
Classification of objects in the LIDAR
point clouds using Deep Neural Networks

based on the PointNet model

Zdzis law Kowalczuk ∗ Karol Szymański ∗∗
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Abstract: This work attempts to meet the challenges associated with the classification of
LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the
designed system should allow the classification of point clouds covering an area of several dozen
square kilometers within a reasonable time interval. Therefore, it must be characterized by fast
processing and efficient use of memory. Thus, the most popular approaches to the point cloud
classification using neural networks are discussed. At the same time, their shortcomings are
indicated. A developed model based on the PointNet architecture is presented and the way of
preparing data for classification is shown. The model is tested on a cloud coming from the 3D
Semantic Labeling competition, achieving a good result, confirmed by the high quality of the
system, i.e. a high rate of categorization of objects.
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1. INTRODUCTION

One of the most popular tasks of unmanned aircraft is
mapping and recognizing new areas, which should be
scanned, e.g. by a flying vehicle using LIDAR. As a result
of data processing an appropriate point cloud is created.
Another task is the classification of the cloud points. Point
cloud classification consists in assigning an object class
to each point (which means connecting each point with a
specific type of object). Of course, the number and names
of classes may vary (this depends mainly on the number
of different objects to be recognized). The most common
classes are ground, low vegetation, medium vegetation,
high vegetation and buildings, and unclassified facilities
that are not qualified for the defined classes of objects.

To classify a point cloud that maps a large area (up to
several hundred square kilometers), you must use the ap-
propriate software. Such software is based on analytical al-
gorithms that isolate each class separately. Unfortunately,
the results are far from perfect (there are many classifica-
tion errors). To achieve an accuracy exceeding 95%, the
classification obtained should be corrected manually. Such
a process is time-consuming and expensive. An opportu-
nity to improve the classification accuracy and processing
time is to use deep learning for this purpose.

In connection with the above, we present a model that can
facilitate the classification of huge point clouds with high
accuracy and in a short time using a deep neural network.

2. RELATED WORKS

The main difficulty in using neural networks for point
cloud classification is the lack of regularity in the space
distribution of cloud points. Popular convolutional net-
works operate on data whose subsequent samples are
mutually shifted by a constant time step in the case of
sound signals (Salamon and Bello (2017), Piczak (2015))
or a fixed amount of space in the case of digital images
(Krizhevsky et al. (2012), He et al. (2016)). In the case
of a point cloud, the distance between adjacent points is
variable. On the other hand, the use of weight sharing is
possible in text processing (Zhang et al. (2015), dos Santos
and Gatti (2014)), because the order of words can always
be indicated. However, this sort of ordering is generally
unsuitable for point clouds. What’s more, this issue is
even more complex due to its large dimensionality and
variable density in space. For these reasons, the cloud of
points can be represented as an unsorted list of coordinates
with additional features. That is why the vast majority
of solutions that use neural networks to classify point
clouds rely on converting a point cloud into a 2D image,
projecting the cloud to a horizontal plane or 3D image.
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In several works, it is proposed to classify clouds using a
point-by-point approach, generating a 2D image for each
point (Hu and Yuan (2016), Yang et al. (2017), Zhao et al.
(2018a)). For each classified location, we get an image with
pixels having certain features that can be associated with
specific channels (of this image) assigned to each pixel
(like the intensity of RGB colors). Each pixel maps a
specific part of the analyzed area (therefore the features
are determined on the basis of surrounding points mapping
this area). Such features may be, for example, the average
height above the ground, shape coefficients calculated on
the basis of the eigenvalues of the coordinates of the
points, the intensity of the return beam, the histogram
of normal vector directions for each point, etc. However,
this approach is not suitable for the classification of large
areas, since the values of all functions must be calculated as
many times as the pixels in the image. What’s more, there
are as many 2D images as there are points in the cloud.
This makes it time to classify the points of the entire cloud
unacceptably long, although the generated images can be
classified directly by convolutional neural networks.

The considered problem of 3D clouds can be better solved
using the 3D domain (instead of the above 2D mapping).
So, let us extend the 2D image into 3D and introduce
the idea of a voxel instead of a pixel. This approach is
called voxelization (Jing Huang and Suya You (2016),
Zeng Wang and Posner (2015), Engelcke et al. (2016),
Zhou and Tuzel (2017), Song and Xiao (2014), Song and
Xiao (2016), Li (2016)). As in the 2D image approach, a
specific space is assigned to each mapping voxel. However,
in contrast to the 2D method, quantization of space
takes place only once during cloud analysis, which is a
great advantage of this approach. The voxel can store
information about space occupancy or other features based
on the characteristics of points assigned to this voxel. After
converting a point cloud into a 3D image, it can then
be classified using a convolutional 3D network. However,
this approach also has disadvantages. Namely, in this sort
of aggregate description, many points are ’loaded’ into
one voxel (with a label), thus the exact location is lost
(quantization introduces an error). What’s more, when
a LIDAR point cloud is classified, which contains high
objects, such as cranes, buildings, high voltage lines, the
vast majority of voxels remain empty. This makes this
approach and representation very inefficient in storage (it
requires memorizing a large number of unnecessary data).

Qi et al. (2016) proposed a solution for direct classification
of point clouds using neural networks. The key idea of
the PointNet model is to obtain information about the
neighborhood of classified points. Instead of using multiple
convolutional layers, maxpooling is applied to the features
of the points in the cloud. This solution allows you to
speed up the time-consuming process of processing raw
data and reduce the size of stored data, while maintaining
high classification accuracy. The first version of the model
was adapted only to the classification of a cloud with a
relatively small number of points (counted in thousands).
Therefore, a few months later, in the next work (Qi et al.
(2017)) the authors proposed a few additional solutions
that adapted the PointNet model to objects in complex
scenes. Among other things, there were proposed ways of
extracting features in different scales of the neighborhood.

However, the improved model, which has been tested only
on small point clouds, is not adapted to the classification
of point clouds covering tens of square kilometers.

The novelty of this work is the adaptation of the PointNet
model for fast classification of large LIDAR cloud points.

3. THE PROPOSED METHOD

The following subsections show the stages of data pro-
cessing in the proposed method. First, the algorithm for
preparing data before entering them to the inputs of the
neural network (NN model) is described. Next, the archi-
tecture of the neural network that classifies the analyzed
points is discussed. Finally, the authors suggest a way to
enlarge the training data set.

3.1 Pre-processing of data

Using professional LIDAR, point clouds are generated with
a density of 10 to 120 points per square meter. To classify
an area of a few square kilometers, sometimes you have
to designate up to one billion labels. It is not possible
to simultaneously classify all points of such a large point
cloud. Therefore, the cloud must be divided into smaller
parts, and the way this partition is executed is crucial to
the performance of the system.

We suggest dividing the cloud into cuboids with the sides
of the base with a length of r and the height to cover
all points of the cloud. To assign each of the points to
the appropriate cuboid, it is necessary to round the x and
y coordinates. In addition to the point features that are
directly accessible from the LIDAR, such as coordinates,
intensity and the number of LIDAR returns, we introduce
some additional features. Namely, for each point normal
vectors are calculated, and the angle between the vector
and the z axis is treated as another feature of the point.
In addition, the x and y coordinates are normalized to the
center of the cuboid in which they lie, and the z coordinate
is normalized to the lowest point in the cuboid.

In total, 5 features are given to the input of the NN model,
which together with the single-byte information about the
point class takes only 21 bytes in the memory. Thanks to
that, you can store data containing over 5 billion points in
100 GB memory. Such number of points can map the area
from 40 to 500 square kilometers.

To capture the structure of the cloud at various scales, not
only the features of the points inside the cuboid selected
for classification are input to the neural network. To the
analyzed area are also attached features of points coming
from 8 nearest neighboring cuboids (second scale) or from
24 (weaker) neighboring cuboids (third scale). The three
smallest processing scales are shown in figure 1. Classified
cuboid is marked with navy crosses. Red lines mean a
larger range of analysis (the second scale therefore includes
9 cuboids). And the largest area of analysis (third scale)
includes 25 cuboids, which is marked in yellow.

To process each cuboid in the same way, it is convenient
to have a fixed number of points (H) in them. If fewer
points occur, existing points are simply copied to reach
the fixed number H. However, if there are more than H
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Fig. 1. Exemplary processing scales

points, then additional cuboids are created in the same
location, so that each point is in at least one of them.

3.2 The DNN model

The PointNet model has been adapted to the classification
of properly pre-processed LIDAR data. The block diagram
of the whole Deep Neural Network (DNN) system is shown
in figure 2, where sharp rectangles point to a data block,
and rounded rectangles indicate data operations. The
input data of the system is a cloud of raw points, which is
a list of points with their initial geometrical and physical
features. The output of the system is a matrix H×C. The
rows correspond to H classified points, and the positions
in the individual columns indicate the probability with
which each point belongs to each of the adopted C classes.
At the beginning, the cloud of original (raw) points is pre-
processed, as described in the previous section.

Pre-processed data is fed to the input of a deep NN (DNN)
network based on the PointNet model. This network has 4
sets of inputs, which are initially processed independently
(in parallel). In the first branch from the left we are looking
for a different representation of the input geometrical and
physical features. For this purpose, a four-fould multi-
layer perceptron (MLP) is used. In figure 2, the number
of neurons in subsequent layers is written in brackets, and
each of the MLP layers uses a diode activation function
(ReLU). So in this branch, each layer has the same number
(64) of neurons. We assume that 4 layers are sufficient to
determine some purified individual deep features (IDF) of
each point (without any information about neighboring
points). The input data of this branch is H points from
the classified cuboid, which have (initially) F functions.
The output of this branch is a matrix H × 64, so for each
of the H points of the analyzed cuboid there are 64 IDFs.

The second branch determines the extended IDFs in the
sense of the order/complexity of the neural network layers.
From this kind of ’noise’ information represented by a large
number of IDFs, we select only the most strong attributes
(256) of all points (by maxpooling), called extended deep
features (EDF), which are common to all cuboid points.
In connection with the above, in order to restore all
(H) cuboid points, we perform the multiplication phase,
assigning the same EDFs to all the newly generated points.

The third branch performs the same operation, but instead
of H points from the classified cuboid, 4 · H points

representing the second scale are created (processing 3x3
= 9 ’boxes’). Similarly, 9 · H points enter the fourth
branch, taking into account the third scale (processing of
25 ’boxes’, the classified cuboid and 24 neighboring ones).

After concatenating all four data blocks, MLP processing
is called again, allowing you to calculate the target C deep
features (DF), where C is the number of desired target
classes. By using softmax type activation in the last layer
of MLP, the values of these features can be interpreted
as the probability with which each point belongs to a
particular class (one of C).

3.3 Data augmentation

It is worth to have as much training data as possible to
train neural networks. A cloud of LIDAR measurement
often contains many points and there is usually no problem
finding important sections that should be classified. It is
much more difficult to find data already well classified
(with high accuracy), which can be used as training data
for the model being taught. This problem can be solved, for
example, by generating new data based on existing data.

In the case of the discussed method, two simple transfor-
mations can be performed for this purpose. The first of
these is the rotation of the entire cloud. In this case, the
created cuboids are differently oriented in the analyzed
cloud. The second method is to move each point in the
cloud by a certain vector. Then the coordinates of the
cuboid vertices are different. Both transformations lead to
new sets of points, which are in each cuboid. As a result,
training data can be broadly expanded.

4. EXPERIMENTS

The applied data processing algorithm has been imple-
mented in Python. The PointNet model used was pro-
grammed using the Keras library with the TensorFlow
backend. All experiments were carried out using the Nvidia
GTX 1080 Ti graphics card.

Model tests were performed on data from the ISPRS 3D
Semantic Labeling Contest. The goal of the competition
is to classify the LIDAR point cloud collected from the
city of Vaihingen on the basis of an already classified cloud
from the same town. As part of the competition, each item
should be classified as one of 9 categories (in color):

(1) power line (blue)
(2) pow vegetation (lime)
(3) impervious surfaces (aegean)
(4) car (canary)
(5) fence/Hedge (orange)
(6) roof (red)
(7) facade (yellow)
(8) shrub (pear)
(9) tree (green).

Figure 3 shows the training cloud containing 412 thousand
points in which different detected classes are marked with
different colors. The reference labels have been taken over
from the authors Niemeyer et al. (2014). The evaluation
of the results is based on the average value of the F1 index
(Nancy Chinchor (1992)) for each class.
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Fig. 2. Block diagram of the whole DNN system

Fig. 3. A view of a cloud of training points indicating the
reference class for each point

4.1 Tuning of hyperparameters

To ensure that the training of the model will bring the
expected results, it is necessary to adjust the model’s hy-
perparameters. The first parameter is the learning speed,
which determines how dynamically the weighing of the

model changes during training. To strengthen system gen-
eralization, we use the L2 regularization Schmidhuber
(2014). The scaling factor with which the loss L2 is con-
trolled in the applied loss function is the second hyper
parameter to be set. The last two hyperparameters are the
length of the side of the cuboid base (r) and the number
of points in each of them (H).

To properly select the hyperparameters of the algorithm,
we performed 100 model training cycles, each of which
lasted 5 epochs. In each training cycle, the training data
set consisted of 90% cuboids generated from training data
without any data enlargement, and the validation set
contained the remaining 10%. For each training cycle, hy-
perparameters were randomly selected from the following
ranges:

• learning rate: (1 · 10−1; 1 · 10−6)
• L2 regularization factor: (1 · 10−1; 1 · 10−6)
• r: (1m; 6m)
• H number: (50; 150).

In the experiments conducted, the highest accuracy of
classification (84.8%) for validation data was obtained
with the following values of the hyperparameters:

• learning rate: 1.49 · 10−3

• L2 regularization factor: 7.94 · 10−4

• r: 2.55m
• H: 116

and these values were chosen for the final training of the
considered NN model.
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4.2 Model training

The final training data set contained 90 extended and
original training data sets. Sets created from cloud rotation
by one of ten angular values around the z axis and from
a shift by one of the three selected values along the x or
y axis. In total, over 900,000 cuboids containing different
sets of points were used in the final training. 5% cuboids
served as validation data. Final training lasted 50 epochs.
The model achieved 94.86% accuracy of classification on
training data and 93.25% on validated data.

4.3 Evaluation of the model on test data

Using the trained model, a test point cloud was classified.
Figure 4 shows a sample view obtained for the test cloud,
after being classified by the trained model. The same colors
are used to mark individual classes, as in the case of the
training cloud. As can be seen in the figure, the proportions
of points belonging to each class are well approximated.
Detailed results of this classification are presented in
Table 1. It can be noticed there that underrepresented
classes are much worse identified (clasified) than those
with more representatives. One reason may also be that
points belonging to an underrepresented class are much
more difficult to classify due to the small size of the objects
to which they belong.

Table 2 presents a comparison of the results obtained
on the test data with the results achieved by means of
three other methods that took part in the ISPRS Semantic
Labeling Contest (3D). NANJ2 (Zhao et al. (2018b)) and
WhuY3 (Yang et al. (2017)) are methods in which 2D fea-
ture images are created for each point. In addition, NANJ2
generates images at various scales. Next, the images are
classified using convolutional neural networks. The IIS7
method (Ramiya et al. (2016)) uses geometric and spectral
features in conjunction with segmentation based on voxels
and and a growing color region. Even the best NANJ2
method has achieved only an 8.7% bigger F1 score in
the classification of test data than our method, which
means that our method has made 60% more mistakes on
test data than the winner of ISPRS Semantic Labeling
Contest (3D). Our method is not only better than the
IIS7 method, but it is also better than the results of half of
all participants. This means that the proposed approach
is quite accurate at a relatively high speed of operation
(classification).

Data preparation and the test cloud classification, which
maps the area of approximately 6 hectares and has 412
thousand points, lasted 22 seconds. You can therefore
calculate that the system can process over 10 square kilo-
meters per hour and over one million points per minute.
Such data processing speed is sufficient to classify LIDAR
point clouds mapping huge areas.

5. CONCLUSION

The proposed NN model met the expected requirements:
a good result was achieved with the three-dimensional
semantic marking; the process of data preparation and
classification has been accelerated; and at the same time
generated training data take up not much space.

Fig. 4. A sample view of the test point cloud classified by
the trained DNN model

Experience shows that the assessment of height above
the ground has a big impact on the accuracy of the
classification. Therefore, in the future, we would like to
divide the classification process into two stages: basic and
other. Then, after proper classification of the ground,
precise determination of the height of objects above the
ground should be easier.
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