) = 0 (the oracle is then trivial), and

no dots means zero, i.e. a balanced function. Figure 6 shows the algorithm for the 3-bit

problem and constant f(00) = 0. We do not show the oracle since in this case, analogously

to Figure 4, the oracle acts trivially. For three bits there are 8 blades: 1 scalar, 3 edges ek,

3 walls ekl, and 1 cube e123. The walls are white on one side, and black on the other. e123

is white, and its negative is black. We recommend the readers to translate the cartoon into

a GA expression.

V. ADVANTAGES AND LIMITATIONS

The basic factor that limits practical applicability of cartoon computation is how to

physically implement Ef , En+1, Fn+1. The same problem occurs in standard quantum

computation but one hopes that any finte unitary transformation can be physically realized

by means of a quantum system, at least in principle. However, assuming that black boxes

that perform Ef , En+1, Fn+1 in single runs exist, we obtain the same complexity of the

algorithm as the quantum one. The main advantage is that we no longer have to look for such

implementations in the microscopic domain. We only need geometry, and not necessarily

that of an Euclidean space. Another advantage is that the notions of superposition and

entanglement have here a clear geometric meaning (bags of blades) and no tensor products
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are needed. The coefficients occuring in our ‘entangled states’ do not have a probabilistic

meaning, but can be both positive and negative, and thus lead to interference effects. The

latter property, in addition to parallelism, is the main feature making our algorithms similar

to the quantum ones.

VI. DISCUSSION

The algorithms could also be represented in a matrix way with n-bit numbers given by

Cartan’s representation of an appropriate Clifford algebra [13]. Examples of such calcula-

tions can be found in [10, 11]. The exercise is instructive but can be conceptually misleading.

As often stressed in the GA literature, the matrix representations introduce redundant ele-

ments that obscure the actual geometric meaning of GA operations. In particular, Cartan’s

representation is constructed by means of tensor products of Pauli matrices, a fact that

may make the impression we are using quantum algorithms in notational disguise, perhaps

extended by unphysical operations, which is not the case.

A lot of inspiration for our own work came from certain ‘quantum-like’ constructions

known in semantic analysis and artificial intelligence (AI) [14]. For example, the idea of

replacing tensor product representations [15] by their ‘compressions’ based on alternative

multiplications occurs in convolution based distributed representations of cognitive struc-

tures [16]. ‘Bags of shapes’ are analogous to ‘bags of words’ from latent semantic analysis

(LSA) [17]. The links to AI and, more generally to the studies of human intelligence become

especially intriguing if one thinks of geometric product as a way of decoding relations be-

tween geometric objects. Indeed, consider the following problem: If → � = �→=← � =↓
then � ←=? The GA solution is � ←=↑→←=↑ • = − ↑=↓=→ �. The computation is

based on the observation that � should be identified with ↑→, � with →↑, � with −�,

and →← with −. Similarity to certain IQ tests is striking. Of particular relevance to our

approach are the binary spatter codes (BSC) [10, 18], a method of coding and processing

distributed information, based on appropriately defined superpositions of XORed binary

strings.

An interesting exercise is to try to imagine the three steps of the algorithm from Figure 6

as three different levels of geometric relations between the three ‘bags of shapes’ representing

F3, E3 and e2. After some training one indeed starts to understand and see why the
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(a) 
 
.           =              =            =  ¯                =  ¯              =  ¯       . 
 

 
(b) 

 
.      .            =                    =          .            =            .  
 

 
(c) 

 
.      .            =                    =          .            =            .             = ¯                .             
 
  
 

 FIG. 1: Geometric product is noncommutative. (a) Geometry behind e1e2 = e12 = −e2e1. (b)

Associativity implies e1e2e1 = e12e1. (c) The same as (b) but performed in a different order.

Self-consistency implies that e1e2e1 = e1(−e12) = −e1e12.

multiplication F3E3e2 looks like the rightmost bag. In this way we have approached the

intriguing problem of understanding via visualization, and the role played in this context by

quantum geometry [19].

To conclude, we seem to be dealing with a new research field on the borderland between

‘quantum structures’ and cognitive science. The counterintuitive elements typical of quan-

tum computation are here absent. The basic structure is geometric and thus very general.

How to build a ‘parallel geometric processor’ based on a physical process is a separate is-

sue, but one is no longer confined to quantum systems. In particular, realizations based

on classical physics cannot be excluded. Finally, implications for ‘the missing science of

consciousness’, artificial intelligence, and various representations of cognitive structures can

be far reaching and should be further studied.
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(a)

                                                      =

 =  3×1 + 2×e1 -  0.5×e2 + 4×e12

(b)

                                                                       .                              =

= (3×1 + 2×e1 +  0.5×e2 - 4×e12)e12 = 3× e12 + 2×e2 -  0.5×e1 + 4×1

FIG. 2: (a) Multivectors are ‘bags of blades’. The two different bags are equivalent. (b) Geometric

product of a multivector and a blade.

Step 1:

                          .                  = E2e1  =                                     = 1 + e1 - e2 - e12

Step 2: Oracle Ef

 EfE2e1 = Ef                                 =

Step 3:

               .   .                                =

Step 4:         Π                                     =                 = - 2×1

FIG. 3: DJ problem solved exclusively by means of geometric operations: a 2-bit problem with

f(0) = f(1) = 1. One can see the result: The two black dots mean −2 = (−1)f(0)21.
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Step 2: Oracle Ef

 EfE2e1 = Ef                                 =

Step 3:

               .   .                                =

Step 4:       Π                                      =                 = +2×1

FIG. 4: The 2-bit problem and the constant function f(0) = f(1) = 0. The oracle acts trivially.

One again sees the result: The two white dots mean +2 = (−1)f(0)21.

Step 2: Oracle Ef

EfE2e1 = Ef                                 =

Step 3:

               .   .                                =                                     =                     =  0

FIG. 5: The 2-bit problem and the balanced function f(0) = 0, f(1) = 1. The bag is empty.
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=• •

F3

E3

e2

Π
→ = +4

FIG. 6: 3-bit problem for the constant function f(00) = 0. The oracle is trivial. Four white dots

mean +4 = (−1)f(00)22.
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