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Cattaneo–Christov heat flow 
model for copper–water nanofluid 
heat transfer under Marangoni 
convection and slip conditions
Khalid Abdulkhaliq M. Alharbi1, Mohammed Nasser Alshahrani2, Naeem Ullah3, 
Naseer M. Khan4*, Krawczuk Marek5, Abd Allah A. Mousa6 & Sajid Ali7

This report is devoted to the study of the flow of MHD nanofluids through a vertical porous plate 
with a temperature-dependent surface tension using the Cattaneo–Christov heat flow model. The 
energy equation was formulated using the Cattaneo–Christov heat flux model instead of Fourier’s 
law of heat conduction. The Tiwari–Das model was used to take into account the concentration of 
nanoparticles when constructing the momentum equation. The problem is described mathematically 
using the boundary layer approach as a PDE, which is then converted into an ODE with the help of 
the transformation process. The solution finding process was completed by running the bvp4c code 
in MATLAB. A quantitative analysis of the influence of some newly occurring parameters on physical 
quantities was carried out using graphics. The addition of nanoparticles to the base fluid leads to an 
increase in both skin friction and thermal conductivity. The increase in thermal conductivity is the 
advantage, while the increase in skin friction is the disadvantage of the nanoparticle concentration. 
Marangoni convection has proven to be one of the most cost-effective tools available that can 
reduce skin friction. Marangoni convection improves the heat transfer coefficient during suction but 
decreases the heat transfer coefficient during the injection.

The traditional Fourier law of heat  transfer1 is the most reliable approach to understanding the dynamics of heat 
transfer under various conditions. Nevertheless, it has a fundamental flaw: it requires the establishment of a para-
bolic equation for the energy of the temperature field, which is not compatible with the principle of causality. In 
its well-known study,  Cattaneo2 offered a successful adaptation of the Fourier model in order to add an essential 
feature of the thermal relaxation time. It can be seen from this that a hyperbolic energy equation is formed for a 
temperature field, which makes it possible to transfer heat at a limited speed via the propagation of heat waves. 
This type of heat transfer has interesting practical applications ranging from nanofluidic flows to modeling skin 
burns (it is desirable to  see3). It has been found that thermal relaxation times for some materials, including bio-
logical tissue (1–100 s), sand (21 s), and NaHCO3 (29 s), are long. To preserve the material-invariant calculation, 
 Christov4 replaced the time derivative with the upper-convected derivative of Oldroyd in the Maxwell-Cattaneo’s 
model. This model is referred to in the literature as Cattaneo–Christov heat flow model.  Garia5,6 studied in detail 
the steady MHD flow of a hybrid nanofluid, considering multiple geometries such as wedge and cone. The natural 
convective boundary layer flow in the Newtonian liquid was investigated by  Straughan7. The heat transfer study 
of a Maxwell fluid under the velocity slip condition according to the Cattaneo–Christov approach is carried 
out by  Han8. They used methods of Homotopy analysis and a numerical method, the so-called finite difference 
scheme, to find solutions to the basic equations.
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The combined effect of magnetic field and biological convection on the boundary layered flow of unsteady 
MHD Sakiadis and Blasius nanofluids was investigated by  Ali9.  Ibrahim10 published a communication report on 
viscoelastic nanofluid flow related to the Cattaneo–Christov mass and heat flow model and third-order velocity 
slip, and investigated various relevant flow parameters. Using a new mathematical model of a second-grade bio-
convective nanofluid in combination with viscous dissipation and the Cattaneo–Christov heat flow model for the 
transfer of heat through a permeable medium,  Raja11 initiated a study with the Levenberg-Marquardt technique 
(LMT) on the smooth backpropagated Neural Networks (BNN) calculation. The effect of MHD on the rotational 
flow of the unsteady Oldroyd-B nanofluid with the concentration and temperature of the nanoparticles is related 
to Brownian motion and the Cattaneo–Christov heat flow is explained by  Ali12. With the Cattaneo–Christov 
heat flow, the VON Kármán spinning flow problem is extended to the slip condition of Navier on the stretched 
spinning disk surface.  Lim13 examined semi-analytically the flow of an MHD Casson liquid over a rotating disk. 
Farooq’s research is aimed at obtaining numerical results for an MHD nanofluid flow with a Cattaneo–Christov 
heat flow model and thermal radiation through a stretched surface with melting boundary conditions. The 
Cattaneo–Christov model is used for a 2D boundary layer. Salahuddin’s  study14 uses the nanofluid cross-flow 
across the surface of a parabola and the temperature-dependent viscosity to investigate heat and mass diffusion. 
In addition, the study of the influence of changes in enthalpy and activation energy broadens the scope of this 
topic.  Mushtaq15 considered the Cattaneo model, which is an improved form of the Fourier equation for heat 
conduction, including thermal inertia.

When surface tension is high due to temperature and material gradients, Marangoni convection occurs. 
Microgravity is dominated by Marangoni convection and its applications include heat exchangers, crystal growth, 
coating processes, soap film stabilization, silicon wafer growth and other technical  applications16. Using a series 
of three-dimensional numerical calculations that take into account the effect of radiative heat transfer to the 
free surface, the properties of Marangoni convection in a shallow rectangular cavity subject to mutually per-
pendicular gradients of temperature and concentration are  investigated17–21.  Wang22 experimentally investigated 
the tendencies of Marangoni convection in an evaporating droplet deposited over a volatile liquid layer. At two 
different equilibrium states, two types of Marangoni instabilities are found on the surface of a methanol droplet. 
In the entire floating zone with radiant heat transfer under zero gravity conditions, Chihao  Jin23 carried out 
a computational study of the Marangoni thermosolar convection.  Sun24 has developed an axisymmetric 2D 
mathematical model to predict the melting of spherical EPCMs, including air pockets at the top. In addition 
to natural convection due to buoyancy, this topic also discusses for the first time Marangoni convection due to 
thermocapillary force at the PCM interface with molten air. The entropy nature of the laminar, steady, relative 
contribution of solitary and thermal Marangoni convection during the passage of a hybrid Cassonian nanofluid 
(Al2O3-Cu-H2O) in a disk flow under the action of a nonlinear heat source/sink, radiation, viscous dissipation 
and nonlinear convection are described in the Yun-Xiang Li’s25 study.

Microfluidics, semiconductor vapor drying in microelectronics, foams, surfactant replacement therapy for 
newborns, coating technology and film drainage in emulsions are examples of Marangoni convection, which 
is important in industrial, biomedical and everyday applications. Song’s26 research focuses on the role of bio-
convection in the flow of Carreau nanofluid through a stretched cylinder. The study was modified to include 
the effects of melting and chemical reactions.  Zhang27 used a series of 3D numerical models to study the fea-
tures of Marangoni convection in a narrow rectangular channel with a linear boundary condition. In his work, 
 Mackolil28–33 explains many aspects of Marangoni convection on the macroscopic properties of nanofluids by 
considering different geometries with new boundary conditions and fluid models.  Kazemi34 developed a study 
to investigate the formation of entropy in hybrid nanofluids, including parts of Marangoni convection and a 
Darcy-Forchheimer model to explain the momentum equation.

In the current study, the authors examined the flow of a viscous nanofluid on a vertical porous plate with the 
effects of the magnetic field, suction, and Cattaneo–Christov heat flux. The effect of Marangoni convection and 
volume fraction during heat transfer was investigated using the Tiwari–Das model and the Cattaneo–Christov 
model. Many scientists, including  Farooq35, have worked on a comparative problem of fluid flow through a 
vertical porous plate, but none have related Marangoni convection and Cattaneo–Christov heat flow in their 
research. When the Cattaneo–Christov heat flow and slip conditions are included, fluid problems are appropri-
ately addressed in the real scenario. The assumption that a liquid flows through a porous plate is critical to many 
industrial and technological activities, including power generation, turbomachinery, and food processing. The 
stated purpose of the analysis is:

• The equations of concentration and energy are modified using the connections of the Cattaneo–Christov 
theory.

• The purpose of this study is to see how Marangoni convection affects the thermal transport of nanofluid.
• To see how velocity slip affects the thermal transport of nanofluid.
• The effect of the Prandtl number on the effective Prandtl method, as well as the suction phenomenon, was 

investigated.
• The concentration, velocity and temperature of the nanofluid are analyzed using 2D graphical analysis.

Mathematical modeling
In the Cartesian plane, it is proposed to study the Marangoni convection of Copper–Water MHD nanofluids with 
temperature-dependent surface tension and Cattaneo–Christov heat flux. The flow at the surface of a porous 
vertical plate is considered under the assumption that there is a constant suction v0 at the surface. Suction is a 
boundary layer control approach aimed at reducing energy losses in channels or drag on bodies in an external 
flow. The nanofluid investigated was prepared by immersing copper nanoparticles in water and was called the 
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Tiwari–Das  model36 for constructing the equation of momentum. The nanofluid flow is magnetized by passing 
a constant magnetic flux perpendicular to the nanofluid flow (see Fig. 1). Due to the low Reynolds number, the 
strength of the induced magnetic field is negligible and the induced magnetic field does not affect heat transfer. 
The current study assumes that the viscosity and density of the fluid are independent of temperature. The velocity 
of nanofluid is zero if the distance from the sheet is significant and the temperature at this point is considered 
equal to T∞ , and the surface temperature of the sheet is expressed as Tw . The momentum and temperature equa-
tions that govern the current flow model can be approximated by boundary layer approximation as  follows37,38:

The Cartesian velocity components in the x - and y - directions are indicated as u and v, respectively. Thermal 
diffusivity of nanofluid is represented as αnf  , density is represented as ρnf  , and dynamic viscosity is represented 
as µnf  . The indices f and nf indicate the base fluid and nanofluid. The thermal relaxation time of the fluid is 
specified by �T . The main thermophysical properties of the nanofluids investigated are taken from the standard 
literature. The combination of equations that can estimate the physical aspects of the flow model is related to 
the following boundary conditions:

 
The coefficient of surface tension, which is a function of temperature, can be formulated by the following 

 equation39:

The parameters occurring in the boundary conditions can be explained by the fact that N is the slip coefficient, 
σm is the surface tension and l is the characteristic length. The following are the Similarity Transformations used 
in this article to convert the partial differential equations to regular ordinary  ones37.
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Figure 1.  Flow model exhibition.
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The continuity equation is satisfied by applying the transformation defined above while converting the 
momentum and temperature equations into the following equations.

Boundary conditions are transformed as follows:

The dimensionless parameters involved in Eqs. (7)–(9) are mathematically represented as:

Numerical procedure
By including similarity variables, the corresponding partial differential equations and boundary conditions are 
first converted into a set of non-linear ordinary differential equations. The Eqs. (7), (8) and the boundary condi-
tions (9) are then transformed into a system of ordinary differential equations of the first order, which are numeri-
cally solved in MATLAB using the bvp4c approach. The collocation approach has been used to solve the following 
problem. The procedure is explained as follows. Let f (η) = s1, f

′(η) = s2, f
′′(η) = s3, θ(η) = s4, θ

′(η) = s5 . Then 
the set of equations written at the last of the mathematical modeling section as:

To find a solution, you need to run a residual test for accurate data transfer and grid-point selection when 
working with the bvp4c scheme in MATLAB. The convergence criterion for this particular numerical code is 
1× 10−6 . Dividing the difference between the edge points by the number of grid points gives the step size (i.e. 
b−a
n  ). If one of the boundary points is infinite, you must use the corresponding integer. In this case, the value 

η = η∞ = 10 was used. Make good initial estimates to find the best solution to the Eqs. (11), (12) and related 
boundary condition problems.

Discussion
In this part, the influence of the corresponding parameters of the problem being solved on temperature and 
speed is investigated. To do this, some images are created by changing the value of a parameter in a certain range, 
and other parameters such as: A(= ρf µnf

ρnf µf
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Pr = 6.0674 (for water Pr = 6.0674) , �1 = 0.5 , S = 0.5 , Ma= 0.8, and φ = 0.05 are unchanged. We found that the 
results are consistent and have significant parallels with previous work (see Table 1), assuming that the flow 
model is physically stable and the numerical solution method, in particular the “bvp4c” scheme, is correct. Table 2 
shows the main thermophysical properties of the base fluid and  nanoparticles40. Figures 2, 3, 4, 5, 6 and Table 1 
are constructed using the bvp4c MATLAB code provided in Appendix A.

Figure 2a shows the behavior of the velocity as a function of η when the magnetic parameter is changed in 
a certain range. The figure above shows that the increase or decrease in velocity occurs in a pattern opposite to 
the magnetic parameter. The physical reason is that the liquid particles are attracted by the opposite Lorentz 
force, which causes the liquid particles to move slowly. As a result, the overall fluid velocity decreases. Fig. 2a 
shows the behavior of the velocity as a function of η when the magnetic parameter changes in three-dimensional 
space. The Fig. 3c shows how the Marangoni convection parameter (Ma) affects fluid velocity without changing 
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all other parameter values. It is noted that the velocity profile changes in the same way as the parameter Ma. The 
speed increases when this parameter is increased, and slows down when the Marangoni convection parameter 
(Ma) decreases. The surface tension gradient in liquids is often associated with Marangoni convection. As the 
Marangoni convection parameter increases, these surface tension gradients develop and liquid particles on the 
surface rapidly flow into regions of low surface energy. In other words,, the higher the Ma, the lower the viscos-
ity. The smaller the viscous force, the faster the fluid velocity. The Fig. 3d shows the behavior of the velocity as a 
function of η with a change in the Marangoni convection parameter in three-dimensional space.

The behavior of the speed as a function of η with a change in the concentration of nanoparticles ( φ ) in a certain 
range is shown in Fig. 3e. It should be noted that the velocity values are lower for a concentrated suspension of 
nanoparticles. A concentrated suspension is more likely to cause collisions between liquid particles. The speed 
of the particles decreases after colliding with another particle, which causes the speed of the liquid on the graph 
to decrease. Figure 3f shows the behavior of the velocity as a function of η with a change in the concentration of 
nanoparticles in three-dimensional space. Figure 3a shows a graph of velocity versus suction for two different 
cases of velocity slip, with all other parameters remaining unchanged. As expected, the velocity was found to 
be a decreasing function of the suction parameter. Suction, in physical terms, refers to the flow of fluid from a 
region of low pressure to a region of high pressure. It is quite clear that the liquid decreases as it enters the region 
of high pressure from the region of low pressure. The Fig. 3b shows the behavior of the velocity as a function of 
η when changing the suction parameter in three-dimensional space.

The curve of the temperature dependence on the magnetic parameter with all other parameters fixed is 
shown in Fig. 4a. When electromagnetic waves flow through the liquid, the particles vibrate with a higher fre-
quency, increasing the kinetic energy of the particles. Due to the direct relationship between kinetic energy and 

Table 1.  Comparison of the results by calculating −θ ′(0) values for different Prandtl numbers.

Pr 7.0 10 15

Isak et al.41 0.8086 1.0000 1.9237

Ganesh et al.42 0.808631 1.000000 1.923682

Umar et al.35 0.808631 1.000000 1.923682

Current results 0.808630 1.000000 1.923677

Table 2.  Thermophysical properties of water and copper.

Cp

[

J

K kg

]

ρ

[

kg

m3

]

k

[

W

K m

]

β × 105
[

1

K

]

Cu (copper) 385 8933 401 1.67

H2O (pure water) 4179 997.1 0.613 21

Figure 2.  Demonstration of the dependence of velocity on the physical parameters in both 2D and 3D (see 
Appendix A).
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temperature, the temperature of the liquid rises. Figure 4b shows the behavior of temperature depending on η 
when changing the magnetic parameter in three-dimensional space.

Figure 3.  Demonstration of the dependence of velocity on the physical parameters in both 2D and 3D (see 
Appendix A).
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Figure 4c shows the temperature dependence on the Marangoni convection parameter when all other param-
eters remain constant. The temperature profile is reduced due to the Marangoni convection parameter, as seen 

Figure 4.  Demonstration of “temperature verses different physical parameters” (see Appendix A).
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in the figure below. Undoubtedly, the speed increases as the viscosity decreases for larger values of Ma. The 
average kinetic energy of fluid particles is defined as temperature. Therefore, the higher the Ma, the higher the 
temperature. Figure 4d shows the behavior of temperature as a function of η when changing the parameter of 
Marangoni convection in three-dimensional space. Figure 4e shows the relationship between temperature and 
nanoparticle concentration, while all other factors remain constant. As you can see in the diagram below, increas-
ing the concentration of nanoparticles improves the temperature profile. This is because when the dispersion 
of nanoparticles is concentrated, the nanoparticles are more prone to collisions. The temperature of the liquid 
rises as a result of the huge number of collisions between the nanoparticles. Figure 4f shows the behavior of 
temperature as a function of η when changing the concentration of nanoparticles in three-dimensional space. 
The dependence of the temperature curve on �1 (thermal relaxation parameter) with all other parameters rigidly 
set was tested in Fig. 5a. The thermal relaxation parameter tends to decrease the temperature curve, which can 
be seen in the figure. Figure 5b shows the behavior of temperature as a function of η when changing the thermal 
relaxation parameter in three-dimensional space.

The dependence of the temperature curve on the suction parameter with a rigid setting of all other parameters 
was tested in Fig. 5c. A decrease in the temperature curve was observed at a high surface suction resolution. Suc-
tion has a physical effect on temperature because heat transmission increases as suction on the surface increases. 
The temperature drops as heat is quickly transmitted from one spot to another. Figure 5d shows the behavior of 
temperature as a function of η when changing the suction parameter in three-dimensional space.

The effect of the Marangoni convection parameter on skin friction by leaving all other parameters unchanged 
is shown in the Fig. 6a. The Marangoni convection parameter is able to reduce the skin friction coefficient, as 
can be seen from the attached figure. Figure 6b shows the behavior of the skin friction curve for different values 
of nanoparticle concentration, keeping the remaining parameters constant. The frictional force between a solid 
and a liquid is physically referred to as skin friction. In the case of a concentrated suspension of nanoparticles, 
the interaction of a solid with a liquid is significant and therefore the coefficient of skin friction increases.

Figure 5.  Exhibition of the influence of physical parameters on physical quantities (see Appendix A).
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The Nusselt number was tested for different values of the Marangoni convection parameter for suction and 
injection separately in Fig. 6c. The Marangoni convection parameter promotes the Nusselt number during 
surface suction and lowers the temperature during surface injection. The Nusselt number was tested for various 
values of the concentration of nanoparticles, the rest of the parameters were set fixed in Fig. 6d. A suspension 
of nanoparticles has a tremendous ability to transfer heat in the case of a concentrated suspension. The physical 
reason is that the addition of nanoparticles improves the thermal conductivity of the liquid. Since there is a large 
amount of coolant, this leads to an increase in the Nusselt number.

Conclusion
The Cartesian plane has been used to study the Marangoni convection of non-Newtonian MHD nanofluids with 
temperature-dependent surface tension and Cattaneo–Christov heat flux. Similarity variables were used to trans-
form ruling PDEs to regular ordinary equations. Since bvp4c is a numerical code for a computationally intensive 
solution, it is used here to track the solution of the developed model. The dependence of some important physi-
cal quantities such as speed, skin friction, temperature and Nusselt number on some new physical parameters 
was checked. Excellent convergence and consistency was found when comparing the results with the previous 
publication and therefore we can argue that bvp4c is a computational code that is executed with very little effort.

• A direct relationship was found between the fluid velocity and the Marangoni convection parameter, and the 
inverse relationship was found between the temperature and the Marangoni convection parameter.

• The purpose of the implantation of the magnetic field is to balance the suction rate, which results in a decrease 
in fluid velocity.

• One of the main goals of this study is to reduce skin friction. Marangoni convection has been found to be 
one of the inexpensive tools available that can reduce skin friction.

• The advantage of nanoparticle concentration is that it improves the thermal conductivity of the nanofluid, 
but on the other hand it significantly increases the skin friction. This is a drawback of the high concentration 
of nanoparticles.

Figure 6.  Exhibition of the influence of physical parameters on physical quantities (see Appendix A).
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• If there is suction on the surface, the Marangoni convection setting will greatly improve the heat transfer 
coefficient, but in the case of injection it will tend to lower the heat transfer coefficient.

• The higher the concentration of nanoparticles, the higher the heat transfer rate will be and vice versa.

Appendix A
function
clc;
% Author: NM Khan
% Physical Parameters
A = 0.5; B = 0.4; k1 = 0.1; tau = 0.5; Pr =6.0674; lambda1 = 0.5; lambda = 0.5; S=0.5; Ma= 0.8, phi= 0.05
% Initial guess
sol = bvpinit(linspace(0,5,100), [0 0 0 0 0]);
% solution in structure form
sol1 = bvp4c( bvpexam2, bcexam2, sol);
lastwarn(‘ new_msgstr ‘);
% x values
x1 = sol1.x;
% s values in row form (s, s′, s′′ , theta, theta′)
s1 = sol1.s;
% plot any one of the solutions s1, here we plot theta figure (1)
plot(x1, s1(2, :), ‘ b ‘, ‘ linewidth ‘, 1, ‘ Linesmoothing‘, ‘ on‘);
xlabel(‘ \eta ‘)
ylabel(‘ \f ⌃{\prime} (\eta) ‘)
% grid on
hold all
value = deval(sol1, 0);
% get results upto six digits
vpa(value, 6)
hold on
% Here I define residual of boundary conditions
function res = bcexam2(s0, sinf)
res = [s0(1)− S; s0(2)+ 2 ⋆ lambda ⋆Ma ⋆ (1− phi) ⌃ (−2.5); s0(4)− 1; sinf (2); sinf (4)];
end
% First order ODEs are define here
function ysol = bvpexam2(x,s)
ss1 = (1/A)(−s(1) ⋆ s(3)+ s(2) ⌃ 2+ B ⋆M ⋆ s(2));
ss2 = −(1/(k1 − tau ⋆ Pr ⋆ s(1) 
⌃ 2))⋆tau⋆Pr⋆(s(1)⋆s(5)−2⋆s(2)⋆s(4)+lambda1⋆(5⋆s(1)⋆s(2)⋆s(5)+2⋆s(1)⋆s(3)⋆s(4)−s(2) ⌃ 2 ⋆ s(4)));
ysol = [s(2); s(3); ss1; s(5); ss2];
end
end

Received: 15 January 2022; Accepted: 21 March 2022
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