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Abstract: This paper focuses on the numerical modeling of the dynamics of mechanical systems.
Robots that can inspect high-voltage lines inspired this research. Their control systems must anticipate
potential grab positions appropriately. We intend to formulate equations dedicated to the numerical
description of the robot/cable contact. The investigated problem is not straightforward, since parts
of the modeled systems are numerically inhomogeneous. They consist of multibody and finite
element components. These components interact with each other only through frictionless point
contact. We limit the present investigation to the mathematical modeling of these frictionless point
connections. According to the model-adopted assumption, the location of the contact point is
invariant in the multibody structure, but it is variable in the finite elements part. Unlike the classically
used models (i.e., spring/damper models of elastic contacts), we focus on constraint equations. We
present and discuss their details in this paper. Following the presence of the constraint equations,
their associated Lagrange multipliers appear in the dynamics equations of the two sub-models.
The main feature/result of the presently proposed method is the closed form of the coordinate-
portioning formulae, proposed in this paper, employed to eliminate the dependent coordinates
and the constraint-associated Lagrange multipliers. To verify the applicability of the proposed
elimination methodology, we test its use in a dedicated numerical example. During the test, we
limit the investigation to a frictionless connection between a double pendulum and a beam. The
results confirm that the proposed methodology allows us to model the investigated frictionless
contact. We shall underline a vital property, that the proposed elimination method is universal, and
thus one can easily extend/modify the above methodology to operate with other multibody/finite
element contacts.

Keywords: mechanical engineering; multibody dynamics; finite elements; constraints; frictionless sliding

1. Introduction

The investigated coincidence of a multibody subsystem and a finite elements subsys-
tem is a typical technical situation, and one can find an extensive list of examples in the
scientific literature. Pantograph/catenary systems used to supply trains with their electrical
currents are the typical examples presented in [1–4]. Flexible multibody systems [5–7],
bio-mechanical models [8,9], vehicle wheel/ground contacts [10], or vehicle wheel/rail
contacts [11] are other typical examples.

The target point of the conducted research is bio-inspired mobile robots, with the aim of
reconstructing in them the natural behaviour and mobility of gibbons. The principal mode
of their locomotion (brachiation) consists of swinging from branch to branch for distances of
up to 15 m at speeds as fast as 50 km/h. We should point out several constructions proposed
in the technical literature [12–15] dedicated to the so-called brachiation robots. Because of
the similarities of their investigated aspects, we can categorize them as a branch of walking
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robots. Research focusing on the dynamics of brachiation robots involves multitasking.
Firstly, we need to investigate uncertain nonlinear time-varying systems. Its number of
degrees of freedom varies during its motion. Secondly, unilateral constraints are present,
and impact forces can appear in the system. Thirdly, at selected stages of locomotion,
the examined systems are kinematically or dynamically overactuated. As a result, many
different intelligent and robust control schemes are proposed in the technical literature to
control this non-typical class of brachiation robots. One can use these brachiation robots to
detect faults in voltage transmission lines. One can use them to perform any needed tasks
during natural disasters or catastrophes. They can document any incident from various
angles. These robots can inspect and clean cables (e.g., shake off icing) at a height that is
dangerous for humans.

As discussed above, brachiation is not a straightforward method of motion. A particu-
larly complex issue is its control. If one intends to grab a cable, the robot has to move its arm
and its temporally free gripper to a spatial position, which is identical to the localization of
the grab cable. Since brachiating is not a slow-speed kinetostatic process, it is necessary
to determine/anticipate the appropriate moment of grip activation for each subsequent
cadence of the movement. With the elastic deformable vibrating nature of the deformations,
the actual position of the cable is not the a priori known constant of the system, especially
since the other-hand interaction is not the neutral quantity in the investigation. If present,
this dynamics interaction (i.e., the one appearing at the contact point between the robot and
the beam) can significantly modify the system dynamics. Since it is a bilateral interaction,
the robot dynamics can affect the beam dynamics, and any beam dynamics may change the
robot dynamics. Let us focus on rational and effective methods of controlling this type of
robot. Three techniques are predominant. The first one is a visual control. We may use it if
the systems possess sufficient optical detectors. Secondly, one can experimentally identify
the system dynamics (and its time mutability). Several methods and techniques may help
us with experimental identifications. The adaptive multiscale morphological filter [16]
and the time-frequency ridge estimation [17] are examples. Finally, one can model the
dynamics of the subparts of the investigated system. The present paper limits its attention
to details regarding the last of the proposed control techniques. This is primarily because
the presently assumed application of the robot is to brachiate in unknown, previously unex-
plored environments. Further, breaks in its locomotion (unavoidable during identification)
are not allowed from the point of view of the dynamics.

We are unable to present all the above aspects in a single paper. We focus on one of
them, i.e., a sliding (frictionless) contact between the robot and the cable. A quick overview
of the bibliographic positions [1–3,6–9] allows us to verbalize a conclusion that if friction-
less point contacts connect the multibody and finite elements subparts, the most popular
and the most classic contact modeling method is the lumped-mass spring or the lumped
spring/damper element introduced as a connecting component. As a straightforward con-
sequence of this method, numerical integrations of these subparts are quasi-independent,
i.e., the algorithms can treat the dynamics of both subparts independently and calculate
the shared interaction force outside of the two models. To correlate these simulations, at
each step of the calculation, the algorithms estimate the relative penetration for the contact,
i.e., they compare the position of the selected tip of the interacting body of the multibody
structure with the location of the point at the contact line of its deformable counterpart.
Then they use the penetration to estimate the contact force, and they use sets of a priori
assumed elasticity and damping parameters for these estimations. The algorithms add
the above-calculated contact forces to the dynamics of both subparts, i.e., both parts treat
it as an external force. The proposed method is attractive, mainly due to its simplicity.
It has an inspirational physical interpretation referring to a spring or a damping/spring
element. From a mathematical point of view, however, the above approach is a penalty
method. Let us point out that the penalty method is a commonly accepted mathematical
tool, extensively used in many areas, e.g., in investigations of constrained systems and
optimization techniques. The attractiveness of the recalled fusion of the physical and math-
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ematical interpretations is validated additionally by the fact that the relative displacement
(together with its derivatives) is the only parameter used to evaluate the intercorrelating pa-
rameter that constrains the dynamics descriptions of the two abovementioned subsystems.
The above description refers to its canonical version. Modified versions of the algorithm
were proposed in the literature, also. Paper [10] referred to selected parameters of relative
penetration, but these were employed to evaluate strains, and the last of these affected the
finite elements of the elastic counterpart of the contact. Antunes et al. [11] adopted the
Hertzian model of contact force (with some additional damping hysteresis) to evaluate
the surface-orthogonal component of the contact force. In [6], an extensive list of penalty
functions was recalled from the literature and tested numerically. Skrinjar et al. proposed
an extension of the list in [18]. In [19], Atanasovska extended the set of bodies used to
model the contact. An additional fictional deformable body was introduced in the space
partly/temporarily released by the physical contacting bodies and coupled with them by a
set of time-varying stiffness and damping elements.

The constraint/multipliers method is also used/known in the broadly understood field
of contact analyses. One can find bibliographic examples of its application in [4,5,20–26].
As pointed out in [20], the multipliers method defeats most of the typical ill-conditioning
problems (critical in many cases of penalty methods). Moreover, by applying the multi-
pliers method, the geometrical conditions of the contacts are fulfilled precisely [20], and
stability of the system is achieved by fulfilling the energy preservation and energy decay
statements for the elastic bodies [5]. However, we should point out that the presence
of Lagrange’s multipliers enforces an additional increase in the size of the matrices, and
supplementary numerical operations are necessary to evaluate the actual values of the
multipliers. If one focuses on the multibody systems and numerical calculations of systems
extended with the multipliers, and if one investigates the details of the last operations, two
algorithms are dominant. These are the elimination and augmentation philosophies. In
the bibliography of dynamics of the constrained multibody/finite elements systems, the
augmentation philosophy is predominant [4,5,20–22]. The elimination philosophy is rather
less common [23–26].

Cavalieri et al. proposed to compile these two methods (modified Rockefeller-Lagrangian
strategy) in [20]. Following opinions presented in [20], one should interpret the method as
a variety of the well-known idea of an augmented Lagrangian method. Of course, both
methods (i.e., the augmented Lagrangian and penalty methods) require penalty parameters.
However, their roles are less critical in the augmented Lagrangian method [20], since they
are used only to correct the convergence of the constraints. As the main benefit of this
modified strategy, the Lagrange multipliers may be estimated less accurately, for example,
with simplified algorithms.

The present paper recalls the idea of using constraint equations, and we dedicate
this idea to the analyses of frictionless point contacts. We set its principal focus on two
independent aspects: equations used to model the geometrical constraints of the connection
(I), and appropriate coordinate partitioning and proper multipliers elimination (II). Selected
elements of the first aspect have been considered in the literature in the past [5,20–22,24–26].
The second aspect has not been explored intensively, especially for multibody/finite ele-
ment contacts [23–26]. Thus, potential fields of numerical examinations and simplifications
are accessible in the above context. We intend to fill the research gap observed in the
literature. The main feature/result of the presently proposed method is the closed form of
the coordinate-portioning formulae employed to eliminate the dependent coordinates and
the constraint-associated Lagrange multipliers, as presented in this paper.

We divided the paper into nine sections. Section 2 presents the fundamentals of the
multibody formalisms used. It illustrates the principal properties of the elements used and
the fundamental equations. Then, Section 3 details the background of the finite elements
method employed in this paper. Again, the focus is set on the predominant properties of
these elements and the properties of the resulting mathematical model. In the Section 4,
the constraint equations proposed in this paper are presented and discussed. This section
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focuses on the methods used to evaluate the Jacobian as well as the velocity level and
the acceleration level constraints. This section also presents the coordinate partitioning
proposed in this paper, mainly the consequences of the linearized form of the dynamics
equations of the finite elements system. Section 5 presents the physical model used to
test the proposed method of contact modeling. Section 6 details the dedicated numerical
models of the continuous parts, associated with this paper. Section 7 details the matrices
of the investigated multibody structure. Section 8 presents the obtained results of the
numerical calculations. Finally, Section 9 presents conclusions and perspectives.

2. Employed Methodology of Kinematics and Dynamics of Three-like
Multibody Systems

This paper recalls the classic definition of multibody structures interpreted as systems
composed of interconnected non-deformable bodies. An additional assumption states that
relative displacements can only occur at joints. All joints are single-degree-of-freedom
massless elements. One can assume displacements of the joint as the generalized coordi-
nates of the system. The joint displacements are significant in magnitude (especially at the
rotational joints). Following [26–28], one can employ the classic concept of the kinematical
chain (Figure 1a).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 15 

 

elimination (II). Selected elements of the first aspect have been considered in the literature 

in the past [5,20–22,24–26]. The second aspect has not been explored intensively, especially 

for multibody/finite element contacts [23–26]. Thus, potential fields of numerical 

examinations and simplifications are accessible in the above context. We intend to fill the 

research gap observed in the literature. The main feature/result of the presently proposed 

method is the closed form of the coordinate-portioning formulae employed to eliminate 

the dependent coordinates and the constraint-associated Lagrange multipliers, as 

presented in this paper. 

We divided the paper into nine sections. The second section presents the 

fundamentals of the multibody formalisms used. It illustrates the principal properties of 

the elements used and the fundamental equations. Then, section three details the 

background of the finite elements method employed in this paper. Again, the focus is set 

on the predominant properties of these elements and the properties of the resulting 

mathematical model. In the fourth section, the constraint equations proposed in this paper 

are presented and discussed. This section focuses on the methods used to evaluate the 

Jacobian as well as the velocity level and the acceleration level constraints. This section 

also presents the coordinate partitioning proposed in this paper, mainly the consequences 

of the linearized form of the dynamics equations of the finite elements system. The fifth 

section presents the physical model used to test the proposed method of contact modeling. 

The sixth section details the dedicated numerical models of the continuous parts, 

associated with this paper. The seventh section details the matrices of the investigated 

multibody structure. Section eight presents the obtained results of the numerical 

calculations. Finally, the last section presents conclusions and perspectives. 

2. Employed Methodology of Kinematics and Dynamics of Three-Like Multibody 

Systems 

This paper recalls the classic definition of multibody structures interpreted as 

systems composed of interconnected non-deformable bodies. An additional assumption 

states that relative displacements can only occur at joints. All joints are single-degree-of-

freedom massless elements. One can assume displacements of the joint as the generalized 

coordinates of the system. The joint displacements are significant in magnitude (especially 

at the rotational joints). Following [26–28], one can employ the classic concept of the 

kinematical chain (Figure 1a). 

a) 
1 

2 
3 

8 

4 

5 

6 7 

 7  6 

 joint 

reference  
body body 

kinematical 
chain 

 

 

iiii rl


−=  

if


 
it


 

j
z


 

j
t


−  

jf


−  

eif ,


 

b) 
ij

r


 
eit ,


 

ijl


 

 body # i 

 

Figure 1. Elements of multibody structure: joints, bodies, and numbering (a); geometrical distances 

at body i and interactions acting on the body (b). 

Suppose body #i is the generic body of the system; �̅�𝑖, is the vector of the absolute 

position of its centre of mass, Ci (with respect to the origin of the base-fixed frame); and 

Ti is the absolute orientation matrix of the body-fixed coordinate system (with respect to 

the base-fixed frame). One can write the vector and the matrix as the sum and product of 

the relative subparts. 

 
=+=

ijj

ji

ijj

jikki ldapx
::

)( ;  
=

ijj

ji

:
RT ,  (1) 

Figure 1. Elements of multibody structure: joints, bodies, and numbering (a); geometrical distances
at body i and interactions acting on the body (b).

Suppose body #i is the generic body of the system; xi, is the vector of the absolute
position of its centre of mass, Ci (with respect to the origin of the base-fixed frame); and Ti

is the absolute orientation matrix of the body-fixed coordinate system (with respect to the
base-fixed frame). One can write the vector and the matrix as the sum and product of the
relative subparts.

xi = ∑j:j≤i ( pk ·ak + d
ji
) = ∑j:j≤i l

ji
; Ti = ∏j:j≤i Rj, (1)

Next, their time derivatives allow us to write the velocity and acceleration formulae.
This leads to [26–28]:

.
x

i
= ∑k:k≤i (

.
pk ·ak + ωk × l

ki
); (2a)

ωi = ∑k:k≤i

.
φ

k
·ek, (2b)

..
x

i
= ∑k:k≤i (

..
pk ·ak +

.
ω

k
× l

ki
+ 2

.
pk ·ωk × ak + ωk × (ωk × l

ki
)); (2c)

.
ω

i
= ∑k:k≤i

(
..
φ

k
·ek +

.
φ

k
·ωk × ek

)
, (2d)

where aj is the unit vector of direction of translation line at joint #j (unit vector collinear to
the line of the translation; it is the zero vector for rotational joints); ej is the unit vector of
direction of rotation at joint #j (collinear to the rotation axis; it is the zero vector when one
examines translational joints); p j is the magnitude of translations at the joint #j; and ϕj is
the value of the rotation angle at this joint #j.
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To obtain the dynamics equations, one should cut all joints of the system and introduce
the joint’s interactions to replace the cut connections (Figure 1b). Then, Newton/Euler
dynamics equations are written for each of the free-body diagrams of all bodies of the
system [26–28]:

mi·
..
x

i
= f

i
+ f

i,e −∑j∈i+ f
j

; (3a)

ωi × ( I
i
·ωi) + I

i
·

.
ω

i
= ti,e

+ rii × f
i
+ ti − ∑j∈i+ tj − ∑j∈i+ rij × f

j
, (3b)

where mi is a mass of body #i; I
i

is its tensor of moments of inertia (calculated about the

centre of mass of the body #i); f
i
, ti are the joint force and torque, respectively, at the cut

joint #i that act on body #i, f
i,e

is a net external force that acts at the mass centre of body #i;
and ti,e is the net external torque that acts on body #i.

The dynamics Equation (3a,b) are complemented with the velocity formulae (2a,b)
and the acceleration formulae (2c,d). Next, one can eliminate the successors’ forces and
the successors’ torques from (3a,b). We propose to use a backward evaluation. This starts
from the dynamics equations written for the leaf bodies (successor-free bodies). Then,
there are investigated bodies with a completed list of the dynamics equations of all their
successors. For all of them, one can replace the successors’ forces and torques with formulae
obtained in the previous steps. Next, we project each successor-free equation on the unit
vector of mobility of the principal/fixing joint of the body (we project the force at joint
#i on the vector ai, and the torque on the vector ei, respectively). Finally, we factor out
the joint accelerations from the terms, viz., we collect all of the components in front of the
accelerations as elements of the mass matrix. One can write the resulting formulae in the
standard form [26–28],

Mb(qb)·
..
qb + Fb

( .
qb, qb

)
= Q(

.
qb, qb, fe, te, t), (4)

where Mb is the square mass matrix of the multibody part; qb is the column matrix of
its generalized coordinates (the joint displacements of the reference tree structure); Fb is
the column matrix of the velocity-based inertial effects; Qb is the column matrix of the
generalized forces of the system; fe, te are external forces and torques, respectively; and t
is time.

3. Kinematics and Dynamics of the Elastic Part

The investigated elastic subpart belongs (is fixed) to the motionless base of the system.
Therefore, we can omit the kinematics formulae resulting from its transport motion. To
model the elastic subpart, we use the classic finite elements technique. A finite set of nodal
points is selected. Their displacements are the assumed system’s generalized coordinates.
Since we investigate the elastic beams instead of the nodal points, nodal cross sections are
permitted, and thus, each of the nodes has its six degrees of freedom mobility with respect
to the base (i.e., translational and rotational degrees). Of course, in particular analyses, the
investigated number of nodal degrees could be lower (e.g., for planar beam elements, two
degrees of freedom are sufficient, i.e., the vertical and rotational degrees are allowed; the
longitudinal degrees are the locked ones) (Figure 2).

A motionless global coordinate system fixed to the reference body/base is the collective
reference system of the subpart. However, if one investigates any intermediate stage of
deriving the dynamics equations, one also can introduce a set of local systems. They are
associated with each finite element and can simplify the estimation of components of the
used vectors. Even if one dedicates them to the deformable elements, the local systems
remain stationary (fixed to the motionless reference coordinate system but fitted to the
initial positions of the undeformed finite elements). By convention, a hat ˆ is used at
the top of the parameter to denote coordinates measured in the local system. When the
particular limited cases of motion of nodes of a beam element are considered (Figure 2),
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the only non-locked coordinates are the vertical displacement of the nodes (along the y2
axis) and its rotations (made about the y3 axis). In addition, two nodes are sufficient to
express the displacements of a beam element. Let one number the nodes as node #i and
node #j. Further, if we focus on loads of the subpart, formally, they can be attached to
any particular particle of the detail, but when we investigate the finite elements, their
attachment points are limited solely to the nodes of the system. With these assumptions,
matrices of coordinates of this element and matrices of the forces are [24–26,29–31],

_
q be = col

(
_
q i2,

_
q i6,

_
q j2,

_
q j6

)
;
_
Pbe = col

(
_
P i2,

_
P i6,

_
P j2,

_
P j6

)
(5)

where
_
q i2,

_
q j2 are the translational motion of the nodes along the y2 axis (Figure 3);

_
q i6,

_
q j6

are the magnitudes of the rotations of the nodes about y3 (Figure 2);
_
P i2,

_
P j2 are the forces

at the nodes of the finite element, set as collinear to y2; and
_
P i6,

_
P j6 are the torques at the

nodes of the finite element, set as collinear to y3.
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)( 6262 jjiib qqqqcol


,,,=eq ; )( 6262 jjiib PPPPcol


,,,=eP , (5) 

where 
22 ji qq


,  are the translational motion of the nodes along the y2 axis (Figure 3); 

66 ji qq

,  

are the magnitudes of the rotations of the nodes about y3 (Figure 2); 
22 ji PP


, are the forces 

at the nodes of the finite element, set as collinear to y2; and 
66 ji PP


, are the  torques at the 

nodes of the finite element, set as collinear to y3. 

Rx 

elastic beam 

 contact point 

Ty 

Tz 

Rx 

 multibody element 

a) 

 

b) 

 

Figure 3. The investigated system: a sketch of its hybrid finite elements/multibody structure (a);
selected poses of the beam and the pendulum (b).

The constitutive assumption of the finite elements method states that each continuous
property and continuous characteristic of the element is a linear function of values of this
property, measured at the nodes. Factors of these linear functions depend on the relative
position of the investigated point with respect to the localization of its associated reference
nodes. To minimize the simplification errors of the above approximation, the size of the
elements should be small. According to this approximation, displacements of the not-nodal
generic point A, denoted here as ∆̂

A ≡ ∆̂, can be expressed as [24–26,29–31],

∆̂ = N̂e·∆̂e = N̂e·q̂e, (6)

where ∆̂e = col(∆̂i2, ∆̂i6, ∆̂j2, ∆̂j6) is the vector of the displacements measured at the nodes
of the element; ∆̂ = col(∆̂2, ∆̂6) is the vector of displacements of the generic point; and
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N̂e =
[

N̂e1, N̂e2, N̂e3, . . . , N̂ew
]

is the matrix of the shape functions, associated with the
assumed type of the finite element.

Because the shape functions are time independent, therefore the velocity of the generic
point (time derivative of its displacement) is [24–26,29–31],

v̂ =
.
∆̂ = N̂e·

.
q̂e, (7)

and linear deformations, ε̂, of the generic point are [24–26,29–31]:

ε̂ = B̂l ·q̂e; (8a)

B̂l = Γl·N̂e =


∂

∂x1
0 0 ∂

∂x2
0 ∂

∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0
0 0 ∂

∂x3
0 ∂

∂x2
∂

∂x1


T

·N̂e, (8b)

where B̂l is a matrix that correlates deformations of the generic point with the displacements
of the nodes; and Γl is the linear operator of differentiations (one can take its general form
from many positions, e.g. [30,31]).

The stress/strain relation of the element depends significantly on the stress/strain con-
figuration. When one assumes the planar state of the stresses, the formula is [24–26,29,30]:

σ̂ = D̂e·ε̂; (9a)

D̂e =
Ee

1− υ2

 1 υ 0
1 0

sym. 0.5·(1− υ)

, (9b)

where Ee is Young’s modulus of elasticity; and υ is Poisson’s ratio of the substance of
the beam.

Recalling (7)–(9) in the kinetic energy formula, one can write the total kinetic energy,
Ee, of the element, as well as the total energy of its deformation, Ve, as [24–26,29–31]:

Ee =
1
2

∫
me

v̂T ·v̂·dm; (10b)

Ve =
1
2

∫
Ve

ε̂T ·σ̂·dV, (10b)

and rewritten to [24–26,29–31]:

Ee =
1
2

.
q̂

T
e ·M̂e·

.
q̂e; (11a)

M̂e =
1
2

ρ·
∫

xe

∫
ye

∫
ze

N̂T
e ·N̂e·dx·dy·dz; (11b)

Ve =
1
2

q̂T
e ·K̂e·q̂e; (12a)

K̂e =
1
2

∫
xe

∫
ye

∫
ze

B̂T
l ·D̂e·B̂l ·dx·dy·dz, (12b)

where the obtained matrices M̂e and K̂e are the mass matrix and the elasticity/stiffness
matrix, respectively, of the element expressed in the local coordinate system.

We can omit the subsequent step of classic development now since if we focus on
the presently investigated case, the local systems are collinear to the global system, and
therefore rotational transformations are unnecessary. Accordingly, the local coordinates are
identical to their absolute complements.
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If one intends to obtain the global vector of the displacements, q∗c , and the global vector
of loads, P∗c , all the elements’ matrices of displacements and loads should be grouped and
written as:

q∗c = col(qi); (13a)

P∗c = col(Pi), (13b)

where qi is the vector of displacements of the ith node; and Pi is the vector of loads of the
ith node.

Furthermore, one can write the global matrices for the shape functions, masses, and
elasticity components. With a correct allocation of blocs of the local matrices:

Neqe = [ NiNj ]ij[qiqj]ij ; Aeqe = [AiiAijAjiAjj]ij[qiqj]ij , (14)

one can write the global matrices as [24–26,29–31]:

N∗e ·q∗c =

[
0 Ni 0 Nj 0

]
·

. . . i . . . j . . .



q1−i

qi

qi−j

qj

qj−ne



...
i
...
j
...

; A∗e ·q∗c =



0 0 0 0 0

0 Aii 0 Aij 0

0 0 0 0 0

0 Aji 0 Ajj 0

0 0 0 0 0


·

. . . i . . . j . . .



q1−i

qi

qi−j

qj

qj−ne



...
i
...
j
...

. (15)

Then, thanks to the cumulative property of the kinetic and potential energy, the global
matrices of the subpart are obtained as sums of all the matrices of elements [24–26,29–31]:

M∗c = ∑ne
e=1 M∗e ; (16a)

K∗c = ∑ne
e=1 K∗e , (16b)

where ne is a number of the finite elements considered in the system.
Finally, one can eliminate rows and columns that correspond to the locked nodes

(constrained points of the analysed detail), and the final form of the dynamics equations
is [24–26,29–31]:

Mc·
..
qc + Kc·qc = Pc; (17a)

∆ = Nc
e·qc, (17b)

or, when one assumes some damping properties,

Mc·
..
qc + Cc·

.
qc + Kc·qc = Pc; (18a)

∆ = Nc
e·qc. (18b)

4. Constraints Formulae and Dynamics of the Constrained System

If focusing on the presently investigated case, longitudinal slip is possible, and it is
the free one, i.e., only the vertical degree of freedom is locked. Accordingly, the vertical
component of displacement of the beam contact point (obtained in the motionless global
coordinate system fixed to the reference body) is the same as the vertical component of the
vertex of the multibody. This leads to:

Φs = rcb
p2 − rb

p2 = 0 (19)

where rcb
p2 is the vertical component of the point at the elastic body; and rb

p2 is the vertical
component of the vertex of the rigid body.
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Since slip is allowed, if one investigates the position of the contact point at the elastic
body, its vertical component depends on the coordinates of the investigated finite element
(via the vertical vector component of the displacement formula). However, this also
depends on the multibody coordinates (by its longitudinal position along the axis of the
beam). Following the idea of Equation (6), the Jacobian of the constraint can be written
as [26]:

Φ(qb, qc, ς) = N(ς)·qc − pn(qb) = 0 (20)

where pn(qb) is the vertical position of the contact point calculated as position of a point of
the multibody subpart; and qb, qc, ς are the pointed-out functions of time.

Since we express the contact imposed between the multibody subpart and the finite
elements subpart as a constraint equation, we need to add the Lagrange multipliers to the
dynamics equations. As a result, the previously obtained differential equations of dynamics
are converted to their differentially algebraic form [26]:

Mb(qb)·
..
qb + Fb

( .
qb, qb

)
+ JT

b (qb)·λ = Qb
( .
qb, qb, fe, te, t

)
;

Mc·
..
qc + Dc·

.
qc + Kc·qc + JT

c ·λ = Pc ;
Φ(qc, qb) = N·qc − pn(qb) = 0 ; Jb = ∂

∂qb
Φ ; Jc =

∂
∂qc

Φ ,
(21)

The joined set of the coordinates (composed of multibody coordinates and nodal
coordinates) is partitioned into independent (understood as selectable) and dependent
(understood as computable) coordinates. To eliminate velocities and accelerations of the
dependent coordinates, derivatives of the constraint equations are necessary. We propose
to write them as [24–26]:

N· .qc +
.
ξ·Nξ ·qc − J· .qb = 0 ;

N· ..qc +
..
ξ·Nξ ·qc + 2

.
ξ·Nξ ·

.
qc +

.
ξ

2
·Nξξ ·qc −

(
J· .qb

)
q·

.
qb − J· ..qb = 0 :

(22)

where:
J = ∂

∂qb
pn = −Jb ;

.
ξ = vt(

.
qb, qb)/l ;

..
ξ = at(

..
qb,

.
qb, qb)/l ;

Nξ = ∂
∂ξ N ; Nξξ = ∂2

∂ξ2 N ;
(
J· .qb

)
q = ∂

∂qb

(
J· .qb

)
; Jc = N ;

(23)

and where vt is the horizontal speed of the contact point; and at is the horizontal acceleration
of the point.

Of course, the investigated horizontal position of the contact point depends on the kine-
matics of the multibody part, and thus one can write the horizontal speed and acceleration
as [24–26]:

.
ξ = ( 1/l)·Jt·

.
qb ;

..
ξ = ( 1/l)·Jt·

..
qb + γt ; N· .qc + JR·

.
qb = 0 ;

N· ..qc + JR·
..
qb + 2

.
ξ·Nξ ·

.
qc +

.
ξ

2
·Nξξ ·qc + ( 1/l) Nξ ·qc·γT − γ = 0 :

Jt =
∂

∂qb
pt ; JR = ( 1/l)·Nξ ·qc·Jt − J ; γt =

(
Jt·

.
qb
)

q·
.
qb ; γ =

(
J· .qb

)
q·

.
qb ,

(24)

where pt(qb) is the horizontal position of the contact point calculated as the position of a
generic point of the multibody subpart; and Jt is the matrix of partial derivatives of the
horizontal position of this generic point.

As pointed out in the introduction, we employ the elimination philosophy in this
paper to solve the differentially algebraic form of the dynamics equations. Therefore, we
shall eliminate the dependent coordinates and the Lagrange multipliers. The elimination
philosophy is a classical tool of multibody analyses. One can find the main steps of the
philosophy in [32]. In the present paper, we examine certain reformulations based on the
linearity of the dynamics of the finite elements subpart. In the presently used version of the
algorithm, we uniquely operate with the multibody coordinates, qb, to be partitioned into
dependent, v, and independent, u, coordinates. All coordinates, qc, of the continuous finite
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elements subpart are assumed as independent. As a result, we can write the dynamics
equation of the multibody subpart as:

Mbuu·
..
u + Mbuv·

..
v + Fbu + JT

bu·λ = Qbu ; (25a)

Mbvu·
..
u + Mbvv·

..
v + Fbv + JT

bv·λ = Qbv , (25b)

and we can calculate the multipliers λ from (25a). This leads to

λ = −J−T
bu ·Mbuu·

..
u− J−T

bu ·Mbuv·
..
v− J−T

bu ·Fbu + J−T
bu ·Qbu. (26)

Further, the constraint equations (at their acceleration level) are partitioned. Accord-
ingly, we can write the dependent accelerations as

..
v = −J−1

Rv ·N·
..
qc − J−1

Rv ·JRu·
..
u+

−J−1
Rv ·
(

2
.
ξ·Nξ ·

.
qc +

.
ξ

2
·Nξξ ·qc + ( 1/l)·Nξ ·qc·γT − γ

)
.

(27)

We eliminate the obtained multipliers and accelerations from the dynamic equations
of the multibody subsystem. Then, one can apply the standard form used in multibody
dynamics to express the dynamics of the resulting system,

M11·
..
u + M12·

..
qc + F1 = Q1, (28)

where:

M 11 = Mbvu − JT
bv·J
−T
bu ·Mbuu −Mbvv·J−1

Rv ·JRu + JT
bv·J
−T
bu ·Mbuv·J−1

Rv ·JRu ;
M 12 = −Mbvv·J−1

Rv ·N + JT
bv·J
−T
bu ·Mbuv·J−1

Rv ·N ;
Q 1 = Qbv − JT

bv·J
−T
bu ·Qbu ;

F1 = Fbv − JT
bv·J
−T
bu ·Fbu+

−
(

Mbvv − JT
bv·J
−T
bu ·Mbuv

)
·J−1

Rv ·
(

2
.
ξ·Nξ ·

.
qc +

.
ξ

2
·Nξξ ·qc + ( 1/l)·Nξ ·qc·γT − γ

)
.

(29)

We shall also eliminate the obtained multipliers from the dynamic equation of the finite
elements subpart. To deal with this, we shall initially exclude the dependent accelerations
from the Lagrange terms (26). Therefore, we can write the final result of both eliminations
in a hybrid finite elements/multibody form,

M21·
..
u + M22·

..
qc + D2·

.
qc + K2·qc + F2 = P2 (30)

where:

M21 = −JT
c ·J−T

bu ·Mbuu + JT
c ·J−T

bu ·Mbuv·J−1
Rv ·JRu ; M21 = Mc + JT

c ·J−T
bu ·Mbuv·J−1

Rv ·N ;

D2 = Dc + JT
c ·J−T

bu ·Mbuv·J−1
Rv ·2

.
ξ·Nξ ; K2 = Kc + JT

c ·J−T
bu ·Mbuv·J−1

Rv ·
.
ξ

2
·Nξξ ;

F2 = −JT
c ·J−T

bu ·Fbu + JT
c ·J−T

bu ·Mbuv·J−1
Rv ·
(
( 1/l)·Nξ ·qc·γT − γ

)
;

P2 = Pc − JT
c ·J−T

bu ·Qbu .

(31)

5. Considered System

We numerically test the effectiveness of the introduced equations. The test-used ex-
emplary model corresponds to a planar beam connected with a double pendulum that
oscillates and slides on this beam (Figure 1a). Since we set the principal focus on the con-
straint equations, the beam is modeled with the use of 50 finite elements, only. The number
of the used elements is low, but we have to remember that the high precision of modeling
of the beam behaviour is not the critical point of the present investigation. In the prepared
numerical model, both the abovementioned elements are introduced. We introduce the
abovementioned constraint equations in the same form as we present them in the above
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parts of the paper, as well as employing the above-presented method of coordinate parti-
tioning and elimination. Finally, obtained dynamic equations are integrated numerically.

The investigated multibody system is planar and composed of four bodies. The bodies
construct a single serial kinematical chain. If one starts counting from the reference body,
the two first joints are translational, and the two last joints are rotational (each being a
single degree of freedom). The first two bodies are fictitious massless elements. The first
arm (body #3) is 1.5 m long. Its mass equals 20 kg, its mass centre is in the geometrical
centre of its length, its moment of inertia is 2 kg·m2 (with respect to the mass centre), and
its inertia products equal zero. The second arm is 1 m long. Its mass equals 20 kg, its
mass centre is in the geometrical centre of its length, the moment of inertia is 2 kg·m2, and
its inertia products equal zero. The beam’s length equals 5 m, and 50 finite elements are
used to model it (we intend to validate the behaviour of the numerical model; the detailed
investigation of beam vibrations is not in the scope of the present tests). The surface of
its cross sections equals 1.5 × 10−4 m2. The beam’s geometrical moment of inertia equals
2.81 × 10−9 m4, and the density of its material is 7.86 × 103 kg/m3. Its Young modulus
equals 2.1 × 1011 Pa.

6. Details of Matrices of the Investigated Beam Elements

Let us be reminded that the present test is limited solely to planar beam elements
(Figure 3). We use cubic functions as the shape functions used to model these elements (the
cubic form is necessary to preserve the continuity of the deformations when focusing on
contacts of the neighbour elements). Corresponding shape functions are [24–26,29–31],

_
Ne(ζ) =

[_
N2e(ζ)
_
N6e(ζ)

]
=

[
2ζ3 − 3ζ2 + 1 le(ζ3 − 2ζ2 + ζ) −2ζ3 + 3ζ2 le(ζ3 − ζ2)

6(ζ2−ζ)
le

3ζ2 − 4ζ + 1 6(−ζ2+ζ)
le

3ζ2 − 2ζ

]
, (32)

where ζ =
_
x 1/le is the relative position of the considered cross section with respect to the

initial/undeformed length of the element, le.
For consistency of the presentation, let us point out that we can use the first row of the

matrix (32) to determine the vertical displacement of the central point of the cross section
when the second one expresses the rotation of the section. Corresponding matrices of mass
and elasticity are [24–26,29–31]:

M̂e =
ρe Ae le

420


156 22le 54 −13le

4l2
e 13le −3l2

e
156 −22le

sym. 4l2
e

 , K̂e =
Ee Je

l3
e


12 6le −12 6le

4l2
e −6le 2l2

e
12 −6le

sym. 4l2
e

, (33)

where Ae is an area of the beam’s cross section (assumed as a constant one along the
element); ρe is the volumetric mass density of the substance; and Je is the area moment of
inertia of the cross section.

7. Details of Matrices of the Investigated Multibody Structure

If one applies the abovementioned algorithm of multibody dynamics to the investi-
gated multibody subpart (Figure 3a), one can obtain the following equations for elements
of the matrices:

M14 = −l4
z ·m4·c3p4; (34a)

M24 = −l4
z ·m4·s3p4; (34b)

M34= I4 + l4
z ·m4·

(
l4
z +d4

z ·c4

)
; (34c)

M44 = I4 + l4
z ·l4

z ·m4; (34d)
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M13= −l4
z ·m4·c3p4 − c3·

(
d4

z ·m4 + l3
z ·m3

)
; (34e)

M23= −l4
z ·m4·s3p4 − s3·

(
d4

z ·m4 + l3
z ·m3

)
; (34f)

M33= I4 + I3 + l4
z ·m4·

(
l4
z +d4

z ·c4) + d4
z ·m4·

(
d4

z +l4
z ·c4) + l3

z ·l3
z ·m3; (34g)

M11 = M22 = m3 + m4 (34h)

F4=
.
q3·

.
q3·d

4
z ·l4

z ·m4·s4 + l4
z ·g·m4·s3p4; (34i)

F3= l4
z ·g·m4·s3p4 + g·s3·

(
d4

z ·m4 + l3
z ·m3

)
− .

q4·
.
q4·d

4
z ·l4

z ·m4·s4 − 2· .q3·
.
q4·d

4
z ·l4

z ·m4·s4; (34j)

F2= −
.
q3·

.
q3·
(

l4
z ·m4·c3p4 + c3·

(
d4

z ·m4 + l3
z ·m3

)
)− .

q4·l
4
z ·m4·c3p4·

(
2· .q3 +

.
q4
)
− g·

(
m3 + m4

)
; (34k)

F1 =
.
q3·

.
q3·
(

l4
z ·m4·s3p4 + s3·

(
d4

z ·m4 + l3
z ·m3

)
) +

.
q4·l

4
z ·m4·s3p4·

(
2· .q3 +

.
q4
)
; (34l)

where ci = cos(qi); si= sin(qi); c3p4 = cos(q3 + q4); s3p4 = sin(q3 + q4); d4
z is the length of the

upper body of the pendulum; li
z is the vertical component of position of the mass centre of

body #i with respect to the fixing point of joint #i; mi is the mass of body #i; Ii is the moment
of inertia of body #i with respect to its mass centre; and g is the gravity acceleration.

8. Obtained Results

To test the proposed equations, we wrote a numerical program in Matlab [33]. In the
performed numerical test, all multibody joints are free of load (except for the pre-initial
state of its equilibrium). At the pre-initial time instant, we impose a torque of Q2 = 100 Nm
in the joint between the first and the second arm of the multibody structure. We calculate
the equilibrium position, and then we release the torque. During all the calculations, we
treat the constraints as bilateral constraints. We analyse the results of time integration.
The system integration starts from its non-equilibrium position. To obtain significant
deformations of the beam (vital for the proposed testing of consistency of the constraint
equations), we impose low stiffness of the beam elements. We demonstrate the calculated
time evolution of the central point of the beam of the investigated system in Figure 4.
We present the selected sketches of consecutive poses obtained by the system at different
instants of time in Figure 5. We demonstrate the joined plot of two of them in Figure 3b, to
simplify the comparison of the evolution of the pose.
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Figure 5. Time evolution of the investigated system: sketches of subsequent poses obtained by the
system at different instants of time: initial position of t = 0 s (a); t = 0.2 s (b); t = 0.4 s (c); t = 0.6 s (d);
t = 0.8 s (e); and t = 1 s (f).

9. Conclusions and Perspectives

Focusing on the obtained results, the proposed methodology, based on multibody
and finite element modeling, can be successfully employed in contact analyses. Thanks
to the proposed constraint formulae, the finite elements model and the sliding pendulum
remain in permanent contact (bilateral). As we can see, we can express the investigated
frictionless contact as a set of holonomic/scleronomic constraint equations. Additionally,
we can successfully employ the coordinate partitioning technique to eliminate dependent
coordinates and the Lagrange multipliers. The presented structure of the used equations
convinced us that we could extend the above methodology to more complex systems,
i.e., we can also effectively use the proposed procedure in the cases of models of contacts
present between more complex mechanisms and more complex finite elements models.

We have to point out certain limitations in the applicability of the proposed procedure.
Many authors of contemporary commercially accessible algorithms/programs design
them with the black-box philosophy. Access to details of the used functions is limited.
There is no access to internal modifications. Therefore, the proposed equations may be
challenging in applicability, mainly because of a lack of detailed information about the
applied commercial algorithms.

In future-coming investigations, we intend to extend the model with the friction
phenomena and investigate the impacts at the contact point of the unilateral model of
contacts (in both factionless and fictional contact cases). Non-punctual types of connections
are in the scope of future investigations. We intend to investigate aspects connected with
potentially overactuated configurations. We intend to propose methods for estimating
the driving torques occurring in these configurations. We shall present the results of the
optimization of these torques. We intend to suggest three-dimensional versions of these
models. A complete model of the brachiation robot should be investigated numerically and
in physical experiments done on material models.
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