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Abstract: In this review, we present the applications of chemometric techniques for green and
sustainable chemistry. The techniques, such as cluster analysis, principal component analysis,
artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing
data, grouping or classification purposes, selection of green material, or processes. The areas
of application are mainly finding sustainable solutions in terms of solvents, reagents, processes,
or conditions of processes. Another important area is filling the data gaps in datasets to more fully
characterize sustainable options. It is significant as many experiments are avoided, and the results
are obtained with good approximation. Multivariate statistics are tools that support the application
of quantitative structure–property relationships, a widely applied technique in green chemistry.
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1. Introduction

The term “chemometrics” was coined by the Swedish scientist Svante Wold in early 1970s while
submitting a grant proposal for the application of statistical methods to chemical data [1]. It appeared as
the word “kemometri,” a combination of the forms “kemo-” for chemistry and “-metri” for measure [2].

Initially, chemometrics was defined as a “science of relating measurements made on a chemical
system or process to the state of the system via application of mathematical or statistical methods.”
According to the name, the discipline of chemometrics originated from chemistry, where one of the first
applications focused on improving the quantitative performance of analytical instruments, such as NIR
(near infrared) calibration, HPLC (high-performance liquid chromatography) resolution, and UV–VIS
deconvolution [3]. Chemometrics took the form of an interdisciplinary field that uses mathematical
and statistical methods to design or select optimal measurement procedures and experiments and to
provide maximum chemical information by analysing chemical data. The numerous domains that
are covered by chemometrics are presented by Santos et al. on a bibliometric map generated using
more repeated words in the authors’ search for the period 2014–2018 performed in the Science Citation
Index Expanded [4]. However, the breakthrough in chemometrics is a response to various software
and new high-dimensional hyphenated equipment appearance. These devices in chromatography
have been allowed for the determination of various analytes in complex matrices with high resolution
and precision. On the other hand, obtained results as large datasets become more difficult to interpret.

Due to rapid technological advances, the focus on multivariate methods is visible. Therefore,
the distribution of multiple variables simultaneously provides more information than what could
be obtained by considering each variable individually. Then some meaningful information may be
chemometrically extracted. As mentioned above, chemometrics is a very important issue in fields
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concerning environmental monitoring, forensics, chemical biology, food and nutrition, pharmaceutics,
polymer, safety and healthcare diagnostics, fraud detection, green chemistry and sustainability,
and omics sciences. The latter, together with some bioinformatics and cheminformatics, is becoming
more and more popular recently (especially in an advanced data analysis).

However, the use of chemometrics is responsible not only for intelligent data analysis but
more specifically for modelling, classification, selection, or searching for missing data. Due to the
fact that chemical sciences are based on complex processes involving multistep chemical processes,
with condition optimizations, selection of chemical reagents, and so forth, they are a great representative
of a wide spectrum of chemometric utilization.

It is also worth noting that chemometric application may be an incredible approach to incorporating
the green chemistry concept to chemical sciences via the usage of more environmentally friendly
chemicals, analytical procedures, or chemical processes and their optimization (saving energy and
materials) and prediction of properties to provide additional information and estimate environmental
fate of chemical compounds and pollutants.

In the study, the application of chemometrics in green chemistry as a tool for selection (chemical
substances, mainly solvents), classification (different types of organic solvents and ionic liquids),
and property prediction (i.e., viscosity, density, carbon dioxide solubility, toxicity, partition coefficient,
bioconcentration factor) is presented and discussed.

2. The Outline of Chemometric Tools

Chemometric tools may be divided into two groups: qualitative and quantitative methods.
The first group is dedicated to solving problems of classification and pattern recognition. In other
words, they allow for assigning an individual sample to a given group of samples or finding a sorting
pattern in the underlying data structure of a set [5]. The idea of these methods is based on two
philosophies dividing methods into unsupervised and supervised methods. The aim of unsupervised
methods is to reveal the underlying data structure without the potential bias of knowing the group
memberships beforehand. On the other hand, supervised methods are based on producing the best
possible separation of the groups. Therefore, they maximize the capability of the classification method
to predict the class membership of samples with unknown membership. Accordingly, it is worth
bearing in mind that depending on the problem, one group of methods could be more suited for a
given purpose. However, due to fact that it is not always an unambiguous choice, sometimes several
chemometric tools are applied. In finding the connection between the detected signals and the exact
concentration values, quantitative methods are used. As it is widely known, modern analytical devices
generate huge datasets with thousands of spectral data (from Fourier transform infrared/near-infrared,
mass spectrometry, nuclear magnetic resonance, etc.); therefore, finding a correlation is very often
unclear and difficult. The quantitative analysis is based on regression techniques, whose concept
involves exploration of a connection (linear or nonlinear) between one or several independent
variables and one (or more, but usually one) dependent variable. If there is only one dependent
and one independent variable, then the easiest case is presented—a univariate regression. However,
sometimes, as in analytical chemistry problems, the situation is more complicated, including a greater
number of dependent variables [6]. Taking the above into account, the selection of an appropriate
chemometric tool is dictated by the purpose of the analysis and the characteristics of a given problem.
Moreover, obtaining satisfactory results may require the use of several tools. The most commonly used
chemometric tools in chemical analysis are briefly described below [7].

The most commonly used chemometric tools in chemical sciences are principal component analysis
(PCA) [8,9] and cluster analysis (CA) [6,10]. These unsupervised techniques are very often applied
for reducing the dimension of the original data [11], finding internal patterns in the dataset [12,13],
or discovering the dominant factors [14,15]. In element classification, very popular are supervised
techniques such as linear discriminant analysis (LDA) [16] and partial least squares (PLS) [17,18].
However, they may also be used for prediction [19,20]. An example of regression algorithms may
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be similar to each other: multiple linear regression (MLR) [21] and principal component regression
(PCR) [22]. They are mainly used in data analysis for finding the relationship among variables that effect
the prediction of variable values (e.g., chemical compounds’ properties). Nevertheless, the most widely
used prediction tools are mathematical models from the quantitative structure–activity relationship
(QSAR) family [23,24]. They allow for finding the physicochemical, biological, and environmental
fate properties of compounds in reference to the knowledge of their chemical structure (new and
existing chemical compounds) without animal use in, for example, toxicological testing. Nowadays,
artificial neural network (ANN) and genetic algorithm (GA) are gaining more attention in the field of
chemical sciences while identifying patterns in data, even complex ones. This is due to their structures
and mechanisms, because both of them are comparable to evolutionary processes in nature, namely,
equivalents of genes and chromosomes in GA [25] or the biological (human or animal) central nervous
system (including neurons) in ANN [26]. They can be successfully used separately [27] or often as a
combined tool [28,29]. It is worth noting that these are not all of the techniques that may be used for this
purpose. Other approaches, for instance, sum of ranking differences (SRD) [30], k-nearest neighbours
(KNN) method [31], and support vector machine, (SVM) [32,33], may also be successfully applied for
alternative data treatment in the context of green chemistry. Details of the mentioned chemometric
techniques are described elsewhere (some references given in brackets); therefore, they are not fully
described in this review.

3. Selection

The problem of selection can be related to the solvents and other chemical reagents (for instance,
derivatization agents) used in operations, such as extraction, clean-up, and derivatization. In these
cases, the selection of appropriate solvents and chemical reagents for additional chemical activities is
extremely important to obtain satisfactory results. Nevertheless, it is worth looking for substitutes for
those chemicals mentioned above that are less hazardous to the environment, which correspond to the
5th and 8th of the 12 principles of green chemistry for solvents and derivatization agents, respectively.
Considering the above, it is not surprising that the selection of appropriate chemical reagents is a topic
of interest in chemometrics.

An approach for fast selection of solvents for a given industrial application with the use of
chemometric tools is proposed by García et al. [34]. First, the QSPR (quantitative structure–property
relationship) model is developed to find the relationship between the molecular structure and some
fundamental solvent properties. Then MLR (multiple linear regression) and PLS (partial least
squares) are used for the selection of 62 glycerol-based solvents with respect to three solvent features:
the behaviour of the dissolution processes (solvatochromic parameter EN

T ), mechanical aspects
(viscosity), and volatility aspects (closely related to safety, toxicity, and air pollution considered
through the boiling point). A comparison of applied chemometric tools shows that both of them
represent good results in the EN

T solvation parameter. MLR is only appropriate in the EN
T solvation

parameter, whereas PLS offers better fitting of two of the three properties considered simultaneously.
Viscosity and boiling point do not fit well enough to lead to a fully predictive model; however,
PLS provides a higher value of determination coefficient for boiling point.

A solvent selection system based on a combination of chemometrics and multicriteria decision
analysis is proposed by Tobiszewski et al. in line with the concept of green chemistry [35].
CA (cluster analysis), together with the TOPSIS (the technique for order of preference by similarity to
ideal solution) algorithm, allows for, first, grouping and then ranking within groups of 151 solvents
in respect to physicochemical, toxicological, and hazard parameters. Three clusters, as presented in
Figure 1, are obtained: nonpolar and volatile (35 solvents), nonpolar and sparingly volatile (35 solvents),
and polar (81 solvents). The results are compared with another SSG (solvent selection guide) developed
by Pfizer [36], GlaxoSmithKline [37], AstraZeneca [38], Sanofi [39], and CHEM21 [40], which are well
known in the pharmaceutical industry, confirming a general agreement of solvent rankings within
each cluster.
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Figure 1. Clustering of the solvents based on their 9 physicochemical properties using CA (cluster 
analysis). Reproduced from Ref. A solvent selection guide based on chemometrics and multicriteria 
decision analysis (Tobiszewski et al. [35]) with permission from the Royal Society of Chemistry. 

Similar results were recently presented by Sels et al. with the application of MDS 
(multidimensional scaling) [41]. Solvents were assigned to three groups based on their 22 physical 
properties according to safety, health, and environment scores: polar compounds, slightly 
water-soluble solvents, and hydrophobic solvents. In the MDS visualization, the solvents that were 
similar were plotted closer together in the 2D solvent space. However, it was noted that the relative 
influence of a functional group decreased with increasing chain length and molecular size. Then a 
straight line in the MDS visualization was not visible for homologous series from alcohols (due to 
drastic increase in boiling point and decrease in water solubility, vapour pressure, and relative 
evaporation rate). Moreover, the application of SUSSOL (Sustainable Solvents Selection and 
Substitution Software), a specially created software by applying artificial intelligence (AI), is 
presented for finding solvent replacements for N-methylpyrrolidone (NMP), toluene, and 
tetramethyl oxolane (TMO). The proposed alternative solvents are as follows: 10 candidate 
alternative solvents (including dimethyl sulfoxide, Cyrene, N-butyl pyrrolidone, pyridine, acetone, 
methyl acetoacetate, 1-ethyl pyrrolidone, dimethylacetamide, dimethylformamide, nicotine) for 
NMP; isobutylbenzene and p-cymene for toluene; and toluene, 1,1-dichloroethene, 
1,1-dichloroethane, 1,1,1-trichloroethane, 1,1-dichloropropane, ethylene glycol diethyl ether 
(1,2-diethoxyethane), and so forth for TMO. An example of visualization dedicated to possible 
alternatives for NMP by SUSSOL software is presented in Figure 2. 

Figure 1. Clustering of the solvents based on their 9 physicochemical properties using CA (cluster analysis).
Reproduced from Ref. A solvent selection guide based on chemometrics and multicriteria decision analysis
(Tobiszewski et al. [35]) with permission from the Royal Society of Chemistry.

Similar results were recently presented by Sels et al. with the application of MDS (multidimensional
scaling) [41]. Solvents were assigned to three groups based on their 22 physical properties according
to safety, health, and environment scores: polar compounds, slightly water-soluble solvents,
and hydrophobic solvents. In the MDS visualization, the solvents that were similar were plotted closer
together in the 2D solvent space. However, it was noted that the relative influence of a functional group
decreased with increasing chain length and molecular size. Then a straight line in the MDS visualization
was not visible for homologous series from alcohols (due to drastic increase in boiling point and decrease
in water solubility, vapour pressure, and relative evaporation rate). Moreover, the application of SUSSOL
(Sustainable Solvents Selection and Substitution Software), a specially created software by applying
artificial intelligence (AI), is presented for finding solvent replacements for N-methylpyrrolidone (NMP),
toluene, and tetramethyl oxolane (TMO). The proposed alternative solvents are as follows: 10 candidate
alternative solvents (including dimethyl sulfoxide, Cyrene, N-butyl pyrrolidone, pyridine, acetone,
methyl acetoacetate, 1-ethyl pyrrolidone, dimethylacetamide, dimethylformamide, nicotine) for NMP;
isobutylbenzene and p-cymene for toluene; and toluene, 1,1-dichloroethene, 1,1-dichloroethane,
1,1,1-trichloroethane, 1,1-dichloropropane, ethylene glycol diethyl ether (1,2-diethoxyethane), and so
forth for TMO. An example of visualization dedicated to possible alternatives for NMP by SUSSOL
software is presented in Figure 2.

A screening of potential PBT (persistent, bioaccumulative, and toxic) compounds (in an
environment based on persistence, bioconcentration, and toxicity data) is another example of chemical
selection, but different from solvents [42]. PCA is used to group chemicals representing many classes
of pollutants of various chemical structures, such as dioxins, PCBs, PAHs, and pesticides, and various
industrial chemicals according to their potential cumulative PBT behaviour. However, due to
unavailability of experimental data, an approach combining multivariate analysis and QSAR/QSPR
(quantitative structure–activity relationship) was applied, which allowed for the reduction of data gaps
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in the dataset. The strength of the approach is validated in two sequential steps: first, performed on
the available experimental dataset, including 54 chemicals, and then performed on the dataset of
180 chemicals (developed by QSPR). In Figure 3, the analysis of the latter dataset of organic compounds
using PCA is presented.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 22 
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Figure 3. PCA (principal component analysis) on experimental and predicted PBT (persistent, bioaccumulative,
and toxic) data for 180 organic compounds (dataset A − 54 comp. + dataset B − 126 comp.). Reproduced from
Ref. QSPR as a support for the EU REACH regulation and rational design of environmentally safer chemicals:
PBT identification from molecular structure (Papa and Gramatica [42]) with permission from the Royal Society
of Chemistry.

According to PBT index values, chemicals are grouped into three regions: region 1—not PBT
chemicals, region 2—chemicals with medium PBT properties, and region 3—PBT and vPvB (very
persistent and very bioaccumulative) chemicals.
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4. Classification

Classification as a systematic arrangement in groups or categories according to established criteria
is sometimes very useful in designing a chemical process or reaction. It allows for recognizing some
alternatives with corresponding characterization.

Translating the principle similia similibus solvuntur into the field of chemistry means
solvents belonging to the same group demonstrate similar abilities to dissolve compounds.
Therefore, chemometric classification of solvents according to the degree of polarity may provide
information about possible substitutes. This kind of grouping addressed to organic solvents is one of
the frequently undertaken problems in chemometrics, which is summarized in Table 1.

Table 1. Organic solvent classification according to the degree of polarity by chemometric application—
summarized exemplary studies.

Classification
Object

Chemometric
Tool Evaluated Parameters Results—Groups of Solvents Ref.

83 organic solvents PCA

• the Kirkwood function (K)
• molecular refraction (MR)
• molecular dipole moment (µ)
• the parameter of Hildebrand
• index of refraction (n)
• boiling point (bp)
• energies of HOMO (Highest

Occupied Molecular Orbital)
and LUMO (Lowest
Unoccupied
Molecular Orbital)

9 groups of solvents:

• aprotic dipolar: acetonitrile, acetone,
ethyl acetate, dichloromethane

• aprotic highly dipolar: dimethyl
sulfoxide, N,N-dimethyl
formamide, pyridine

• aprotic highly polarizable
dipolar: hexamethylphosphotriamide

• aromatic apolar: toluene, benzene
• aromatic polar:

chlorobenzene, o-dichlorobenzene
• electron-pair donor: triethylamine,

diethyl ether, dioxane
• hydrogen bonding: methanol,

ethanol, pentan-2-ol
• hydrogen bonding strongly

associated: formamide, water,
ethylene glycol

• miscellaneous: carbon disulphide,
chloroform, aniline

Chastrette et al.
(1985) [43]

101 organic
solvents

Parker–Reichardt
classification

correlation between dielectric β

parameter and empirical solvent
polarity parameter EN

T

4 groups (and 2 subgroups) of solvents:

• weakly dipolar nonhydrogen
bonding donor: ethers, carboxylic
esters, tertiary amines,
halogen-substituted hydrocarbons

• dipolar nonhydrogen bonding
donor: ketones, N,N-disubstituted
amides, nitro-substituted
hydrocarbons, nitriles, sulphoxides,
sulphones, cyclic
carbonates, pyridine

• hydrogen bonding donor: water,
alcohols, carboxylic acid, glycols

# nonprimary alcohols and aniline
# phenol and its derivatives
• N-monosubstituted amides

and formamide

Dutkiewicz (1990)
[44]
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Table 1. Cont.

Classification
Object

Chemometric
Tool Evaluated Parameters Results—Groups of Solvents Ref.

51 solvents KNN

Empirical scale parameters:

• PAC (polarity/acidity)
• PBC (polarity/basicity)
• PPC (polarity/polarizability)

8 groups of solvents:

• Nonpolar inert solvents:
aliphatic hydrocarbons)

• nonpolar-polarizable: aromatic
hydrocarbons, tetrachloromethane,
carbon disulphide

• nonpolar-basic:
ethers, triethylamine

• little polar-polarizable: aliphatic
halogen derivatives, substituted
benzenes with
heteroatom-containing substituents

• little polar-basic: cyclic ethers,
ketones, esters, pyridine

• polar-aprotic: acetanhydride,
dialkylamides, acetonitrile,
nitromethane, dimethyl
sulfoxide, sulfolane

• polar-protic: alcohols, acetic acid
• exceptional solvents: water,

formamide, glycol,
hexamethylphosphoric triamide

Pytela (1989) [45]

152 organic
solvents

KNN, CP-ANN,
QSPR

4 molecular descriptors
(theoretical descriptions of the
molecular structure)

5 groups of solvents:

• aprotic polar
• aromatic apolar or lightly polar
• electron-pair donors
• hydrogen bonding donors
• aliphatic aprotic apolar

Gramatica et al.
(1999) [46]

76 solvents ANN 9 characteristics (application in a
field of C60 fullerene solubility)

9 groups of solvents:

• apolar and slightly polar: n-pentane,
n-hexane, n-octane, n-decane

• apolar and slightly polar:
n-dodecane, benzene, m/o/p-xylene,
toluene, ethylbenzene, cumene

• apolar and slightly polar: carbon
disulphide, tetrachloroethylene

• weakly polar: fluorobenzene,
dichloromethane, o-cresol

• weakly polar:
chlorobenzene, pyridine

• weakly polar:
bromobenzene, bromoform

• hydrogen bond donors and others:
methanol, ethanol, 1-propanol,
1-butanol, acetone

• hydrogen bond donors and others:
1-pentanol, 1-hexanol,
1-octanol, 1-decanol

• highly polar:
nitrobenzene, benzonitrile

• highly polar: 1,2-ethanediol, water,
N-methylformamide, acetonitrile,
N,N-dimethylformamide

• miscellaneous:
chloroform, 1-aminobutane

Pushkarova and
Kholin (2014) [47]
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Table 1. Cont.

Classification
Object

Chemometric
Tool Evaluated Parameters Results—Groups of Solvents Ref.

236 industrial
solvents PCA, CA quantum and experimental

parameters

10 groups of solvents:

• hydrogen bond donor: short-chain
alcohols, phenols, acetic acid,
butyric acid

• hydrogen bond donor with high
polarizability: tributylamine,
glycols, long-chain alcohols

• hydrogen bonds
acceptor/electron-pair donor:
amines, pyridines, aniline,
anisole, dioxane

• aprotic dipolar: ethyl acetate,
cyclohexanone,
acetophenone, acetone

• aprotic dipolar-polarizable:
sulfolane, ketones with at less
C7, hexamethylphosphoramide

• aprotic very strongly dipolar:
nitro/nitrile compounds

• aprotic apolar: linear or
cyclic alkanes

• aprotic apolar with pi bonds:
aromatics, xylenes, cyclohexane

• halogenated hydrocarbons:
dichloromethane, carbon disulphide,
halogenated derivatives of benzene,
carbon tetrachloride

Levet et al. (2016)
[48]

72 solvents FCM, FLDA

Chemical parameters connected
with polarity and selectivity
developed by Snyder (related to
different polar interactions):

• proton acceptor (xe)
• proton donor (xd)
• dipole (xn)
• chromatographic strength

(P’) derived from gas–liquid
partition coefficient

• toluene similitudes (xt)
• methylethylketone

similitudes (xm)

FCM—8 groups (selected examples):

• cyclohexanone, ethylmethylketone,
dioxane, acetophenone, benzonitrile,
ethyl acetate, nitrobenzene

• dimethyl sulfoxide, ethyleneglycol,
m-cresol, m-methylpyrrolidone

• p-xylene, toluene,
benzene, bromobenzene

• aniline, dimethylformamide,
propylene carbonate, N,N-dimethyl
acetamide, acetic acid

• 1-propanol, 2-propanol,
tetrahydrofuran, 1-butanol,
tert-butanol, anisole, ethanol

• fluorobenzene, 1-octanol
• pyridine, triethylene glycol, benzyl

alcohol, acetonitrile,
methanol, acetone

• formamide,
water, dodecafluoroheptanol

FLDA—8 groups (selected examples):

• diethylether, triethylamine
• propanol, 1-octanol, 2-propanol,

1-butanol, ethanol,
tert-butanol, methanol

• pyridine, methylformamide,
triethylene glycol, N,N- dimethyl
acetamide, dimethyl sulfoxide

• acetic acid, ethylene
glycol, formamide

• methylene chloride,
ethylene chloride

• acetophenone, dioxane, acetonitrile,
acetone, tetrahydrofuran, aniline,
ethyl acetate

• chlorobenzene, p-xylene, benzene,
anisole, toluene, chloroform

• dodecafluoroheptanol,
water, m-cresol

Guidea and
Sârbu(2020) [49]

Interestingly, these classifications are carried out for various objects (types of solvents) using
different chemometric tools, for instance, PCA, KNN (k-nearest neighbours method), Parker-Reichardt
classification, CP-ANN (counter-propagation artificial neural network), ANN (artificial neural network),
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PCA, and CA, obtaining similar results. An example may be the study performed by Dutkiewicz [44]
using the Parker–Reichardt classification, whose results highly correspond to those obtained by a more
complex multivariate statistical method presented by M. Chastrette et al. [43]. Moreover, there are
applications with few tools applied. The idea is to improve the results of classification, for instance,
by making them more chemically interpretable, as in organic solvent classification based on molecular
descriptors (theoretical descriptions of the molecular structure), where KNN application is followed by
CP-ANN [46].

One of the latest works considers a classification of 72 solvents according to polarity and selectivity
issues based on the Snyder approach (related to different polar interactions), performed using FCM
(fuzzy c-means) and FLDA (fuzzy linear discriminant analysis) [49]. The used fuzzy chemometric
techniques show high efficiency and information power methods in solvent characterization and
classification (an approach for rationalchoosing of a good solvent). The obtained results (division into
eight groups of solvents) are in good agreement with the Snyder classification, especially using FLDA
(the highest value of 100% for the solvents corresponding to groups II and V and the lowest value of
66.67% for the solvents of group I).

However, the classification does not always take into account a large number of groups/classes.
Salahinejad [50] proposed a division of solvents for single-walled carbon nanotube dispersion into
two groups: solvents and nonsolvents (solvents with effectively zero of nanotube dispersibility).
The classification is conducted separately with several tools, such as RF (random forest),
SVM (support vector machine), MLP (multilayer perceptron), and QDA (quadratic discriminant
analysis). According to the results of the sum of ranking difference (SRD) procedure, the RF classifier
based on selected descriptors is the best classification model, while the SVM, MLP, and QDA are
ranked as good models.

Moreover, another classification of solvents based on a chemical group of compounds was
performed by Katritzky et al. [51] and Tobiszewski et al. [52]. In the first case, a classification
of the theoretical molecular descriptors, derived from the chemical structure alone (QSPR model),
according to their relevance to specific types of intermolecular interaction (including cavity formation,
electrostatic polarization, dispersion, and hydrogen bonding) in liquid media is presented. According to
the PCA results, 11 classes of solvents were formed: hydrocarbons; halo-hydrocarbons; saturated,
unsaturated, and cyclic ethers; esters and polyesters; aldehydes, ketones, and amides; nitriles and nitro
hydrocarbons; hydroxylic compounds; amines and pyridines; thiols, sulphides, sulfoxides, and thio
compounds; phosphorus compounds; and compounds with vastly different chemical functionalities.
In the latter case, CA and PCA were used to group around 130 potentially green organic solvents
according to their similarity based on physiochemical parameters, as well as to assess and identify
variables from which properties missing values such as bioconcentration factors, water–octanol,
and octanol–air partitioning constants can be predicted. The CA results show that polar solvents are
divided into three major groups: (a) less volatile solvents, slightly water soluble with high values
of logKOW and logBCF (alcohols with ether functional groups, aromatic alcohols, and short-chain
organic acids apart from formic and acetic); (b) less volatile and very highly water-soluble solvents
(lactate esters, formic and acetic acids, glycerol, and some alcohols with other functional groups);
and (c) highly volatile, low-boiling-point, high vapour pressure, and Henry’s law constant solvents
(“traditional” polar solvents, like short-chain alcohols, ketones, aldehydes, and esters). On the other
hand, nonpolar solvents were divided into volatile, water-nonsoluble, and slightly water-soluble
solvents. According to a chemometric analysis connected with finding the internal relationship between
bioconcentration factors and physiochemical parameters, in polar solvents, the variable logBCF forms a
separate latent factor not directly correlated with other variables (specific importance of this parameter
as a discriminant for the dataset). Unlike in nonpolar solvents, the relationship between parameters
like logBCF and logKOW and Henry’s law constant and the correlation of logKOA with a whole group
of physicochemical parameters, like surface tension, density, boiling, and melting point, is visible.
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A different approach for the classification of 259 solvents according to the experimentally found and
theoretically predicted physicochemical parameters presented by 15 specific descriptors is proposed by
Nedyalkova et al. (2020) [53]. The variables involved parameters such as melting point, boiling point,
density, water solubility, vapour pressure, Henry’s law constant, octanol–water and octanol–air
partition coefficients, and bioconcentration factor, some of which are implemented within the modules
of EPI Suite or by the SMILES codes (simplified molecular input line entry system). The fuzzy
hierarchical clustering methods allow for checking whether the experimental values of the respective
variables correspond to the calculated ones, and the partitioning procedure could determine stable
groups of similarity between the variables with highly different degrees of membership. The performed
partitioning with respect to specific descriptors divides solvents into 10 classes (some examples of
solvents within each class are presented in brackets) (i.e., chlorinated solvents—class 1 (iodoethane,
n-butyl acetate, m-cresol, diethyl carbonate, chloroform), nonpolar and volatile solvents—class
2 (bromoethane, benzonitrile, isobutyl acetate, carbon disulphide), polar and nonpolar solvents
mixed—class 3 (benzene, dichloromethane, diethyl ether, triethylene glycol, polyethyleneglycol 200),
polar solvents—classes 4–7 (dioctylsuccinate, oleic acid, 2-pyrrolidone, glycerol, water, 1-octanol,
nitrobenzene, methyl stearate), high molecular weight polar solvents—class 8 (ethyl laurate, anisole),
large group of mostly polar solvents with some exceptions—class 9 (triethylamine, ethanol, 1-butanol,
formamide, toluene, o-xylene, aniline, n-heptane, d-limonene, styrene, acetone, phenol, acetonitrile),
and outlier—class 10 (perfluorooctane 20). The relationships between solvents of various natures (polar,
nonpolar, volatile, etc.) and the physicochemical variables are found, despite the fact that missing
data of specific descriptors are fulfilled via theoretical calculation. Moreover, applied chemometric
techniques allow for partitioning solvents with more or less similar characteristics in terms of higher,
smallest, or intermediate values of considered descriptors.

One of the most interesting groups of solvents are ionic liquids (ILs) due to their desired
feature—designing of solvents with particular properties (within certain ranges) by a combination
of selected cation and anion. Therefore, characterization of their types is very important for
finding an appropriate alternative, for instance, in phases for gas chromatography. This aspect is
discussed by González-Álvarez et al. in the classification of three ILs with hexacationic imidazolium,
polymeric imidazolium, and phosphonium as cations and halogens, thiocyanate, boron anions,
triflate, and bistriflimide as anions [54]. The application of CA, LDA (linear discriminant analysis),
D-PLS (discriminant partial least squares), and MLR shows that two main groups of phases may be
distinguished: ILs with acidic and basic characterization. After the identification of the two natural
groups of ILs by CA, several supervised chemometric techniques, such as LDA, D-PLS, and MLR were
used to construct models of pattern recognition and classification rules for ILs. All tools showed high
prediction capacity and were successfully used for characterizing IL classes. The best results were
obtained via LDA with >96% for classification and >92% for prediction, followed by MLR with 96.7%
and 92% in the prediction for classes A and B, respectively.

In another study, 227 ionic liquids and their related salts were also classified based on their toxicities
towards rat cell lines [55]. Regardless of the used chemometric method (LDA, CA, SVM (support vector
machine), or CP-ANNs (counter-propagation artificial neural networks)), ILs were classified into four
categories: low, moderate, high, and very high toxicity. In this study, CP-ANN turned out to be more
favourable over other methods in terms of accuracy of classification, underlining that CP-ANNs may
extract actual information and knowledge from the dataset.

An interesting approach with a classification map called the Σpider diagram was proposed by
Lesellier [56]. Solvents were classified based on physiochemical properties encountered with other
visual presentations, such as Snyder triangle, Hansen parameters, LSER (linear solvation energy
relationships), Abraham descriptors, COSMO-RS (Conductor like Screening Model for Real Solvents)
parameters, and solvatochromic solvent selectivity. Visualization of the last solvent classification is
presented in Figure 4.
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Figure 4. Spider diagram based on solvatochromic parameters π∗, α, β. Reprinted from Journal
of Chromatography A, 1389, E. Lesellier, Σpider diagram: A universal and versatile approach for
system comparison and classification: Application to solvent properties, 49–64, Copyright 2015,
with permission from Elsevier.

This diagram shows many advantages of solvent classification through a better view of solvents
having no acidic character (for the solvatochromic solvent selectivity), easier usage due to the “flattening”
of the spherical view down to a single plane (for Hansen parameters), more subtle classification due to
the use of five parameters instead of three (for COSMO-RS), and simple view of the solvent groups
having similar or different properties (for Abraham descriptors). An approach may be useful not only
for selecting suitable solvents for extraction, separation, or purification approaches and for solubility
studies but also for choosing greener solvents.

There are also other fields of interest apart from solvents, for instance, pharmaceutical excipients
in reference to their solubility parameters [57]. PCA is used to predict a behaviour of materials in a
multicomponent system (e.g., for the selection of the best materials to form stable pharmaceutical
liquid mixtures or stable coating formulation). It is significantly important because similarity between
the values of the respective components of the solubility parameter allows for the estimation of
the compatibility between different materials (solvents, colorants, lubricants, coating components,
and powder blends).

5. Properties (Prediction and Correlation)

Knowledge of the physicochemical properties of compounds is necessary to predict their behaviour
under various conditions or factors during chemical reactions, and their behaviour in various media or
compartments in the environment (environmental fate). Therefore, this explains the need to obtain
information on the solvents’ and other chemical reagents’ properties. Unfortunately, sometimes there
are missing points in chemical characteristics. Thus, some prediction and computational methods for
filling the gaps are highly required and successfully applied.

An example of the most popular advanced and computational modelling approaches may be
QSAR (quantitative structure–activity relationship) and EPI Suite (Estimation Programs Interface
Suite). QSAR models allow for the prediction of the physicochemical, biological, and environmental
fate properties of compounds in reference to knowledge of their chemical structure. The concept
is based on establishing quantitative relationships between descriptors (referring to the chemical
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structure) and the target property capable of predicting activities of novel compounds [58]. On the
other hand, EPI Suite may estimate physical/chemical and environmental fate properties such as
water solubility, octanol–water partition coefficient, Henry’s law constant, melting point, boiling point,
and aquatic toxicity, taking into account chemical structure as input data (depending on the chosen
estimation model program) [59]. However, the easiest manner is chemical predictive modelling,
which is based on an observation of some patterns, correlations between variables in dataset. In this
respect, the chemometric tools play an important role.

As mentioned in Section 3, the use solvents in chemistry is one of the most important issues
with respect to environmental aspects. In this manner, the type of solvent and its amount are of great
importance. ILs are very often described in the context of solvents with incredible features, such as
negligible vapour pressure, high chemical and thermal stability, low flammability, large liquidus
range, high ionic conductivity, large electrochemical window, excellent solvation ability of a wide
range of compounds, and most of all, possibility of designing for specific demands (due to an
appropriate selection of cation and anion). However, there are also numerous studies where the authors
pay attention to the environmental problem due to poor biodegradability, toxicity, and methods of
preparation and degradation after use [60–65]. Nevertheless, the lack of data for IL characterization in
the context of greenness assessment is a serious problem. It may make the evaluation difficult and in
some sense inaccurate and inappropriate in flat assertions on ILs as alternative green solvents [66].
Hence, a large number of publications on predicting the properties of ionic liquids have been performed,
as shown in Table 2.

Table 2. Predictionof ionic liquidpropertiesbyapplyingchemometric tools—summarizedexemplarystudies.

Predicted
Property

Chemometric
Tools Evaluated Objects Way of Estimation Ref.

Carbon dioxide
solubility

RB, MLP, MQR,
MPE

• [emim][PF6]
• [hmim][PF6]
• [bmim][BF4]
• [hmim][BF4]
• [omim][BF4]

experimental thermodynamic data
and molecular structure information

Torrecilla et al.
(2008) [67]

Melting point ANN 97 imidazolium salts with
varied anions 14 molecular descriptors Torrecilla et al.

(2008) [68]

Viscosity ANN 58 ionic liquids at several
temperatures

molecular mass of the anion and
cation, the mass connectivity index,
and the density at 298 K

Valderrama et al.
(2011) [69]

Electric
conductivity MLR, BP-ANN 35 ILs at different

temperatures structural descriptors Cao et al. (2013)
[70]

Density ER, ANN

mixtures of ionic liquids and
molecular solvents (water,
alcohols, ketones, ethers,
hydrocarbons, esters,
and acetonitrile)

molar mass, critical volume,
temperature, acentric factor of each
component of the IL mixtures

Huang et al.
(2014) [71]

Design of ionic
liquids PCA, CA 172 ILs

structural similarity and identification
of structure aspects responsible for a
given IL physicochemical properties
(viscosity, n-octanol–water partition
coefficient, solubility and enthalpy of
fusion via ILPC predictor)

Barycki et al.
(2016) [72]

Lipophilicity QSPR, PCA selected ionic liquid (only
imidazolium-based cations)

comparison of hydrophobic or
hydrophilic character according to
some methods: chromatographic
analysis, statistical,
and chemometric approach

Studzińska et al.
(2007) [73]

Toxicity
PCR, PLS,

decision tree(s)
model

various combinations of
cations (imidazole,
pyridinium, quinolinium,
ammonium, phosphonium)
and anions (BF4, Cl, PF6, Br,
CFNOS, NCN2,
C6F18PBF4, C6F18P)

molecular descriptors and EC50
concentrations for inhibition of
acetylcholinesterase

Ž. Kurtanjek
(2014) [74]
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Table 2. Cont.

Predicted
Property

Chemometric
Tools Evaluated Objects Way of Estimation Ref.

Toxicity PCA

375 ILs with six different types
of cations namely,
imidazolium, ammonium,
phosphinium, pyridinium,
pyrolidinium, and sulfonium

multiple endpoints for various
organisms based on WHIM
descriptors

Sosnowska et al.
(2014) [75]

Toxicity QSAR, MLR,
ELM

160 ILs with 57 cations and
21 anions

toxicity towards AChE based on
theSEP area and the screening charge
density distribution area (S σ)
descriptors

Zhu et al. (2019)
[76]

Toxicity QSPR, MLR

304 ILs of different
combinations of 8 cations
(ammonium, imidazolium,
morpholinium, phosphonium,
piperidinium, pyridinium,
pyrrolidinium, quinolinium)
and 12 anions (chloride,
bis(trifluoromethylsulfonyl)
amide, bromide, iodide ion,
sulfonate, borate, phosphate,
fatty acid, dicyanamide,
formate, thiocyanate,
acetate, etc.)

toxicity against leukaemia rat cell line
IPC-81 (logEC50) based on 33
descriptors describing the structural
features of ionic liquids related to
toxicity (i.e., chain length of the
cationic head group)

Wu et al. (2020)
[77]

Abbreviations: AChE—Acetylcholinesterase; BP-ANN—Back Propagation Artificial Neural Network; ELM—Extreme Learning
Machine; ILPC—Ionic Liquid PhysicoChemical; MPE—Mean Prediction Error; SEP—Surface Electrostatic Potential; WHIM
descriptors—Weighted Holistic Invariant Molecular descriptors

The prediction of IL properties may be successfully conducted using different chemometric
tools. It is mostly proved by a comparison of predicted values with experimental/literature ones,
such as in estimation melting point [68] or viscosity [69]. Moreover, it sometimes happens that one
technique is applied to select appropriate descriptors; then another one is used for the prediction of
a particular feature. In some cases, the applications of several chemometric methods are compared,
as presented with the example of carbon dioxide solubility [67], electric conductivity [70], density [71],
and toxicity [74]. In first case, nonlinear models, such as RB (radial basis network) and MLP (multilayer
perceptron) turned out to be more adequate when the mathematical complexity of the model is not
important or a high accuracy is necessary. On the other hand, MQR (multiple quadratic regression)
is recommended for faster computation if the operating conditions are stable. Prediction of electric
conductivity using an ANN model is more favourable than using an MLR model due to more rational
nonlinear modelling. An interesting approach is presented for the latter case—toxicity prediction
based on molecular descriptors and EC50 concentrations for the inhibition of acetylcholinesterase using
a decision tree(s) model. Decision tree(s) models (R = 0.992) significantly outperform other models,
such as PCR (principal component regression) and PLS (R = 0.62 and 0.64), for numerical predictions
of EC50 concentrations and the classification of ILs into four levels of toxicity. The visualization of this
division into four classes is presented in Figure 5.

It is not always the rule that one of the models used is clearly better than the others. Very often, all
of them or some of them lead to satisfactory results, which is described by Huang et al. [71] for density
prediction. ER (extended Riedel) and ANN proved to be accurate in a wide range of compositions and
temperatures. However, the ER model is a better alternative because it can be used directly without any
adjustable parameter and computer-aided program. Sometimes satisfactory results may be obtained
by the application several chemometric tools, one by one. Barycki et al. proposed the application of
PCA for the definition of the distribution trends of four IL properties dependently on their structures.
Then CA is used to provide some detailed information concerning IL distribution [72]. It is also worth
noting that chemometrics may be the basis for developing other tools. According to the observed
strong relationship between the variance in the observed toxicity and the cations’ descriptors, a toxicity
ranking index based on the structural similarity of cations (TRIC) for initial toxicity screening studies
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of ILs has been developed [75]. However, the use of TRIC cannot be individual. It is limited to the
prediction of toxicity endpoints used in its development.
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One of the most frequently predicted environmental parameters is toxicity, which may be noticed
due to the visible trend in IL properties’ prediction analysis as summarized above [74–77]. It is
expressed by different endpoints towards various organisms. Toxicity assessment is very important
from green chemistry’s point of view. Some examples of studies concerning the prediction of toxicity
for selected chemicals as potential pollutants are summarized in Table 3.

Table 3. Examples of toxicity prediction for different groups of chemical compounds by applying
chemometric tools.

Chemical
Compound

Chemometric
Tool Organism Toxicity Results Ref.

Metals as: TI, Cd,
and Ag RSM growth of cabbage

seedlings

Ag is observed to be the most toxic,
while Tl and Cd, although toxic,
exhibited fairly similar effects.

Allus et al.
(1988) [78]

Nitrobenzenes
LS-SVM, QSPR,

PLS, PCA,
GA-PLS, MLR

Tetrahymena pyriformis [79] n/a Niazi et al.
(2007) [80]

Organic
compounds

(including some
pharmaceuticals)

QSTR, PLS human (human lethal
concentration)

The ETA models suggest that the
toxicity increases with bulk, chloro
(hydrophobic) functionality, presence
of heteroatoms within a chain or a
ring and unsaturation, and decreases
with hydroxyl (polar) functionality
and branching.

Roy and Ghosh
(2008) [81]

Chemical
compounds SVM, ANN Pimephales promelas n/a Tan et al. (2010)

[82]
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Table 3. Cont.

Chemical
Compound

Chemometric
Tool Organism Toxicity Results Ref.

Organic chemicals
QSAR, MLR,

PLS, GFA,
G/PLS

Daphnia magna

Higher lipophilicity and
electrophilicity, less negative charge
surface area and presence of ether
linkage, hydrogen bond donor groups
and acetylenic carbons are responsible
for greater toxicity of chemicals.
Diversity in chemically different
compounds in mechanisms of toxic
actions is observed.

Kar and Roy
(2010) [83]

Per- and
polyfluorinated

(PFCs) chemicals

PCA, QSAR,
MLR, GA, rodents (oral)

The importance of negative
hydrophobicity and positive
electronegativity for the overall
toxicity of PFCs for rodents.

Bhhatarai and
Gramatica
(2011) [84]

Herbicides ANN, QSAR rat (oral) n/a Hamadache et
al. (2016) [85]

Agrochemicals
(fungicides,
herbicides,

insecticides, and
microbiocides)

QSAR Daphnia magna
The toxicity increases with
lipophilicity and decreases
with polarity.

Khan et al.
(2019) [86]

Silver
nanoparticles CA, PCA

links between ecotoxicity
and physicochemical
features (Daphnia magna,
Thamnocephalus platyurus,
and Daphnia galeata)

n/a Nedyalkova et
al. (2017) [87]

Silver
nanoparticles

PCA, CA,
k-means

clustering,
MLR

Daphnia magna,
Thamnocephalus platyurus,
Escherichia coli,
Pseudomonas fluorescens,
Pseudokirchneriella
subcapitata, Pseudomonas
putida, Pseudomonas
aeruginosa, Staphylococcus
aureus, mammalian cells,
algae, yeast, and fungi

The relation AT/ZP (acute toxicity
measure, EC50/LC50/zeta potential of
nanomaterial in the test) is not very
indicative for the toxic impact of the
AgNPs studied.

Nedyalkova et
al. (2019) [88]

Abbreviations: ETA—Extended Topochemical Atom; GA-PLS—Genetic Algorithm-Partial Least Square; GFA—Genetic Function
Approximation; G/PLS—Genetic Partial Least Squares; QSTR—Quantitative Structure Toxicity Relationship; RSM—Response
Surface Methodology

Based on the above studies, the methods from the family of QSAR models are willingly used
for toxicity prediction. They allow for the achievement of good results and provide more than 95%
predictions for agrochemical toxicity towards Daphnia magna [86]. QSAR models are often supported
by chemometrics; however, there is no dominant chemometric tool that ensures the best prediction
ability. In nitrobenzene toxicity prediction, LS-SVM (least squares-support vector machines) turned
out to be the more powerful method than the rest [80]. The reason is fact that LS-SVM (for quantum
chemical descriptors) drastically enhances the ability of prediction in QSAR (prediction of IGC50

toxicity) studies superior to MLR and PLS.
Other parameters of great importance for the assessment of the environmental risk associated with

the use of chemical compounds are the partition coefficients towards different media. They allow for the
estimation of the affinity of a particular chemical compound to a selected phase system. Octanol–air or
octanol–water partition coefficients may be applied as the predictors of the partitioning of semivolatile
organic chemicals to aerosols or a chemical compound to dissolve in fats, oils, lipids, and nonpolar
solvents, respectively. Moreover, the value of the latter coefficient could provide information on the
potential for bioaccumulation as well as in persistent compounds undergoing biomagnification [89,90].
In Table 4, a list of studies on the chemometric prediction of partition coefficients in presented.
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Table 4. Prediction of partition coefficients by applying chemometric tools—summarized exemplary studies.

Partition Coefficient Chemometrics
Tool Evaluated Objects Way of Estimation Ref.

n-octanol-ir partition
coefficient

QSAR/QSPR,
PCA, PCR

chloronaphthalene
congeners

190 different
quantum-chemical,
thermodynamical, and
topological characteristics of
chloronaphthalenes as
descriptors

Puzyn and
Falandysz
(2005) [91]

Water-polydimethylsiloxane
partition coefficient

QSPR, GA, MLR,
ANN organic compounds

molecular descriptors:
minimum atomic orbital
electronic population, Kier
shape index, polarity
parameter/square distance,
and complementary
information content

Golmohammadi
and

Dashtbozorgi
(2010) [92]

n-octanol-water partition
coefficient

LS-SVM, QSPR,
MLR, SVR, ANN

organic compounds
(derivative phenolic
compounds)

n/a
Goudarzi and

Goodarzi (2008)
[21]

n-octanol-water partition
coefficient

QSPR,
mRMR-GA-SVR aromatic compounds

68 molecular descriptors
derived solely from the
structures of the aromatic
compounds

Yang et al.
(2008) [93]

n-octanol-water partition
coefficient

QSPR,
MLR/PLS/RBF-PLS organic compounds

Goudarzi and
Goodarzi (2010)

[94]

n-octanol-water partition
coefficient

QSAR, CoMFA,
CoMSIA

21 polychlorinated
naphthalenes (PCNs)
congener

3D descriptors according to
the experimental values of
logKOW for 21 PCNs

Gu et al. (2017)
[95]

polyurethane foam-air
partition coefficients

QSPR, MLR,
ANN, SVM

170 organic
compounds
comprising 9 distinct
classes (PAHs,
benzenes, esters,
aliphatic and cyclic
hydrocarbons,
polychlorinated
biphenyls, musk,
nitrogen and sulphur
compounds, pesticides,
other compounds)

368 molecular descriptors Zhu et al.
(2020) [96]

The information summarized in Table 4 shows that the application of the combination the QSPR
model and chemometric methods is common. In the estimation of the water–polydimethylsiloxane [92]
and n-octanol–water [21] partition coefficients of organic compounds, the best techniques turned out
to be ANN and LS–SVM, respectively. This results in a significant improvement in prediction quality.
Two years later, Goudarzi and Goodarzi [94] conducted a prediction of the n-octanol–water partition
coefficient for the same dataset of organic compounds but using different techniques, namely, MLR,
PLS, and RBF-PLS (radial basic function-partial least squares). This time, due to flexible mapping of
the selected features by manipulating their functional dependence implicitly unlike regression analysis,
RBF-PLS is considered to be better than MLR and PLS models.

An interesting approach for the n-octanol–water partition coefficient for polychlorinated
naphthalenes (PCNs) congener is proposed by Gu et al. [95], where QSAR is combined with comparative
molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA).
These two models are dedicated to 3D-QSAR approaches, where the 3D conformation property of
compounds has to be taken into account (possibility of exploring, visualizing a structural information,
and designing new compounds with particular properties). Although the results of both models show
good prediction ability, the CoMSIA model is better in designing new types of compound molecules
due to the higher number of descriptors. The readiness of chemicals to concentrate in organisms when
the compounds are present in the environment may also be defined by bioconcentration factor (BCF).
Prediction of this environmental property for some organic compounds using QSAR combined with
GA-ANN (for the selection of appropriate descriptors) is proposed by Fatemi et al. [29].
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6. Conclusions

There are various chemometric tools that can give benefits in terms of green chemistry.
Application of even the simplest and well-known techniques for dimensionality reduction and
grouping of objects or variables, such as CA or PCA, may result in significant advantages. These are
the treatments for missing data, so chemical parameters are predicted without performing problematic,
time-consuming, and material-demanding measurements. Even finding correlations in the dataset
can give clues on the selection of proper materials. In this way, there is a possibility of estimation of
the environmental fate of chemical compounds if the predicted datapoints refer to their behaviour
in the environment. Reducing the number of elements in the dataset by grouping objects according
to similarities leads to a preselection of objects for further consideration by more detailed studies.
Selection of chemical compounds with similar characteristics by chemometric techniques is helpful in
finding greener alternatives, compounds that are less problematic but retain their desired features.
Multivariate statistics are successfully applied in green chemistry studies, and their significance is
expected to be growing.
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