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1. Introduction

Molecular-dynamics (MD) simulations constitute an indispensable tool for the
computational theorist. By presenting a spatial-temporal picture of the behaviour
of matter at the atomic scale they can elucidate aspects of physical processes and
phenomena that are often inaccessible to experimental study.

The credibility of results obtained from any atomistic simulation depends first and
foremost on the quality of the model employed to describe interatomic interactions.
The last two decades witnessed significant improvements in empirical descriptions of
the condensed phase, with a number of novel potentials developed for covalent [1–13],
ionic [14, 15], and metallic systems [16–22]. Recently developed potentials are able
to satisfactorily describe the properties of wide classes of materials, with quantitative
agreement with experiment often attained or within sight.

For metals and their alloys the embedded atom method [23] (EAM) represents the
state of the art. EAM-type potentials have been developed for the majority of metallic
elements [16, 18, 21, 24, 25], with as many as several potentials or parameterisations
available for a number of metals (e.g.: Al and Ni [16, 21, 24]; Ag, Au, Cu and
Pt [18,21,24]). A range of generalisations and extensions of EAM have been proposed
and studied – the modified embedded atom method [26] (MEAM), first nearest-
neighbour modified embedded atom method [27] (1NN-MEAM), second nearest-
neighbour modified embeded atom method [17] (2NN-MEAM), angular-dependent
embedded atom method [20] (A-EAM) and spline-based modified embedded atom
method [11] (s-MEAM). All the above-mentioned improvements employ a more
general form of the description with the aim of correctly capturing the nature of the
interactions for configurations that are far from the equilibrium structure. Successes
have recently been reported even for problematic systems, such as Zr or Ti [28].
Newly-developed potentials often offer improved transferability, occasionally aiming to
reproduce wide subsets of phase diagrams of binary systems [29]. Of the generalisations
listed above the s-MEAM approach deserves particular attention.

The spline-based modified embedded atom method (s-MEAM) was proposed in
2000 by Lenosky et al [11] in order to describe the interactions in silicon. The
starting point is the MEAM formalism [27], with the traditionally used functional
forms subsequently replaced with cubic spline functions. Furthermore, the description
of the electronic density has been augmented with angular terms of very general nature,
obviating the need to decide a priori on a particular character of angular dependence.
Lenosky et al [11] demonstrate that their potential describes well the energetics of a
wide range of configurations for Si (including the dimer, fcc and hcp) and is able to
reproduce structural and elastic properties of a number of phases of bulk silicon.

More recently it was shown [22] that – when thoroughly parameterised to
reproduce properties obtained from ab initio calculations – the s-MEAM approach
can yield a remarkably predictive and transferable potential. The potential developed
in 2012 by Park et al [22] offers a very good description of a number of
properties of molybdenum, including structural (lattice constants, energetics of
stable and metastable phases), elastic (elastic constants, phonon dispersion curves),
and thermodynamic properties (coefficients of thermal expansion, compressibility).
Moreover, the properties of defected Mo are also well described, both for point and
line defects, with the latter of particular interest in studies of plasticity [30]. Through
a comparison with ab initio calculations Park et al were able to demonstrate that
the proposed potential is able to reasonably well describe fundamental properties
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of dislocations, such as dislocation energy or Peierls stress, and other descriptors of
plastic behaviour of materials, e.g. shear strength and stacking fault energies.

Currently s-MEAM parameterisations are available only for Mo [22], Ti [31] and
Si [11, 32]. The parameterisation for Ti has been particularly successful, with the
ability to describe complex martensitic phase transformations between the α, β and
ω phases of titanium. At the same time its predictions for elastic constants, phonon
frequencies, surface energies and defect formation energies are in very good agreement
with results obtained at the density functional theory (DFT) level of theory. With
the successes of [11, 22, 31, 32] in mind, we anticipate an increase in the number of
available parameterisations of s-MEAM in the near future.

More often than not, the full characterisation of a simulated material requires the
determination of its stress distribution. This is of particular interest in the field of
mechanics of materials, where the ability to describe the behaviour of matter at the
picosecond-nanometre-scale in the familiar terms used in continuum theory is desirable
for the elucidation of the effect of microstructure on the macroscopic properties of the
material.

Stress is a well-defined quantity in continuum mechanics. The task of formulating
a suitable, physically sound atomic-scale analogue is difficult, which is evidenced by
the fact that it took over a hundred years for consesus to be reached in the literature.

Clausius and Maxwell, whose works [33–35] presented the virial theorem, can be
regarded as the first to tackle the microscopic definition of stress. The concept of
virial stress was later developed by Tsai [36], who generalised its definition to the case
of finite temperature. Owing to its simple form and ease of calculation, virial stress
became a commonly used measure of macroscopic stress in atomistic simulations.

The need to describe the spatial distribution of stress led to the formulation of
measures of local stress that were based on virial stress. In such approaches local
stress is usually calculated at atomic sites, taking into account the contributions
to the virial associated with the atom in question [37] (Basinski-Duesberry-Taylor
(BDT) stress). Alternatively, local stress at a point can be expressed in terms of
contributions to the virial that arise from an averaging volume encompassing the
point in question [38] (Lutsko stress). The validity of the above virial-based classes
of approaches has since been questioned. For instance, it has been shown [39] that
they do not correspond to the true (Cauchy) stress, or any other mechanical stress.
Limitations in their application to non-homogeneous and non-equilibrium systems
have also been highlighted [40].

Another line of attack on the problem of determining local stress was taken in the
1950s by Irving and Kirkwood, who described [41] a formalism for determining fields of
certain quantities, among these the stress tensor, for any given distribution of particles.
The IK approach is based on non-equilibrium classical statistical mechanics and,
by construction, can be applied to non-homogeneous and non-equilibrium systems.
The approach is, however, plagued by practical difficulties which mostly result from
the expansions into a series of Dirac delta distributions that are present in the final
expressions.

The Irving-Kirkwood approach was later generalised by Noll [42], who proved two
significant lemmata which could be used to rid the IK procedure of the incumbrance
of Dirac delta series. Despite the fact that the expressions obtained by Noll were
significantly more compact, the modified approach was still far from straightforward,
with the difficulties mostly a consequence of its purely stochastic nature.

A breakthrough materialised in the works of Hardy [43] and Murdoch [44], who
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independently arrived at a new formulation, one that worked around the mathematical
difficulties of the IK procedure. Hardy and Murdoch noted that experimental
measurements reflect spatial-temporal averages of molecular behaviour. Hardy [43]
replaced the Dirac delta distributions arising in the Irvin-Kirkwood approach with
regular functions, termed kernel functions, which served to perform spatial averaging.
Murdoch [44] introduced spatial and temporal averaging to the IK procedure, which
was another way of circumventing the use of Dirac delta distributions and obviated
the need to calculate ensemble averages.

The approach of [43, 44] (termed the Murdoch-Hardy procedure, with the
corresponding quantity known as Hardy stress) was later further generalised [45–54].
Owing to its many advantages, Hardy stress has since found widespread use in
atomistic simulations [55–64].

Other approaches to the calculation of local stress have been proposed over time
[36–38,40,65], with the definition itself often an object of debate [40,48,50,51,53–55].
The features of a number of measures of local stress were examined in detail by Admal
and Tadmor [53,54], who showed through numerical experiments [53] that of the three
most commonly used approaches, Hardy stress is the most accurate approach, with
the most favourable convergence with respect to the averaging volume.

It is worth pointing out, however, that the spectrum of application of Hardy stress
is still limited in practice, which is a consequence of the assumptions regarding the
form of energies and forces imposed by the framework of Murdoch-Hardy’s formalism,
viz.:

(i) the potential energy of interactions Epot is a function of only the interatomic
distances, i.e. it can be expressed as

Epot = Epot(r12, r13, . . . , r1N , r23, r24, . . . , r2N , . . . , rN−1,N ), (1)

(ii) the total force acting on atom i can be written as

Fi =
∑

j 6=i

Fij , (2)

where Fij is the force with which atom j acts on atom i. The forces must satisfy
the strong law of action and reaction, i.e. Fij = −Fji and the force Fij must be
a central force, i.e. the vector Fij must be parallel to the vector rij connecting
atoms i and j.

A method for decomposing total forces that satisfies the conditions stated in the second
point above is termed a central force decomposition (CFD). This is a natural, and,
as shown by Admal and Tadmor [53], the most justifiable decomposition, because it
provides a stress tensor which is symmetric and which also satisfies the balance of
linear and angular momentum.

While all pair potentials satisfy both (1) and (2), it is not immediately obvious
whether the above conditions, and (2) in particular, are satisfied in the case of
more involved potentials, particularly for many-body potentials. For this reason,
Hardy stress has so far been employed in calculations using pair potentials [58, 61],
or EAM potentials that use a spherically symmetric form of the electronic density
[55, 57, 59, 60, 62], for which CFD expressions are known. The possibility of applying
Hardy stress to three-body potentials has also been discussed [56]. Only recently
applications of Hardy stress to systems described by four-body potentials have been
reported [63, 64]. To our best knowledge, there are no examples in the literature of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Central-force decomposition of s-MEAM potential 5

the use of Hardy stress in systems described by many-body potentials more involved
than the original EAM potential.

Finding a suitable central force decomposition for the potential of choice is a
prerequisite for using Hardy’s formalism. In [53] it was shown that for any multi-body
potential with a continuously differentiable extension, the force that acts on a particle
can always be expressed as a sum of central forces. In this work, building on the
observations of Admal and Tadmor [53], we present expressions for the central force
decomposition for potentials of the s-MEAM class [11], the popularity of which we
expect to rise significantly in the near future.

This paper is organised as follows. In Section 2 we recap the s-MEAM approach
and the definition of Hardy stress, following with crucial observations regarding CFD.
In Section 3 we present the main result of this work, which is a step-by-step derivation
of the expressions for CFD for s-MEAM potentials. Section 4 is devoted to a discussion
of the particular features of the obtained CFD expressions. We demonstrate an
example application of the derived expressions, along with a discussion of obtained
results in Section 5. We conclude with a summary.

2. Formalism

2.1. Notation

The following notation will be used throughout this work. We will use ri to denote
the position vector of particle i, i.e. ri = (xi, yi, zi). A vector joining particle i with
partcile j will be denoted with rij = rj − ri, and its magnitude with rij = |rij |. The
valence angle between bonds rij and rik will be denoted with θjik, with

cos θjik =
rij · rik
rijrik

. (3)

The nearest-neighbour cutoff radius will be denoted with rc, and by first-nearest
neighbours of atom i we will understand all atoms j 6= i, for which rij ≤ rc. The
set of first-nearest neighbours of atom i will be denoted with F (i). By second-nearest
neighbours of atom i we will understand all atoms j, for which rc < rij ≤ 2rc. The
set of second-nearest neighbours of atom i will be denoted with S(i). The union of
the two above sets will be denoted with B(i) = F (i) ∪ S(i). For the sake of brevity
we shall use

h′(x0) =
dh(x)

dx

∣

∣

∣

∣

∣

x=x0

(4)

to denote the first derivative of h(x) evaluated at x = x0.

2.2. The s-MEAM potential

In the s-MEAM model [11] the potential energy of a system of N particles is given by

Epot =
1

2

∑

i

∑

j 6=i

φ(rij) +
∑

i

U(ni). (5)

The first term (φ(r)) describes the pairwise repulsion of the cores, while the second
term represents the cohesion energy resulting from embedding positively-charged ionic
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cores inside the electronic density, described by U(n). The quantity ni is the electronic
density at the position of particle i, and is given by

ni =
∑

j 6=i

ρ(rij) +
1

2

∑

j 6=i

∑

k 6=i
k 6=j

f(rij)f(rik)g(cos θjik). (6)

The function ρ(r) describes the terms in ni that have spherical symmetry, with the
second term in (6) grouping the terms with no such symmetry.

The general form of the potential given by (5) and (6) is identical to that proposed
by Baskes for silicon [27]. The Stillinger-Weber potential [66] constitutes a special case
of this form (with U(x) = x and ρ = 0). Numerous EAM potentials [23] are also a
special case (with f = 0 or g = 0).

Within the s-MEAM framework all of the functions φ(r), U(n), ρ(r), f(r) and
g(cos θ) are represented as (usually cubic) spline functions. The functions φ(r), ρ(r)
and f(r) additionally serve as cutoff functions, i.e. they smoothly vanish beyond a
specified cutoff. While in principle the cutoff for each function can be different, one
can always specify a suitably large cutoff radius rc, for which all the functions vanish.

The s-MEAM approach is characterised by high computational efficiency. This is
a consequence of the use of spline functions, which can be efficently evaluated. Hennig
et al [31] observed that the use of s-MEAM is only about twice as computationally
intensive as standard EAM [23]. An efficient evaluation technique exists for s-MEAM
potentials [67], and its implementation can be found in popular MD codes, e.g. in
LAMMPS [68]. The use of spline functions also facilitates parameterisation, and
not using a predetermined functional form avoids imposing any particular functional
character on the potential.

2.3. Hardy stress

Hardy stress at a point x is defined as a sum of two contributions [64]

σ(x) = σ
K(x) + σ

V(x), (7)

with the kinetic term σ
K(x) given as

σ
K(x) = −

∑

i

w(x; ri − x) mivi ⊗ vi, (8)

and the potential term σ
V(x) as

σ
V(x) =

1

2

∑

i

∑

j 6=i

B(x; ri, rj) Fij ⊗ rij , (9)

with mi denoting the mass of particle i, vi – its velocity, and Fij – the (central) force
of interaction between particles i and j. The symbol ⊗ denotes a dyadic product.

The kinetic term σ
K(x) is due to the flux of momentum associated with the

vibrational internal energy of the system. The potential term σ
V(x) arises from the

internal forces between the particles.
In some formulations [63, 64], most often for systems in equilibrium, time

averaging is employed for both of the above terms. In the absence of time averaging
the instantaneous stress tensor is obtained.

The function w(x,y) (variously termed the kernel function [50,53], the localisation
function [48, 51, 56, 57, 64], or the weighting function [48, 63]) is involved in spatial
averaging. The kernel function is chosen to have a compact support, its domain Ωx is
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centered at the point x, defining a region around it over which averaging is performed.
The function serves to couple the atomic and continuum descriptions: it smears out
the discrete nature of matter by assigning weights to the contributions to σ (x) due
to particles at y ∈ Ωx, with closer particles assigned larger weights.

The kernel function is also present in the definition of the bond function
B(x; ri, rj) that appears in (9). The bond function is defined as

B(x; ri, rj) =

∫ 1

0

ds w(x; (1 − s)ri + srj). (10)

The calculation of σV(x) involves integrating w(x, ri, rj) along the segment joining
particle i (corresponding to s = 0) with particle j (corresponding to s = 1). The
potential term σ

V(x) thus expresses the spatial average of interactions that span the
volume Ωx. The contribution Fij to σ

V(x) depends on the length of the segment
joining ri and rj and its distance to (and orientation with respect to) Ωx.

The function w(x,y) is chosen such that it is i) smooth and non-negative, ii)
normalised:

∫

Ωx

dy w(x;y) = 1, (11)

iii) has a maximum at y = x and decreases with the distance |x− y|. Since the
function w(x,y) is used for spatial averaging, it should be chosen such that its
domain Ωx is large enough to prevent individual atoms from skewing the stress, and
simultaneously small enough to observe spatial variations of the stress on physically
relevant length scales. The functional forms of w(x,y) used in practice include: a
Gaussian function [50, 53], trilinear weight functions [64], quartic splines [53], quartic
polynomials [57] and other, more complex forms [63].

2.4. Central-force decomposition

Hardy stress is based around the concept of a central force Fij acting along the vector
rij connecting particles i and j. Admal and Tadmor showed [53] that if Fij is a
central force then the pointwise stress tensor σ(x) defined by (7)-(9) is symmetric and
satisfies a balance of linear and angular momentum. For pair potentials the total force
Fi can be immediately expressed in the form necessitated by (2), satisfying Fij = −Fji

and Fij ‖ rij . In the case of many-body potentials expressing total forces in terms
of central forces is not trivial, and the expressions are known as the central-force
decomposition (CFD).

As shown by Admal et al [53,54], the total force acting on particle i is guaranteed
to be decomposable into central forces if the interatomic potential energy, Epot, defined
on a shape space

S := {r12, r13, . . . , r1N , r23, r24, . . . , r2N , . . . , rN−1,N} , (12)

is continuously differentiable. Furthermore [53], a central-force decomposition can be
obtained by finding the derivative of the potential Epot with respect to the interatomic
distance rij . The application of the chain rule lets us express Fi as

Fi = −∂Epot

∂ri
=
∑

j 6=i

∂Epot

∂rij

rij

rij
, (13)

and (by comparison with (2)) thus

Fij =
∂Epot

∂rij

rij

rij
. (14)
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It is easy to verify that the force Fij given by (14) satisfies both conditions of the
strong law of action and reaction: Fij = −Fji and Fij ‖ rij . Following Admal et
al [53] we stress that it is not a requirement for Fij to depend only on the positions
of particles i and j. In general, Fij can depend on the positions of any (even all)
particles in the system, being a function of up to N(N − 1)/2 interatomic distances.
From the fact that the force Fij (a derivative ∂Epot/∂rij) is not expressible as a
function of only rij it does not follow that the potential is not decomposable into
central forces, as is often intuitively (but incorrectly) expected. Finally, we reiterate
Admal’s statement [53] that for a system of N ≥ 5 particles there may, in general,
exist distinct methods of decomposing a potential into central forces, due to the non-
uniqueness of the interatomic potential extension.

3. Central-force decomposition of s-MEAM potential

In this section we derive the expression for the first derivative of an s-MEAM-type
potential energy expression with respect to the interatomic distance, i.e. ∂Epot/∂rαβ .
The central-force decomposition can then be obtained by calculating the central force
Fαβ according to (13) and (14).

By applying the chain rule in the differentiation of (5), we obtain

∂Epot

∂rαβ
=

1

2

∑

i

∑

j 6=i

∂

∂rαβ
φ(rij) +

∑

i

∂

∂rαβ
U(ni)

=
1

2

∑

i

∑

j 6=i

φ′(rij)
∂rij
∂rαβ

+
∑

i

U ′(ni)
∂ni

∂rαβ
. (15)

The derivative ∂rij/∂rαβ can be written as

∂rij
∂rαβ

= δαiδβj + δαjδβi, (16)

where δ is the Kronecker delta. By inserting (16) in the first term of (15), we obtain

∂Epot

∂rαβ
= φ′(rαβ) +

∑

i

U ′(ni)
∂ni

∂rαβ
. (17)

The above makes use of rαβ = rβα and φ′(rαβ) = φ′(rβα). The more elaborate
derivation for ∂ni/∂rαβ will be shown separately.

By acting the operator ∂/∂rαβ on (6) we obtain

∂ni

∂rαβ
=
∑

j 6=i

ρ′(rij)
∂rij
∂rαβ

+
1

2

∑

j 6=i

∑

k 6=i
k 6=j

∂

∂rαβ

[

f(rij)f(rik)g(cos θjik)

]

. (18)

The application of the product rule leads to

∂

∂rαβ

[

f(rij)f(rik)g(cos θjik)

]

=

(

f ′(rij)
∂rij
∂rαβ

)

f(rik)g(cos θjik)

+ f(rij)

(

f ′(rik)
∂rik
∂rαβ

)

g(cos θjik)

+ f(rij)f(rik)

(

g′(cos θjik)
∂ cos θjik
∂rαβ

)

. (19)
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The expressions (16) and (18) allow us to recast the second term of (17) as

∑

i

U ′(ni)
∂ni

∂rαβ
=
∑

i

U ′(ni)

×
{

∑

j 6=i

ρ′(rij)
∂rij
∂rαβ

+
1

2

∑

j 6=i

∑

k 6=i
k 6=j

∂

∂rαβ

[

f(rij)f(rik)g(cos θjik)

]}

=
∑

i

∑

j 6=i

U ′(ni)ρ
′(rij) (δαiδβj + δαjδβi)

+
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)
∂

∂rαβ

[

f(rij)f(rik)g(cos θjik)

]

= U ′(nα)ρ
′(rαβ) + U ′(nβ)ρ

′(rβα) + Z, (20)

where we have introduced the symbol Z for the sake of compactness of notation.
Referring to (19) we can express Z as

Z =
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)

(

f ′(rij)
∂rij
∂rαβ

)

f(rik)g(cos θjik)

+
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)f(rij)

(

f ′(rik)
∂rik
∂rαβ

)

g(cos θjik)

+
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)f(rij)f(rik)

(

g′(cos θjik)
∂ cos θjik
∂rαβ

)

= Z1 + Z2 + Z3, (21)

where we have introduced Z1, Z2, and Z3 for the sake of brevity.
The application of (16) lets us write Z1 as

Z1 =
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

[δαiδβj + δαjδβi]U
′(ni)f

′(rij)f(rik)g(cos θjik),(22)

which, owing to the Kronecker deltas, is reduced to

Z1 = U ′(nα)f
′(rαβ)

∑

i6=α
i6=β

f(rαi)g(cos θβαi). (23)

Similarly, we obtain

Z2 = U ′(nβ)f
′(rβα)

∑

i6=β
i6=α

f(rβi)g(cos θαβi). (24)

In both cases we renamed dummy indices, replacing k with i.
The term Z3 occuring in (21) is more involved, as it includes the derivative

∂ cos θjik/∂rαβ . As the angle θjik can depend on rαβ in six ways (through θβαi,
θαβi, θiαβ and θiβα; through θαiβ , θβiα), the derivative ∂ cos θjik/∂rαβ can be written
as

∂ cos θjik
∂rαβ

= (δαiδβj + δαjδβi)
∂ cos θjik

∂rij
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Central-force decomposition of s-MEAM potential 10

+ (δαiδβk + δαkδβi)
∂ cos θjik

∂rik

+ (δαjδβk + δαkδβj)
∂ cos θjik
∂rjk

. (25)

We have used the fact that rij = rji, and thus ∂ cos θjik/∂rij = ∂ cos θjik/∂rji.
In order to determine the three derivatives in (25) we are going to employ the

cosine rule

cos θjik =
r2ij + r2ik − r2jk

2rijrik
, (26)

along with its derivatives

∂ cos θjik
∂rij

=
cos θjik
rij

−
r2ik − r2jk

rik

1

r2ij
, (27)

∂ cos θjik
∂rik

=
cos θjik
rik

−
r2ij − r2jk

rij

1

r2ik
, (28)

and

∂ cos θjik
∂rjk

= − rjk
rijrik

. (29)

Combining (27), (28), and (29) with (25), we obtain

∂ cos θjik
∂rαβ

= (δαiδβj + δαjδβi)

[

cos θjik
rij

−
r2ik − r2jk

rik

1

r2ij

]

+ (δαiδβk + δαkδβi)

[

cos θjik
rik

−
r2ij − r2jk

rij

1

r2ik

]

− (δαjδβk + δαkδβj)
rjk

rijrik
. (30)

Having expanded all the products in (30), we can express the quantity Z3 that
appears in (21) as a sum of ten terms, viz.:

Z3 = Z3,1 + Z3,2 + . . .+ Z3,10, (31)

where

Z3,1 =
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαiδβj

cos θjik
rij

=
1

2
U ′(nα)

f(rαβ)

rαβ

∑

i6=α

i6=β

f(rαi)g
′(cos θβαi) cos θβαi, (32)

Z3,2 =
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαiδβj

(

−
r2ik − r2jk

rik

1

r2ij

)

= −1

2
U ′(nα)

f(rαβ)

r2αβ

∑

i6=α

i6=β

f(rαi)g
′(cos θβαi)

r2αi − r2βi
rαi

, (33)
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Central-force decomposition of s-MEAM potential 11

Z3,3 =
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαjδβi

cos θjik
rij

=
1

2
U ′(nβ)

f(rβα)

rβα

∑

i6=β

i6=α

f(rβi)g
′(cos θαβi) cos θαβi, (34)

Z3,4 =
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαjδβi

(

−
r2ik − r2jk

rik

1

r2ij

)

= −1

2
U ′(nβ)

f(rβα)

r2βα

∑

i6=β
i6=α

f(rβi)g
′(cos θαβi)

r2βi − r2αi
rβi

, (35)

Z3,5 =
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαiδβk

cos θjik
rik

=
1

2
U ′(nα)

f(rαβ)

rαβ

∑

i6=α
i6=β

f(rαi)g
′(cos θiαβ) cos θiαβ , (36)

Z3,6 =
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαiδβk

(

−
r2ij − r2jk

rij

1

r2ik

)

= −1

2
U ′(nα)

f(rαβ)

r2αβ

∑

i6=α
i6=β

f(rαi)g
′(cos θiαβ)

r2αi − r2iβ
rαi

, (37)

Z3,7 =
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαkδβi

cos θjik
rik

=
1

2
U ′(nβ)

f(rβα)

rβα

∑

i6=β
i6=α

f(rβi)g
′(cos θiβα) cos θiβα, (38)

Z3,8 =
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαkδβi

(

−
r2ij − r2jk

rij

1

r2ik

)

= −1

2
U ′(nβ)

f(rβα)

r2βα

∑

i6=β

i6=α

f(rβi)g
′(cos θiβα)

r2βi − r2iα
rβi

, (39)

Z3,9 =
1

2

∑

i

∑

j 6=i

∑

k 6=i

k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαjδβk

(

− rjk
rijrik

)

= −1

2
rαβ

∑

i6=α
i6=β

U ′(ni)
f(riα)

riα

f(riβ)

riβ
g′(cos θαiβ), (40)
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Central-force decomposition of s-MEAM potential 12

and

Z3,10 =
1

2

∑

i

∑

j 6=i

∑

k 6=i
k 6=j

U ′(ni)f(rij)f(rik)g
′(cos θjik)δαkδβj

(

− rjk
rijrik

)

= −1

2
rβα

∑

i6=β
i6=α

U ′(ni)
f(riβ)

riβ

f(riα)

riα
g′(cos θβiα). (41)

In each of the formulae above we employed the properties of the Kronecker delta and
renamed dummy indices so that only α, β, and i remain.

By a pairwise combining of the expressions (32)–(41), we can significantly simplify
the long-winded expression for Z3. To wit, by adding (32) and (36) we obtain

Z3,1 + Z3,5 = U ′(nα)
f(rαβ)

rαβ

∑

i6=α

i6=β

f(rαi)g
′(cos θβαi) cos θβαi. (42)

By adding (34) and (38) we obtain

Z3,3 + Z3,7 = U ′(nβ)
f(rβα)

rβα

∑

i6=β
i6=α

f(rβi)g
′(cos θαβi) cos θαβi. (43)

By adding (33) and (37) we obtain

Z3,2 + Z3,6 = −U ′(nα)
f(rαβ)

r2αβ

∑

i6=α

i6=β

f(rαi)

rαi
g′(cos θβαi)

(

r2αi − r2βi
)

. (44)

By adding (35) and (39) we obtain

Z3,4 + Z3,8 = −U ′(nβ)
f(rβα)

r2βα

∑

i6=β
i6=α

f(rβi)

rβi
g′(cos θαβi)

(

r2βi − r2αi
)

, (45)

and by adding (40) and (41) we obtain

Z3,9 + Z3,10 = −rαβ
∑

i6=α

i6=β

U ′(ni)
f(riα)

riα

f(riβ)

riβ
g′(cos θαiβ). (46)

In the above we used rij = rji and cos θjik = cos θkij .
By invoking the cosine rule again in the form of

r2αi − r2βi = 2rαβrαi cos θβαi − r2αβ , (47)

we can further simplify Z3 by combining (42) with (44)

(Z3,1 + Z3,5) + (Z3,2 + Z3,6) = U ′(nα)
f(rαβ)

rαβ

∑

i6=α
i6=β

f(rαi)g
′(cos θβαi) cos θβαi

−U ′(nα)
f(rαβ)

r2αβ

∑

i6=α

i6=β

f(rαi)

rαi
g′(cos θβαi)

(

r2αi − r2βi
)

= U ′(nα)
f(rαβ)

rαβ

∑

i6=α
i6=β

f(rαi)g
′(cos θβαi) cos θβαi

−U ′(nα)
f(rαβ)

r2αβ

∑

i6=α
i6=β

f(rαi)

rαi
g′(cos θβαi)

(

2rαβrαi cos θβαi − r2αβ
)
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Central-force decomposition of s-MEAM potential 13

= U ′(nα)f(rαβ)
∑

i6=α
i6=β

f(rαi)

rαi
g′(cos θβαi)

−U ′(nα)
f(rαβ)

rαβ

∑

i6=α
i6=β

f(rαi)g
′(cos θβαi) cos θβαi, (48)

and (43) with (45)

(Z3,3 + Z3,7) + (Z3,4 + Z3,8) = U ′(nβ)f(rβα)
∑

i6=β
i6=α

f(rβi)

rβi
g′(cos θαβi)

−U ′(nβ)
f(rβα)

rβα

∑

i6=β

i6=α

f(rβi)g
′(cos θαβi) cos θαβi. (49)

This completes the simplification of Z3, which, owing to (46), (48), and (49) can be
written in its final form:

Z3 = U ′(nα)f(rαβ)
∑

i6=α

i6=β

f(rαi)

rαi
g′(cos θβαi)

− U ′(nα)
f(rαβ)

rαβ

∑

i6=α
i6=β

f(rαi)g
′(cos θβαi) cos θβαi

+ U ′(nβ)f(rβα)
∑

i6=β
i6=α

f(rβi)

rβi
g′(cos θαβi)

− U ′(nβ)
f(rβα)

rβα

∑

i6=β

i6=α

f(rβi)g
′(cos θαβi) cos θαβi

− rαβ
∑

i6=α
i6=β

U ′(ni)
f(riα)

riα

f(riβ)

riβ
g′(cos θαiβ). (50)

Returning to the original expression (17), and using intermediate results of (20),
(21), (23), (24), and (50), we finally obtain

∂Epot

∂rαβ
= φ′(rαβ) + U ′(nα)ρ

′(rαβ) + U ′(nβ)ρ
′(rβα)

+ U ′(nα)f
′(rαβ)

∑

i6=α
i6=β

f(rαi)g(cos θβαi)

+ U ′(nα)f(rαβ)
∑

i6=α
i6=β

f(rαi)

rαi
g′(cos θβαi)

− U ′(nα)
f(rαβ)

rαβ

∑

i6=α

i6=β

f(rαi)g
′(cos θβαi) cos θβαi

+ U ′(nβ)f
′(rβα)

∑

i6=β
i6=α

f(rβi)g(cos θαβi)

+ U ′(nβ)f(rβα)
∑

i6=β
i6=α

f(rβi)

rβi
g′(cos θαβi)D
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Central-force decomposition of s-MEAM potential 14

− U ′(nβ)
f(rβα)

rβα

∑

i6=β
i6=α

f(rβi)g
′(cos θαβi) cos θαβi

− rαβ
∑

i6=β
i6=α

U ′(ni)
f ′(riα)

riα

f ′(riβ)

riβ
g′(cos θαiβ). (51)

Returning to the original indices i, j, and k, and employing (14), we can express the
force with which particle j acts on particle i as

Fij =
rij

rij
×
(

φ′(rij) + [U ′(ni) + U ′(nj)] ρ
′(rij) + Θij

)

, (52)

where Θij denotes the contributions to the force that have an explicit angular nature.
The term Θij is given by

Θij = U ′(ni)

{

f ′(rij)
∑

k 6=i
k 6=j

f(rik)g(cos θjik)

+ f(rij)
∑

k 6=i

k 6=j

f(rik)

rik
g′(cos θjik)

− f(rij)

rij

∑

k 6=i
k 6=j

f(rik)g
′(cos θjik) cos θjik

}

+ U ′(nj)

{

f ′(rji)
∑

k 6=i
k 6=j

f(rjk)g(cos θijk)

+ f(rji)
∑

k 6=i

k 6=j

f(rjk)

rjk
g′(cos θijk)

− f(rji)

rji

∑

k 6=i
k 6=j

f(rjk)g
′(cos θijk) cos θijk

}

− rij
∑

k 6=i
k 6=j

U ′(nk)
f(rki)

rki

f(rkj)

rkj
g′(cos θikj). (53)

The expressions (52) and (53) define a central-force decomposition of the s-MEAM
potential and constitute the main result of this work.

4. Discussion

Below we discuss the properties of the obtained expressions (52)-(53), with particular
focus on the term Θij . This term is composed of three sub-terms, involving,
respectively, U ′(ni), U

′(nj), and rij (cf. (53)). For the sake of brevity, we shall denote
the sums appearing in (53) as follows:

(i) Θ
(1)
jik, Θ

(2)
jik, Θ

(3)
jik – sums in the U ′(ni) term,

(ii) Θ
(1)
ijk, Θ

(2)
ijk, Θ

(3)
ijk – sums in the U ′(nj) term,
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Central-force decomposition of s-MEAM potential 15

(iii) Θ
(4)
ikj – the sum in the rij term.

Using this shortcut notation we can rewrite (53) as

Θij = U ′(ni)

{

f ′(rij)Θ
(1)
jik + f(rij)Θ

(2)
jik − f(rij)

rij
Θ

(3)
jik

}

+ U ′(nj)

{

f ′(rji)Θ
(1)
ijk + f(rji)Θ

(2)
ijk − f(rji)

rji
Θ

(3)
ijk

}

− rijΘ
(4)
ikj . (54)

The first term, involving U ′(ni), describes the central interactions of a particle
i with its first-nearest neighbours, which is made apparent by the presence of f ′(rij)

and f(rij) (which are non-zero only for j ∈ F (i)) in front of each of the sums Θ
(1)
jik,

Θ
(2)
jik, and Θ

(3)
jik. We note that the contribution to the central force on i from a first-

nearest neighbour j ∈ F (i) depends on the positions of all first-nearest neighbours

of i, because f(rik) (which is non-zero for all k ∈ F (i)) is present in Θ
(1)
jik, Θ

(2)
jik, and

Θ
(3)
jik.

The second term, involving U ′(nj), also describes the central interactions of a
particle i with its first-nearest neighbours j ∈ F (i), which is made apparent by the

presence of f ′(rji) and f(rji) in front of each of the sums Θ
(1)
ijk, Θ

(2)
ijk, and Θ

(3)
ijk. The

crucial difference in this case is that the contribution depends on the positions of the
first-nearest neighbours of j, rather than those of i, due to the presence of f(rjk),

which is non-zero for all k ∈ F (j), in the sums Θ
(1)
ijk, Θ

(2)
ijk, and Θ

(3)
ijk.

The third term, involving rij , captures the contributions to Fij from particles that
are first-nearest neighbours of both i and j. This is made apparent by the presence of

f(rki) and f(rkj) in the sum Θ
(4)
ikj . We note that the particles that are first-nearest

neighbours of both i and j continue contributing to Fij through the first and second
terms of (53).

It is also instructive to examine expression (53) with the aim of identifying, for
a chosen atom i, all atoms j that interact centrally with i, i.e. those for which Fij

is non-vanishing. Here we do not make any assumptions a priori on the membership
of j in F (i), S(i) or B(i). We focus our attention on the last term in (53), and in
particular on the product f(rki)f(rkj) appearing under the sum. This product is, of
course, non-zero for those atoms j, for which there exists an atom k for which both
f(rki) and f(rkj) are non-zero. This means that apart from interacting centrally with
atoms j that are its first-nearest neighbours (which is a consequence of the first and
second terms of (53), as explained earlier), atom i also interacts centrally with atoms
j that are its second-nearest neighbours, i.e. with j ∈ S(i). We can also express
this observation as follows: if any atom j is a first-nearest neighbour of an atom k
(f(rkj) 6= 0) such that k is also a first-nearest neighbour of i (f(rki) 6= 0), then the
central force Fij is non-vanishing. This is another way of restating the fact that atom i
interacts centrally also with first-neighbours of its first-neighbours. We note in passing
that for atoms that are second-nearest neighbours of i, i.e. j ∈ S(i), which implies
f(rij) = 0, the expression (53) simplifies to:

Θij = − rij
∑

k 6=i
k 6=j

U ′(nk)
f(rki)

rki

f(rkj)

rkj
g′(cos θikj). (55)

We point out an important consequence of the above observations. Despite the
fact that the definitions of the functions φ(r), ρ(r), and f(r) explicitly include a cutoff
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Central-force decomposition of s-MEAM potential 16

radius rc, an s-MEAM-class potential has an effective cutoff radius (in the sense of a
non-vanishing central forces) of 2rc.

5. Example application

We will now demonstrate the applicability of the CFD expressions for the s-MEAM
potential derived in this work on an example problem of determining the stress field
generated by a dislocation. Our choice of problem is motivated by its relevance in
the investigations of mechanical properties of the solid state, and by the fact that,
over decades, it has proved challenging for theoretical approaches [69,70], particularly
when the stress field around the dislocation core is of interest. For a review of the
issues the interested Reader is referred to [71].

For this and similar problems particle methods constitute a viable alternative to
analytical approaches, as they explicitly take the granularity of matter into account,
along with the specifics of interatomic interactions [72]. To obtain a faithful description
of the phenomena taking place in the immediate vicinity of a dislocation it is necessary
to employ a highly transferable potential. However, Hardy’s formalism can only be
used in conjunction with relatively simple potentials for which CFD’s are available
today. Below we demonstrate how the decomposition derived in this work can be used
to obtain a realistic description of stress fields, owing to the improved accuracy that
s-MEAM potentials offer for structures that are far from equilibrium [11,22, 31, 32].

5.1. Computational set-up

Our test case was an edge dislocation with a Burgers vector b = 1/2 〈111〉 in a bcc
monocrystal of molybdenum. We employ molecular statics [73] (MS) in conjunction
with the periodic array of dislocations (PAD) method [74]. This approach, proposed
by Baskes and coworkers [25,75], has found widespread use in the investigation of line
defects [76–86], both in the study of statical properties of dislocations (structure and
energetics of the dislocation core, stress and strain fields due to dislocations), and of
their dynamical properties (dislocation motion and ensuing slip).

PAD serves as a protocol for constructing a system containing a dislocation
together with a suitable definition of boundary conditions. The relevant construct
is shown in figure 1 and will be briefly discussed below. A more detailed description of
PAD, along with a discussion of its applicability and limitations can be found in [74].

We began by generating a cuboid block of bcc Mo, adopting a reference frame
where the x axis is parallel to [111] and the y axis is parallel to

[

112
]

, which corresponds

to the z axis being aligned with
[

110
]

. We assumed a = 3.167 Å for the lattice
constant, based on the equilibrium value for T = 0K in the s-MEAM description [22].
The dimensions of the block were taken to be Lx = 100

√
3 a, Ly = 8

√
6 a, and

Lz = 124
√
2 a. An edge dislocation was subsequently introduced by cleaving the

monocrystal along the z = Lz/2 plane, the removal of three crystallographic half-
planes (111) from the bottom half-crystal, and matching the resultant half-crystals
by uniform deformation from Lx for the top half-crystal and from Lx − b for the
bottom half-crystal to achieve a final dimension of Lx − b/2 for both. The resultant
system measured Lx = 547.241 Å by Ly = 62.068 Å by Lz = 555.445 Å and comprised
N = 1 187 424 atoms.

The above procedure generates an edge dislocation with a Burgers vector of
b = [

√
3/2 a, 0, 0] and a dislocation line parallel to the y axis. At this stage the
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Central-force decomposition of s-MEAM potential 17

Figure 1. System set-up in the PAD method. Panels (a)-(d) illustrate the
procedure for generating a system with a dislocation. Solid lines represent
crystallographic planes, while⊥ denotes the position of the introduced dislocation.
The monocrystal is (a) cleaved to create two half-crystals (b). A number of
crystallographic planes is (c) removed from the bottom half-crystal. The final
step (d) involves matching the linear dimensions of both half-crystals. Panel (e)
presents the final set-up.

dislocation is not physically realistic, which becomes apparent when the strain fields
are examined. In order to reach a more plausible state, in the last stage of the
protocol we performed energy minimisation on the system. Consistent with the PAD
approach, periodic boundary conditions (PBCs) were employed along x and y axes
only, corresponding to simulating a periodic array of quasi-infinitely long dislocations
separated by Lx, located in a finite-width slab of material. As the dimensions of
the system are increased (Lx, Lz → ∞), the interaction of the dislocation with its
periodic images and the influence of the two free surfaces z = 0 and z = Lz becomes
negligible, with the behaviour of the system converging to that of a single, infinitely
long dislocation in an otherwise ideal monocrystal. It has been shown [74] that such
systems are sufficiently converged already at Lx, Lz ≈ 200 b, which in our case (a
dislocation with b = 1/2 〈111〉 in molybdenum) corresponds to Lx, Lz ≈ 548 Å,
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Central-force decomposition of s-MEAM potential 18

guiding our choice of system dimensions.
Energy minimisation was performed with atoms lying in the outermost

crystallographic planes
(

110
)

(i.e. those with z = 0 or z = Lz) constrained to move
only in the xy plane. The termination criterion was for all atomic force components
to be below 3 × 10−5 eV/Å, with final positions being accurate to no worse than
10−6 Å. We used the s-MEAM potential of Park et al [22], for which the cutoff
radius is rc = 5.9 Å. Minimisation was carried out using LAMMPS [68] with the
Polak-Ribière [87] formulation of the conjugate gradient method.

Production calculations consisted in calculating the dislocation’s Hardy stress
field by post-processing the configuration obtained earlier from energy minimisation.
First, all non-zero central forces Fij were determined from (52) and (53).
Subsequently, Hardy’s formalism (equations (7)-(10)) was leveraged to calculate the
spatial distribution of the stress tensor σ(x). Since all calculations shown here
correspond to T = 0K, we set σK(x) ≡ 0 in (7). The kernel functions were taken to
be Gaussians truncated at rw, i.e.

w(x,y) =

{

1

(
√
πh)

3 exp
(

− |x−y|2
h2

)

, |x− y| ≤ rw

0, |x− y| > rw
. (56)

We chose the truncation radius rw as twice the cutoff radius, i.e. rw = 11.8 Å. For
this choice the kernel function at truncation radius is w(x,y) = 3.3 × 10−6, which
means that the truncation has negligible effect on the calculated stress distribution.

It is recognized that the details of the stress distribution obtained from Hardy’s
formalism depend, to a degree, on the choice of the kernel function smoothing length h.
We verified through numerical tests that for the value of rw given above, satisfactory
results are obtained for h ∈ [0.2 rw, 0.5 rw]. Smaller values lead to excessive sharpening,
yielding a grainy distribution, where the discrete nature of the material becomes
apparent. Larger values, on the other hand, result in excessive smoothing, discarding
a non-negligible fraction of σ, and making the distribution overly blurred. Following
Shen and Atluri [50] we set the smoothing length to h = 0.4 rw = 4.72 Å, and all
results we report in plots use that value. The above choice yields an image of stress
distribution that is simultaneously sufficiently fine-grained and smooth. While the
qualitative picture of the stress distribution does not change for values of h in this
,,reasonable” interval [0.2 rw, 0.5 rw], the particular values at the minima and maxima,
and similarly their positions, are more sensitive to this choice. To highlight this, and
to give an idea of the magnitude of this sensitivity, we augment the corresponding
numerical values (cf. table 1) obtained with h = 0.4 rw with values obtained by
choosing h = 0.2 rw and h = 0.5 rw.

Below we focus our attention on stresses in the dislocation core itself and in its
vicinity, calculating σ(x) for points x = [x, y, z] lying in a cuboid region centered on
the dislocation line, i.e.:

Lx/2− 15 b ≤ x ≤ Lx/2 + 15 b

0 ≤ y <
√
6 a (57)

Lz/2− 15 b ≤ z ≤ Lz/2 + 15 b.

We calculated the stresses on a Cartesian grid, dividing the domain in the xz plane
into 121×121 equispaced points, corresponding to a grid spacing of b/4 = 0.686 Å. We
investigated the stress distributions σ(x) for 60 planes y = const, with the values of
y equispaced on the characteristic length

√
6 a, leading to a plane spacing of 0.129 Å.
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All the distributions presented below correspond to values of σ(x) averaged over these
planes.

Before we present the obtained stresses, we briefly comment on the overall
computational effort of the calculations we performed. Our implementation leveraged
symmetric multiprocessing (SMP) through the use of OpenMP [88]. We used a single
node with two 12-core Intel Xeon E5 v3 processors @2.3 GHz. The total computational
cost was 12.8 h, which corresponds to a (single-core) time of 1.26 s needed to calculate
the stress tensor for each of 121× 60× 121 points involved in the calculation.
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Figure 2. Stress distribution due to an edge dislocation with a Burgers
vector b = 1/2 〈111〉 in a bcc monocrystal of Mo. Each panel corresponds to
a different component of the stress tensor. The plane of the figure is the xz
plane, with the Burgers vector b parallel to the x axis, and the dislocation line
perpendicular to the plane of the figure, pointing away from the observer. The
reference frame was chosen so that the point (x, z) = (0, 0) corresponds to the
location of the dislocation line. Each panel depicts the distribution of the stress
tensor components in a region with dimensions 30 b× 30 b located in the vicinity
of the dislocation line. Both axes use the length of the Burgers vector b = |b| as
units. Major (solid) and minor (dashed) isolines were drawn as a guide for the
eye. Major isolines correspond to values shown in the legend bar, while minor
isolines correspond to median values of two consecutive major isolines.
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Table 1. Positions and values of extrema in σ. Positions are given as multiples
of the Burgers vector length, b. Results obtained for various values of the kernel
function smoothing length h are presented.

Minimum Maximum

Value Position Value Position
Component h (rw) (GPa) x z (GPa) x z

0.2 −23.3 0 1 20.5 0 −1
σxx 0.4 −12.8 0 1.75 12.0 0 −1.75

0.5 −10.3 0 2.25 9.73 0 −2.25

0.2 −9.03 0 1.25 8.25 0 −1
σyy 0.4 −5.51 0 2 5.24 0 −2

0.5 −4.52 0 2.5 4.31 0 −2.5

0.2 −8.78 0 1.5 7.48 0 −1.75
σzz 0.4 −5.71 0 2.5 4.81 0 −2.75

0.5 −4.71 0 3.25 4.02 0 −3.5

0.2 −3.46 0 0 1.14 0 −1.75
σxy 0.4 −1.05 0 0.25 0.493 0 −3

0.5 −0.691 0 0.25 0.382 0 −3.75

0.2 −9.55 −1.75 0 9.55 1.75 0
σxz 0.4 −5.64 −3 0 5.64 3 0

0.5 −4.59 −3.5 0 4.59 3.5 0

0.2 −1.36 −1.25 −0.75 1.36 1.25 −0.75
σyz 0.4 −0.611 −2.25 −1.25 0.611 2.25 −1.25

0.5 −0.472 −2.75 −1.25 0.472 2.75 −1.25

5.2. Results

Figure 2 presents two-dimensional maps of the distribution of all six components of
the stress tensor σ(x). The general character of the obtained distributions is typical
and similar to well-known results obtained from analytical solutions of linear elasticity
theory (cf. e.g. [69,70] and equations (58)–(62)). The crucial distinguishing feature of
the numerical results is the absence of singularities that arise in continuum solutions
at (x, z) = (0, 0). Here, in contrast, each component of the stress tensor is found to be
bounded. We list the positions of the extrema and the corresponding values in table 1
for completeness.

Visual examination of figure 2 reveals the presence of reflection symmetry x → −x
in the stress distributions, which is well-known in continuum solutions. A more
thorough analysis exposes certain asymmetries in the distribution, for example, the
subtle breaking of z → −z symmetry, which is evidenced by the values and positions
of extrema (cf. Tab 1). This effect is modest for σxx, σyy, σzz , and σxz due to the large
magnitudes of these components. In contrast, for σxy and σyz , whose magnitudes are
smaller, the effect is much more pronounced – this is easily observed in panels (d) and
(f) in figure 2. The reason for the symmetry breaking is the asymmetric structure of
the dislocation core relative to the slip plane, illustrated in figure 3.

We note that the range of variability of σxy and σyz was rather modest – for
example on the boundary of the considered region 30 b × 30 b the magnitude of σxy

did not exceed 0.116GPa, and the magnitude of σyz did not exceed 0.124GPa. The
observation that these components have small magnitudes even relatively close to
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the dislocation line is compatible with the predictions of continuum theory (compare
e.g. (62)).

We finish our analysis by comparing the obtained distributions of σ(x) with
the predictions of linear elasticity theory for an infinitely long edge dislocation in an
isotropic medium, where the stress field is given by the following expressions [69, 70]:

σxx(x, z) = − µb

2π(1− ν)
z

3x2 + z2

(x2 + z2)2
, (58)

σzz(x, z) =
µb

2π(1− ν)
z

x2 − z2

(x2 + z2)2
, (59)

σxz(x, z) =
µb

2π(1− ν)
x

x2 − z2

(x2 + z2)2
, (60)

σyy(x, z) = ν [σxx(x, z) + σzz(x, z)] = − µbν

π(1 − ν)

z

x2 + z2
, (61)

σxy(x, z) = σyz(x, z) = 0, (62)

where µ is the shear modulus, and ν is the Poisson’s ratio.
To facilitate the comparison, we plot the components of σ(x) for selected cross-

sections of the system: x = const = D (figure 4), and z = const = D (figure 5), for
D = 0 b, D = 7.5 b, and D = 15 b. Solid lines correspond to the numerical results
obtained from Hardy stress calculations employing the CFD of s-MEAM derived in
this work, while dotted lines correspond to analytical (continuum) results of (58)–
(61). For the latter calculations we used µ = 120GPa, and ν = 0.310, corresponding
to experimental data of [90].

Our comparison is perforce strictly qualitative, as the derivation of equa-
tions (58)–(61) assumes an isotropic medium. Molybdenum, despite its cubic struc-
ture, is characterised by significant anisotropy, as evidenced by a Zener anisotropy

Figure 3. Visualisation of the structure of the dislocation core and its immediate
vicinity. The fragment shown corresponds to a region with dimensions 15 b×15 b
centered on the dislocation line. The plane of the figure is the xz plane, with the
Burgers vector b parallel to the x axis, and the dislocation line perpendicular
to the plane of the figure, pointing away from the observer. As a guide for
the eye atoms were coloured according to their displacement along z, with blue
corresponding to ∆z = −0.135 Å, and red corresponding to ∆z = 0.345 Å. The
characteristic inter-plane distance for z is dhkl = d

110
= 2.240 Å. Visualisation

was prepared using the Ovito [89] program.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Central-force decomposition of s-MEAM potential 22

ratio of A = 0.72 [91], compared to A = 1 for an elastic isotropic material. While ana-
lytical models suitable for anisotropic materials are available, their involvement makes
comparisons notably more cumbersome. Difficulties associated with anisotropic mod-
els were highlighted e.g. in [92], and, more recently e.g. in [71]. Since this work is
devoted mainly to the presentation of the relevant CFD expressions, we postpone
in-depth analysis employing more complex models for a future communication.

Even a brief visual examination of figures 4 and 5 reveals that the results of
atomistic simulations are in very good agreement with theoretical predictions. For
each of the investigated components σxx, σyy, σzz , and σxz the curves obtained from
linear elasticity theory are consistent with the predictions of Hardy stress, particularly
further from the dislocation line, i.e. for |x| and |z| > 5 b. In the vicinity of the
dislocation line discrepancies become evident, which is most clearly seen for the cross-
section x = 0 b and components σxx, σyy, and σzz (figure 4, panels a-c, red curve),
where the predicitions no longer agree. Other notable disagreements are apparent
for σxz and cross-sections z = 0 b, 7.5 b, 15 b (figure 5, panel d, all curves). These
differences should not be construed to result from deficiencies of the atomistic model
employed here, but rather as indication of the breakdown of linear elasticity theory,
which at close range becomes unphysical, as evidenced by the singularities in its
predictions. This is, of course, expected close to the dislocation core – a regime, where
nonlinearity becomes significant. The atomistic approach, owing to its explicit taking
into account the discrete nature of matter, along with an accurate s-MEAM description
of individual interatomic interactions, offers a much more realistic description of the
stress distribution in this regime – a clear advantage of atomistic techniques over
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Figure 4. Stress distribution due to an edge dislocation with a Burgers
vector b = 1/2 〈111〉 in a bcc monocrystal of Mo. Subsequent panels compare
the results of atomistic calculations (solid line) with the predictions of linear
elasticity theory (dotted lines) for the components σxx, σyy, σzz , and σxz of the
stress tensor on cross-sections x = 0 b (red), x = 7.5 b (green), and x = 15 b (blue).
The theoretical predictions assume that the material is isotropic.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Central-force decomposition of s-MEAM potential 23

σ x
x(

x,
 z

) 
(G

P
a
)

x (b)

z=0 bz=15 b

-5

-4

-3

-2

-1

 0

 1

-15 -10 -5  0  5  10  15

(a)

σ y
y(

x,
 z

) 
(G

P
a
)

x (b)

z=0 bz=15 b

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-15 -10 -5  0  5  10  15

(b)

σ z
z(

x,
 z

) 
(G

P
a
)

x (b)

z=0 b
z=15 b

-4

-3

-2

-1

 0

 1

-15 -10 -5  0  5  10  15

(c)

σ x
z(

x,
 z

) 
(G

P
a
)

x (b)

z=0 b

z=15 b

-6

-4

-2

 0

 2

 4

 6

-15 -10 -5  0  5  10  15

(d)

Figure 5. Stress distribution due to an edge dislocation with a Burgers
vector b = 1/2 〈111〉 in a bcc monocrystal of Mo. Subsequent panels compare
the results of atomistic calculations (solid line) with the predictions of linear
elasticity theory (dotted lines) for the components σxx, σyy, σzz , and σxz of the
stress tensor on cross-sections z = 0 b (red), z = 7.5 b (green), and z = 15 b (blue).
The theoretical predictions assume that the material is isotropic.

continuum methods. This concludes our demonstration of the viability of the proposed
CFD expressions for the s-MEAM class of potentials.

6. Summary and final remarks

In this work we derived a central-force decomposition for potentials of the s-MEAM
type. We followed the derivation with a brief discussion of the decomposition,
demonstrating that the s-MEAM potential is characterised by non-vanishing central
interactions between not only first-nearest, but also second-nearest neighbours. We
applied the derived CFD in a brief study of stress fields due to an edge dislocation
in bcc molybdenum, demonstrating the practicability of our approach and good
agreement with the predictions of linear elasticity theory in the region away from
the dislocation core, and the superiority of the atomistic approach in the immediate
vicinity of the dislocation core, where the continuum description breaks down.

The main outcome of this work are the expressions (52)-(53), which, despite
being a result of careful simplifications, remain computationally expensive. This is
particularly the case for the quantity Θij defined by (53), whose evaluation necessitates
calculating products of cos θ, the functions f(r) and g(cos θ), and their derivatives.
The computational effort associated with this term, calculated as is, is expected to be
significant. Building on the theoretical foundation of this work, in a future paper we
expect to describe a pragmatic, computationally efficient technique for the evaluation
of the CFD derived here.

The fact that the calculation of Hardy stress for an atomic systems necessitates
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performing a central-force decomposition for the potential of choice was the prime
motivation of this work. However, we feel obliged to point out a number of
computational techniques that will also benefit from the presented CFD.

A central-force decomposition provides an expression for the first derivative of a
potential energy with respect to interatomic distance, i.e. ∂Epot/∂rαβ. Being able to
calculate this quantity is a necessary condition for applying the formalism proposed by
Ray et al [93] to the study of mechanical properties of atomic systems. This formalism
allows the determination of elastic constants (both adiabatic, and isothermal) of a
general anisotropic material. The use of this approach necessitates being able to
calculate not only the above-mentioned first derivative, but also ∂2Epot/∂rαβ∂rηξ.
In this context, the results presented here can be seen as a stepping stone towards
the use of s-MEAM potentials to study the mechanical properties of matter (such as
stress distributions or elastic constants), with the obvious requirement of deriving the
expressions for the second derivative next.

The expressions for both of the above-mentioned derivatives are also of use in
recently-proposed thermostats based on the concept of configurational temperature
[94–96]. The results presented here can thus also be viewed as facilitating future
studies of non-equilibrium properties, for which such thermostats are invaluable.

Finally, the presented central-force decomposition constitutes a novel interpre-
tation tool. The significant formal complexity of the s-MEAM potential makes it
difficult to assess how the features of the individual functions defining the potential
affect the resultant (effective) interactions, and, in consequence, how they influence
the dynamics and properties of the modeled system. The obtained CFD, by virtue of
expressing a complicated many-body picture in a language of easy-to-interpret, cen-
tral, pairwise interactions significantly facilitates the understanding of the nature of
bonding in systems under study. We hope to present applications of this CFD as an
interpretation tool in the near future.
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Numérique, 3(R1):35–43, 1969.

[88] L Dagum and R Enon. OpenMP: an industry standard API for shared-memory programming.
Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[89] A Stukowski. Visualization and analysis of atomistic simulation data with OVITO-the Open
Visualization Tool. Modelling and Simulation in Materials Science and Engineering,
18(1):015012, 2010.

[90] G V Samsonov, editor. Handbook of the Physicochemical Properties of the Elements, chapter
Mechanical Properties of the Elements, pages 387–446. Springer US, Boston, MA, 1968.

[91] T S Duffy, G Shen, J Shu, H-K Mao, R J Hemley, and A K Singh. Elasticity, shear strength,
and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic
compression to 24 gpa. Journal of Applied Physics, 86(12):6729–6736, 1999.

[92] J Lothe. Chapter 4 - Dislocations in Anisotropic Media. In V L Indenbom and J Lothe, editors,
Elastic Strain Fields and Dislocation Mobility, volume 31 of Modern Problems in Condensed
Matter Sciences, pages 269 – 328. Elsevier, 1992.

[93] J R Ray and A Rahman. Statistical ensembles and molecular dynamics studies of anisotropic
solids. The Journal of Chemical Physics, 80(9):4423–4428, 1984.

[94] J Delhommelle and D J Evans. Configurational temperature thermostat for fluids undergoing
shear flow: application to liquid chlorine. Molecular Physics, 99(21):1825–1829, 2001.

[95] C Braga and K P Travis. A configurational temperature Nosé-Hoover thermostat. The Journal
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