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Abstract: The cardinality of a largest independent set of G, denoted by α(G), is called the indepen-
dence number of G. The independent domination number i(G) of a graph G is the cardinality of
a smallest independent dominating set of G. We introduce the concept of the common independence
number of a graph G, denoted by αc(G), as the greatest integer r such that every vertex of G belongs
to some independent subset X of VG with |X| ≥ r. The common independence number αc(G) of G is
the limit of symmetry in G with respect to the fact that each vertex of G belongs to an independent set
of cardinality αc(G) in G, and there are vertices in G that do not belong to any larger independent set
in G. For any graph G, the relations between above parameters are given by the chain of inequalities
i(G) ≤ αc(G) ≤ α(G). In this paper, we characterize the trees T for which i(T) = αc(T), and the
block graphs G for which αc(G) = α(G).

Keywords: independence number; domination number; independence domination number; common
independence number

MSC: [2010] 05C69

1. Introduction

For notation and graph theory terminology we, in general, follow [1]. Specifically, let
G = (VG, EG) be a graph with vertex set VG and edge set EG. If A and B are disjoint sets
of vertices of G, then we denote by EG(A, B) the set of edges in G joining a vertex in A
with a vertex in B. For a vertex v of G, its neighborhood, denoted by NG(v), is the set of all
vertices adjacent to v, and the cardinality of NG(v), denoted by dG(v), is called the degree
of v. The closed neighborhood of v, denoted by NG[v], is the set NG(v) ∪ {v}. In general, for
a subset X ⊆ VG of vertices, the neighborhood of X, denoted by NG(X), is defined to be⋃

v∈X NG(v), and the closed neighborhood of X, denoted by NG[X], is the set NG(X) ∪ X. A
vertex of degree 0 is said to be isolated in G, while a vertex of degree one in G is called a leaf
of G. The set of all leaves of G is denoted by LG. We define a pendant edge of a graph to be
an edge incident with a leaf. The corona of graphs H and F is a graph H ◦ F resulting from
the disjoint union of H and |VH | copies of F in which each vertex v of H is adjacent to all
vertices of the copy of F corresponding to v. The corona H ◦ K1, in particular, is the graph
obtained from H by adding exactly one pendant edge to each vertex of H. A graph G is
said to be a corona if G is the corona H ◦ K1 of some graph H. It is obvious that a corona is a
graph in which each vertex is a leaf or it is adjacent to exactly one leaf.

We denote the path, cycle, and complete graph on n vertices by Pn, Cn, and Kn, respec-
tively. The complete bipartite graph with one partite set of size n and the other of size m is
denoted by Kn,m. A star is the tree K1,k for some k ≥ 1. For k, l ≥ 1, a double star S(k, l) is
the tree with exactly two vertices that are not leaves, one of which has k leaf neighbors and
the other l leaf neighbors.

A vertex v is called a simplicial vertex of G if NG[v] is a complete graph, while it is a cut
vertex if G− v is disconnected. A block of a graph G is a maximal connected subgraph of G

Symmetry 2021, 13, 1411. https://doi.org/10.3390/sym13081411 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13081411
https://doi.org/10.3390/sym13081411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081411
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081411?type=check_update&version=1


Symmetry 2021, 13, 1411 2 of 10

without its own cut vertices. We say that G is a block graph if every block of G is a complete
graph (equivalently, every vertex of G is a simplicial or a cut vertex). A block of a block
graph G is called a simplex if it contains at least one simplicial vertex of G, while it is an end
block if it contains at most one cut vertex of G.

A subset D of VG is called a dominating set of G if every vertex belonging to VG − D
is adjacent to at least one vertex in D. A subset I of VG is said to be independent if no
two vertices belonging to I are adjacent in G. The cardinality of a largest (i.e., maximum)
independent set of G, denoted by α(G), is called the independence number of G. Every largest
independent set of a graph is called an α-set of the graph. The independent domination number
of G, denoted by i(G), is the cardinality of a smallest independent dominating set of G (or
equivalently, the cardinality of a minimum maximal independent set of vertices in G). The
study of independent sets in graphs was begun by Berge [2,3] and Ore [4]. In 2013 Goddard
and Henning published an article [5] that summarized results on independence domination
in graphs. It is obvious that i(G) ≤ α(G) for any graph G. A graph G is a well-covered graph
if i(G) = α(G). Equivalently, G is well-covered if every maximal independent set of G is a
maximum independent set of G. The concept of well-covered graphs was introduced by
Plummer [6] and extensively studied in many papers. We refer the reader to the excellent
(but already old) survey on well-covered graphs by Plummer [7].

Now, between the integers i(G) and α(G), we insert another integer concerning the
existence and cardinality of independent sets in G. Formally, we introduce the concept of
the common independence number of a graph G, denoted by αc(G), as the greatest integer
r such that every vertex of G belongs to some independent subset X of VG with |X| ≥ r.
Thus, the common independence number of a graph G refers to numbers of mutually
independent vertices of G, and it emphasizes the notion of the individual independence
of a vertex of G from other vertices of G. The common independence number αc(G) of
G is the limit of symmetry in G with respect to the fact that each vertex of G belongs
to an independent set of cardinality αc(G) in G, and there are vertices in G that do not
belong to any larger independent set in G. For possible applications of the three parameters
i(G), α(G), and αc(G) we refer the reader to the newest survey by Majeed and Rauf [8] on
different applications of graph theory in computer science and social networks. It follows
immediately from the above definitions (see also Proposition 1) that i(G) ≤ αc(G) ≤ α(G)
for any graph G. In the following section, we present the first properties of the common
independence number. Then, in the next two sections, we characterize the family of trees
T for which i(T) = αc(T), and the family of block graphs G such that αc(G) = α(G),
respectively. (We remark that the family of well-covered graphs is a proper subfamily of
each of the previously mentioned families.)

2. Preliminaries

For our studies of the common independence number of a graph, we begin from
straightforward propositions and simple examples.

Proposition 1. For every graph G we have i(G) ≤ αc(G) ≤ α(G).

Proof. Certainly, we have αc(G) ≤ α(G), since, as it follows from the definition of α(G),
every independent set of vertices of G has at most α(G) vertices. On the other hand,
for every v ∈ VG, let Iv be any maximal independent subset of VG that contains v. The
maximality of Iv implies that |Iv| ≥ i(G). Consequently, αc(G) ≥ i(G).

Proposition 2. If G is a graph, then αc(G) = 1 if and only if i(G) = 1.

Proof. If i(G) = 1, then G has a vertex v that is adjacent to every other vertex of G. This
implies that {v} is the only independent set in G that contains v. Hence αc(G) = 1. On the
other hand, if αc(G) = 1, then i(G) = 1 by Proposition 1.
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Proposition 3. If G is a non-empty graph, then αc(G) = min{α(G− NG[v]) : v ∈ VG}+ 1 and
i(G) = min{i(G− NG[v]) : v ∈ VG}+ 1, assuming that i(H) = α(H) = 0 if H is an empty
graph, that is, a graph without vertices.

Proof. Both equalities are obvious if G has a vertex v such that NG[v] = VG (in this case
G − NG[v] is an empty graph). Assume now G − NG[v] is non-empty for every v ∈ VG.
Let Iv be a largest independent set in G− NG[v]. Then Iv ∪ {v} is a largest independent
set in G that contains v. From this and from the definition of the common independence
number it follows that αc(G) = min{α(G−NG[v]) : v ∈ VG}+ 1. Now let Jv be a minimum
independent dominating set in G− NG[v]. Then Jv ∪ {v} is a maximal independent set in
G, which implies i(G) ≤ i(G − NG[v]) + 1. Assume now D is a minimum independent
dominating set in G and let v′ ∈ D. Then D− {v′} is a minimum independent dominating
set in G − NG[v] and i(G − NG[v′]) = i(G)− 1. Hence, i(G) = min{i(G − NG[v]) : v ∈
VG}+ 1.

To better recognize connections between the independent domination number i(G),
the common independence number αc(G), and the independence number α(G), we begin
with simple examples. It is obvious that i(Kn) = αc(Kn) = α(Kn) = 1 for every positive
integer n. Similarly, if m and n are positive integers and m ≤ n, then i(Km,n) = αc(Km,n) =
m ≤ α(Km,n) = n. It is no problem to observe that i(Pn) = dn/3e, αc(Pn) = bn/2c, and
α(Pn) = dn/2e. Consequently, i(Pn) < αc(Pn) < α(Pn) if n = 2k + 1 and k ≥ 4. On the
other hand we have i(Cn) = bn/3c ≤ αc(Cn) = d(n− 1)/2e = bn/2c = α(Cn) if n ≥ 3.
Let Gk be a graph obtained from the corona K1,k ◦ K2 by inserting a new vertex into each
non-pendant edge of K1,k ◦ K2, see Figure 1. Now it is easy to see that i(Gk) = k + 1,
αc(Gk) = 2k + 1, α(Gk) = 3k + 2, and i(Gk) < αc(Gk) < α(Gk) if k ≥ 1. Similarly, if S∗(k, l)
denotes a graph obtained from the double star S(k, l) by inserting a new vertex into its
only non-pendant edge, then it is obvious that i(S∗(k, l)) = 2, αc(S∗(k, l)) = min{k, l}+ 1,
and α(S∗(k, l)) = k + l + 1. From these examples it follows that the differences between
numbers i(G), αc(G), and α(G) can be arbitrarily large.

v0

v1

v2

v3

vk−2

vk−1

vk

Figure 1. Graph Gk.

The aim of the next theorem is to show for which positive integers m, n, and p
satisfying the inequalities m ≤ n ≤ p there exists a graph G such that i(G) = m, αc(G) = n,
and α(G) = p. This theorem again shows that the difference between the independence
number and the common independence number as well as the difference between the
common independence number and the independent domination number of a graph can
be arbitrarily large.

Theorem 1. For integers m, n, and p there exists a graph G with i(G) = m, αc(G) = n, and
α(G) = p if and only if m = n = 1 ≤ p or 2 ≤ m ≤ n ≤ p.

Proof. Since the necessity is obvious from Propositions 1 and 2, we need only provide
constructions to establish sufficiency.
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If m = n = 1 ≤ p, then for K1,p we have i(K1,p) = αc(K1,p) = 1 and α(K1,p) = p. Thus
assume that 2 ≤ m ≤ n ≤ p, and let s = bm/2c, t = m− s (= dm/2e). Let H1, H2, H3,
and H4 be disjoint totally disconnected graphs of order s, p− t, n− s, and t, respectively.
Now, let G be a new graph constructed from the union H1 ∪ H2 ∪ H3 ∪ H4 by adding all
possible edges between the vertices of Hi and Hi+1, i = 1, 2, 3. It is easy to observe that the
sets VH1 ∪ VH4 , VH1 ∪ VH3 , and VH2 ∪ VH4 of cardinality m, n, and p, respectively, are the
only maximal independent sets of G. Consequently, i(G) = m and α(G) = p. In addition,
because every vertex of G belongs to an independent set of cardinality at least n and no
vertex in VH1 ∪VH3 belongs to an independent set of cardinality greater than n, we have
αc(G) = n. This completes the proof.

3. Graphs G with α(G) = αc(G)

In this section we consider graphs G for which α(G) = αc(G); in particular we provide
a constructive characterization of block graphs G for which α(G) = αc(G). It follows from
the next proposition that such graphs form the class of the α-excellent graphs, that is, the
class of graphs G in which every vertex belongs to some largest independent set of G. Thus,
we are interested in characterizations of the α-excellent graphs. The α-excellent trees were
already studied in [9,10]. We extend their characterizations to the α-excellent block graphs,
and we present some additional properties of the α-excellent trees.

Proposition 4. For a graph G is αc(G) = α(G) if and only if G is an α-excellent graph.

Proof. Assume that G is an α-excellent graph. Then, by definition, every vertex of G
belongs to an independent set of cardinality α(G) in G, and, therefore, αc(G) ≥ α(G). From
this and from Proposition 1 it follows that αc(G) = α(G).

On the other hand, by definition, every vertex of G belongs to an independent set of
cardinality (at least) αc(G). Thus, if αc(G) = α(G), then every vertex of G belongs to an
independent set of cardinality α(G), and G is α-excellent.

In order to state and prove our characterization of the α-excellent block graphs, we
present additional definitions and some preliminary results that we will need while proving
the next two theorems. Let Kn be a complete graph of order n ≥ 1 with vertex set
{v1, . . . , vn}. If k1, . . . , kn are positive integers, then by Kk1,...,kn

n we denote a graph obtained
from the disjoint union of the complete graphs Kn, Kk1 , . . . , Kkn by joining each vertex vi of
Kn with each vertex of Kki

for i = 1, . . . , n. The graph Kk1,...,kn
n is said to be a general corona

of Kn and the subgraph of Kk1,...,kn
n induced by the vertices v1, . . . , vn is called the body of

Kk1,...,kn
n . It is obvious that Kk1,...,kn

n has the property stated in the next observation.

Observation 1. A general corona Kk1,...,kn
n is a well-covered graph, and α(Kk1,...,kn

n ) = n. In
addition, Kk1,...,kn

n is a tree if and only if either n = k1 = 1 or n = 2 and k1 = k2 = 1.

Let F be the family of graphs that: (1) contains every complete graph of order at least
2; and (2) is closed under attaching general coronas, that is, if a graph G′ belongs to F and
H = Kk1,...,kn

n is a general corona, then to F belongs every graph obtained from the disjoint
union G′ ∪ H by adding n edges that join one vertex of G′ with the vertices forming the
body of H. By E we denote the family (defined in [9]) of all trees belonging to F . Thus, K2
belongs to E , and, if a graph G′ belongs to E and K is a complete graph of order 2, then to
E belongs every graph obtained from the disjoint union G′ ∪ K by adding exactly one edge
that joins a vertex of G′ with a vertex of K.

It is clear from the above definition that every graph belonging to the family F is a
block graph. Figure 2 shows a block graph G belonging to F and a tree T that belongs to
the subfamily E of F .
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G

K3

T

K2

Figure 2. Graphs G ∈ F and T ∈ E .

Proposition 5. Let G′ be a connected graph of order at least 2. If G is a graph obtained from G′ by
attaching a general corona Kk1,...,kn

n to a single vertex of G′, then α(G) = α(G′) + n. In addition,
G is an α-excellent graph if and only if G′ is an α-excellent graph.

Proof. Assume that {v1, . . . , vn} is the vertex set of the body of H = Kk1,...,kn
n , and assume

that H is attached to a vertex v of G′. Let S = {v′1, . . . , v′n} be a set of simplicial vertices
of H, where each v′i is adjacent to vi (i = 1, . . . , n). It is apparent that if I is an α-set of G′,
then I ∪ S is an independent set of G, and therefore α(G) ≥ |I ∪ S| = α(G′) + n. Thus
assume that J is an α-set of G. Then J ∩VG′ and J ∩VH are independent sets of G′ and H,
respectively. In addition it follows from Observation 1 that J ∩VH is an α-set of H. Hence
α(G) = |J| = |J ∩VG′ |+ |J ∩VH | = |J ∩VG′ |+ n ≤ α(G′) + n, and so α(G) = α(G′) + n.

It remains to prove that G is α-excellent if and only if G′ is α-excellent. Assume first
that G is α-excellent. Let x be a vertex of G′, and let Ix be an α-set of G that contains x. Since
Ix has at most n vertices in H (by Observation 1), Ix and has at least α(G)− n = α(G′)
vertices in G′ and x ∈ Ix. This implies that G′ is an α-excellent graph.

Now assume that G′ is α-excellent. Let y be a vertex of G. If y belongs to VG′ , and if Iy
is an α-set of G′ containing y, then Iy ∪ S is an α-set of G containing y. Thus assume that
y ∈ VH . If y is a simplicial vertex of G belonging to H, then without loss of generality we
may assume that y ∈ S. Then I ∪ S is an α-set of G containing y, where I is any α-set of G′.
If y is in a body of H, say y = vi (for some i ∈ {1, . . . , n}), then Iu ∪ (S− {v′i}) ∪ {vi} is an
α-set of G containing y, where u is any neighbor of v in G′ and Iu an α-set of G′ containing
u.

We are now in position to prove the main result of this section, a constructive charac-
terization of the α-excellent block graphs.

Theorem 2. Let G be a block graph of order n ≥ 2. Then the following statements are equivalent:

(a) G ∈ F .
(b) G is α-excellent graph.
(c) αc(G) = α(G).

Proof. The implication (a)⇒ (b) is obvious from Proposition 5. The statements (b) and (c)
are equivalent by Proposition 4. Thus it suffices to prove the implication (c)⇒ (a).

Assume that G is a block graph of order at least 2 with n ≥ 1 blocks and α(G) = αc(G).
We use induction on n to show that G ∈ F . If n = 1, then G is a complete graph, say
G = Km (m ≥ 2), and certainly G ∈ F . Let G be a block graph with n ≥ 2 blocks and
assume that every block graph G′ belongs to F if α(G′) = αc(G′) and G′ has n′ blocks,
where 1 ≤ n′ < n. We first establish the following claim.

Claim 1. All simplices of G are pairwise vertex-disjoint.

Proof. Suppose that S1 and S2 are two distinct simplices of G containing a common vertex v.
Let Iv be a largest independent set of G that contains v. Then α(G) ≥ |Iv| ≥ αc(G) = α(G).
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On the other hand, let x and y be two simplicial vertices belonging to S1 and S2, respectively.
Then, since x is not adjacent to y and neither x nor y is adjacent to any vertex in Iv−{v}, the
set (Iv − {v}) ∪ {x, y} is an independent set of G and |(Iv − {v}) ∪ {x, y}| > |Iv| = α(G),
a contradiction which completes the proof of our claim.

Claim 1 implies that the diameter d of G is greater than 2. Let P = (u0, u1, . . . , ud)
be a longest path without chords in G. Let Bi be that block of G which contains ui and
ui+1, i = 0, . . . , d− 1. The choice of P and Claim 1 imply that the blocks B0, . . . , Bd−1 are
distinct, u1, . . . , ud−1 are cut vertices, while u0 and ud are simplicial vertices belonging
to the end blocks B0 and Bd−1, respectively. Without loss of generality we assume that
VB1 = {u1, u2} ∪ {w1, . . . , wl}. (We remark that possibly VB1 = {u1, u2}.) Since B0 is
a simplex and the blocks B0 and B1 share a vertex, B1 is not a simplex (by Claim 1), and
therefore each of the vertices w1, . . . , wl is a cut vertex. Let B′1, . . . , B′l be blocks distinct from
B1 containing the vertices w1, . . . , wl , respectively. The choice of P implies that B′1, . . . , B′l
are end blocks in G and they are unique (by Claim 1). Let H denote the subgraph of G
induced by the vertices belonging to the blocks B0, B′1, . . . , B′l . It is obvious that H is a
general corona Kk1,...,km

m , where m = l + 1, k1 = |VB0 | − 1, k2 = |VB′1
| − 1, . . . , km = |VB′l

| − 1.
Let G′ denote the subgraph G−VH of G. Since G can be obtained from G′ by (re)attaching
the general corona H to the vertex u2 in G′, it follows from the second part of Proposition 5
that αc(G′) = α(G′). Thus, since G′ has n′ blocks, where 1 ≤ n′ < n, G′ belongs to F by
the inductive hypothesis. Consequently, G belongs to F (since G can be obtained from G′

by attaching a general corona to a vertex in G′).
In the following theorem (which partially follows from Theorem 2) we prove the

equivalent properties that characterize the trees T with α(T) = αc(T), that is, the α-
excellent trees.

Theorem 3. Let T be a tree of order n ≥ 2. Then the following statements are equivalent:

(a) α(T) = n/2.
(b) T ∈ E .
(c) T has a perfect matching.
(d) T has a spanning forest in which every component is the corona of a tree.
(e) T is an α-excellent tree.
(f) α(T) = αc(T).

Proof. The equivalence of (a) and (b) was proved in [9]. The statements (b), (e), and (f)
are equivalent by Theorem 2. In [10] it was proved that (c) and (e) are equivalent. The
statements (c) and (d) are equivalent: If M is a perfect matching in T, then the subgraphs
of T generated by single edges belonging to M form the desired forest (with the smallest
number of edges). On the other hand if T has a spanning forest F in which every component
is the corona of a tree, then the set of all pendant edges of F forms a perfect matching of T.
This completes the proof.

4. Graphs G with i(G) = αc(G)

In this section we are interested in recognizing the structure of trees in which the
independence number i and the common independence number αc are equal. In order to
do this, we recall that a graph G is a well-covered graph if every maximal independent set
of vertices of G is a largest independent set of G. Equivalently, G is well-covered if and
only if i(G) = α(G). We begin with some basic observations on well-covered graphs. The
first one follows directly from the definition of a well-covered graph. The second one—the
characterization of well-covered trees—was proved by Ravindra [11].

Remark 1. A graph G is well-covered if and only if every set of independent vertices of G is a
subset of a largest independent set of G.
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Lemma 1 ([11]). A tree T is well-covered if and only if it is K1 or it is a corona of a tree.

In the next lemma we present a general property of the graphs G for which i(G) = αc(G).

Lemma 2. If G is a graph in which i(G) = αc(G), then either i(G) = αc(G) = 1 or there is
a vertex z in G such that G − NG[z] is a well-covered graph and i(G − NG[z]) = i(G)− 1 =
αc(G)− 1 = α(G− NG[z]).

Proof. Assume that i(G) = αc(G) ≥ 2 and suppose that G− NG[x] is a non-well-covered
graph for every x ∈ VG. Then i(G − NG[x]) < α(G − NG[x]) for every x ∈ VG, and
consequently by Proposition 3 we have i(G) = min{i(G − NG[x]) : x ∈ VG} + 1 <
min{α(G − NG[x]) : x ∈ VG} + 1 = αc(G), a contradiction. From this contradiction
and from the fact that i(G − NG[x]) ≤ α(G − NG[x]) for every x ∈ VG it follows that
i(G− NG[v]) = α(G− NG[v]) for some vertex v of G, which in turn implies that G− NG[v]
is a well-covered graph. We now claim that there is a vertex z in G such that i(G)− 1 =
i(G − NG[z]) = α(G − NG[z]) = αc(G) − 1. To observe this, let z be a vertex such
that α(G − NG[z]) = αc(G) − 1. Then, since αc(G) − 1 = i(G) − 1 ≤ i(G − NG[z]) ≤
α(G− NG[z]), we also have i(G)− 1 = i(G− NG[z]) and this implies our claim.

Remark 2. Graphs in Figure 3 illustrate that if G is a graph in which i(G) = αc(G), then it
follows from Lemma 2 that G has at least one vertex z (the white and solid black vertices) such that
G− NG[z] is a well-covered graph, but only for some of them (the solid black vertices) the equalities
i(G− NG[z]) = i(G)− 1 = αc(G)− 1 = α(G− NG[z]) hold.

Figure 3. Graphs illustrating Remark 2.

We are now in position to present our characterization of trees for which the indepen-
dence number i and the common independence number αc are equal.

Theorem 4. If T is a tree, then i(T) = αc(T) if and only if at least one of the following conditions
is fulfilled:

(1) T is a star;
(2) T is the corona of a tree;
(3) T has a vertex z such that

(a) T − NT [z] is a well-covered forest, and
(b) |NT(z)∩ LT | > ∑v∈NT(z)−LT

max{|NT(v)∩ (LT ∪ L4
T−NT [z]

)| − 1, 0} if ET(NT(z),

LT ∪ L4
T−NT [z]

) 6= ∅, where L4
T−NT [z]

is the set of leaves of trees of order at least 4 in
T − NT [z].

Proof. Assume that T is a tree and i(T) = αc(T). It is obvious that if i(T) = αc(T) = 1, then
T is a star, T = K1,n, where n is a non-negative integer. Thus assume that i(T) = αc(T) ≥ 2
and T is not a corona graph. Then it follows from Lemma 2 that T has a vertex z such
that T − NT [z] is a well-covered graph and i(T − NT [z]) = i(T)− 1 = αc(T)− 1 = α(T −
NT [z]). Certainly, T− NT [z] is a well-covered forest, and, consequently, each component
of T − NT [z] is the corona of a tree (that is, its pendant edges form a perfect matching,
see [7,11]) or an isolated vertex.

Let U and V denote the set NT(z) ∩ LT and NT(z) − U, respectively. We divide
the set V into two sets V1 and V2, where V1 = {v ∈ V : NT(v) ∩ (LT ∪ L4

T−NT [z]
) 6=

∅} and V2 = V − V1. Let F denote the graph T − NT [z], and let c(F) be the set of all
components of F. Let F1, F2, and F12 be the subgraphs of F, where F1 = {H ∈ c(F) : |VH | =
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1 or (|VH | ≥ 4 and NT(V1) ∩ LH 6= ∅)}, F2 = {H ∈ c(F) : (|VH | = 2 and NT(V2) ∩
VH 6= ∅) or (|VH | ≥ 4 and NT(V2) ∩ (VH − LH) 6= ∅)}, F12 = {H ∈ c(F) : (|VH | =
2 and NT(V1) ∩ VH 6= ∅) or (|VH | ≥ 4 and NT(V1) ∩ (VH − LH) 6= ∅)}. By Z1, Z2,
and Z12 we denote the sets NT(V1) ∩ VF1 , NT(V2) ∩ VF2 , and NT(V1) ∩ VF12 , respectively.
Figure 4 shows a tree T, the subsets U, V1, V2, Z1, Z2, Z12, and the subgraphs F1, F2, and
F12 of the well-covered forest F = T − NT [z].

F1

F12

F2

Z2

Z12

Z1

V1

V2

z

U

T

Figure 4. A tree T for the proof of Theorem 4.

Assume that ET(NT(z), LT ∪ L4
F) 6= ∅. Then the set V1 is non-empty. Now, since

max{|NT(v) ∩ (LT ∪ L4
F)| − 1, 0} = |NT(v) ∩ (LT ∪ L4

F)| − 1 if v ∈ V1 and max{|NT(v) ∩
(LT ∪ L4

F)| − 1, 0} = 0 if v ∈ V2, we have ∑v∈NT(z)−LT
max{|NT(v) ∩ (LT ∪ L4

F)| − 1, 0} =
∑v∈V1

(|NT(v) ∩ (LT ∪ L4
F)| − 1) = |Z1| − |V1|, and we shall prove that |U| > |Z1| − |V1|.

Suppose to the contrary that |U| ≤ |Z1| − |V1|. Let I be a maximal independent set of F.
Then I ∪ {z} is a maximal independent set of T and therefore we have i(T) ≤ |I ∪ {z}| =
i(F) + 1.

Now let I1, I2, and I12 be sets such that I1 is a maximal independent set of F1 that
contains Z1 ∪ {x ∈ VF1 : dT(x, Z1) = 2}, I2 is a maximal independent set of F2 that contains
Z2, and I12 is a maximal independent set of F12 that contains NT(Z12) ∩VF12 , respectively.
The existence of such sets I1, I2, and I12 follows from Remark 1. Certainly, the set I1 ∪ I2 ∪ I12
is a largest independent set of F. From the choice of I1, I2, and I12 it is easy to observe
that the set (I1 − Z1) ∪ V1 ∪ I2 ∪ I12 ∪U is a maximal independent set of T. Thus, since
|Z1| − |V1| − |U| ≥ 0, we have i(T) ≤ |(I1−Z1)∪V1 ∪ I2 ∪ I12 ∪U| = (|I1|+ |I2|+ |I12|)−
(|Z1| − |V1| − |U|) = i(F)− (|Z1| − |V1| − |U|) ≤ i(F) < i(F) + 1 = i(T), a contradiction
which proves the desired inequality |U| > |Z1| − |V1|.

Assume that T is a tree which has one of the properties (1), (2), and (3). It is evident
that if T is a star or a corona graph, then i(T) = αc(T). Thus assume that T is neither
a star nor a corona graph, and T has a vertex z such that the subgraph F = T − NT [z]
is a well-covered forest. Assume that i(F) = α(F) = αc(F) = m. We shall prove that
i(T) = αc(T) = m + 1.

It is obvious that if I is a maximal independent set of F, then I ∪ {z} is a maximal
independent set of T and therefore i(T) ≤ |I ∪ {z}| = m + 1. On the other hand, if
we assume that every maximal independent set of T has at least m + 1 vertices, then
m + 1 ≤ i(T), and, consequently, i(T) = m + 1. This implies that i(T) = αc(T) = m + 1
as m + 1 = i(T) ≤ αc(T) = min{α(F) : x ∈ VT}+ 1 ≤ α(F) + 1 = m + 1. Hence, to prove
that i(T) = αc(T) = m + 1, it suffices to show that every maximal independent set of T has
at least m + 1 vertices. (In fact, it suffices to show that every smallest maximal independent
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set of T has at least m + 1 vertices.) For this, let U, V, V1, V2, Z1, Z2, Z12, F, F1, F2, and F12
be the sets and graphs defined in the previous part of our proof.

Therefore assume that J is a maximal independent set of T. If J ∩ V = ∅, then the
maximality of J implies that the sets J ∩ VF and J ∩ (U ∪ {z}) are non-empty, each of
them is independent, and J = (J ∩ VF) ∪ (J ∩ (U ∪ {z})). In addition, the maximality
of J in T implies that NT [x] ∩ J 6= ∅ for every x ∈ VT . We shall prove that J ∩ VF is
a maximal independent set in F, that is, we shall prove that NF[x] ∩ (J ∩ VF) 6= ∅ for
every x ∈ VF. If x ∈ VF − (Z1 ∪ Z2 ∪ Z12), then NF[x] = NT [x] ⊂ VF and therefore
NF[x]∩VF = NT [x] and, consequently, NF[x]∩ (J ∩VF) = (NF[x]∩VF)∩ J = NT [x]∩ J 6=
∅. If x ∈ Z1 ∪ Z2 ∪ Z12, then NF[x] = NT [x] − V ⊆ VF and, thus, NF[x] ∩ (J ∩ VF) =
NF[x] ∩ J = (NT [x]− V) ∩ J = (NT [x] ∩ J)− (V ∩ J) = NT [x] ∩ J 6= ∅. This proves that
J ∩VF is a maximal independent set in the well-covered graph F. Thus |J ∩VF| = m and
finally |J| = |J ∩ VF|+ |J ∩ (U ∪ {z})| ≥ m + 1. It remains to prove that |J| ≥ m + 1 if
J ∩ V 6= ∅. Thus assume that J is a maximal independent set of T, where J ∩ V 6= ∅.
In this case z 6∈ J and U ⊂ J. We distinguish two cases: ET(NT(z), LT ∪ L4

F) = ∅,
ET(NT(z), LT ∪ L4

F) 6= ∅.
Case 1. Assume first that ET(NT(z), LT ∪ L4

F) = ∅. In this case the sets V1, Z1, and
Z12 are empty, while V = V2 and VF = VF2 are non-empty (as T is not a star). From the
maximality of J it follows that J = (J ∩ VF2) ∪ (J ∩ V2) ∪U, where J ∩ V2 6= ∅ (by our
assumption). Certainly, J ∩ VF2 is an independent set in F2. We shall prove that J ∩ VF2

is a maximal independent set of F2. The maximality of J implies that NT [x] ∩ J 6= ∅
for every x ∈ VT . It remains to prove that NF2 [x] ∩ (J ∩ VF2) 6= ∅ for every x ∈ VF2 . If
x ∈ V2 − Z2, then NF2 [x] = NT [x] ⊆ VF2 and therefore NF2 [x] ∩ (J ∩VF2) = NT [x] ∩ J 6= ∅.
It remains to prove that NF2 [x] ∩ (J ∩ VF2) 6= ∅ if x ∈ Z2. Assume that x ∈ Z2. Then
either x is a non-leaf in F2 or x belongs to a component of order 2 in F2, and, since F2 is a
well-covered forest, every component of F2 is the corona of a tree, x is adjacent to exactly
one leaf in T, say to x. Now, the maximality of J in T implies that the closed neighborhood
NT [x] = {x, x} contains a vertex belonging to J in T. This immediately implies that the
closed neighborhood NF2 [x] contains a vertex belonging to J ∩VF2 in F2. This completes
the verification of the maximality of J ∩ VF2 in F2. Consequently, |J ∩ VF2 | = m and
|J| = |(J ∩VF2) ∪ (J ∩V2) ∪U| ≥ |J ∩VF2 |+ |J ∩V2| ≥ m + 1.

Case 2. Now assume that ET(NT(z), LT ∪ L4
F) 6= ∅ and |U| > |Z1| − |V1|. This time

the sets U, V1, and Z1 are non-empty. Let J be a smallest maximal independent set of T such
that J ∩V 6= ∅. Then z 6∈ J and U ⊂ J. We shall prove that |J| ≥ m + 1. Let us first observe
that J ∩V2 = ∅. Suppose that J ∩V2 6= ∅. Similarly as in Case 1 we can observe that J ∩VF2

is a maximal independent set of the well-covered graph F2. The well-coveredness of F2
implies that F2 has a maximal independent set containing Z2, say J2 is such a set. Certainly,
|J2| = |J ∩VF2 | and, since V2 ⊂ NT(Z2) ⊆ NT(J2), the set (J− (V2 ∪VF2))∪ J2 is a maximal
independent set of T and |(J − (V2 ∪ VF2)) ∪ J2| = |J| − |J ∩ V2| < |J|, a contradiction.
Consequently, J ∩ V2 = ∅, and, therefore, J ∩ V1 6= ∅. We may assume that J contains
as many vertices belonging to V1 as possible. Then, in fact, we may assume that V1 is
a subset of J (for otherwise if J1 were a maximal independent set of F1 that contains
Z1 ∪ {x ∈ VF1 : dT(x, Z1) = 2}, and if J12 were a maximal independent set of F12 chosen in
such a way that NT(Z12) ∩VF12 ⊆ J12 (the existence of such sets follows from Remark 1),
then the set J′ = (J − (VF1 ∪VF12)) ∪ (J1 − Z1) ∪V1 ∪ J12, for which V1 ⊂ J′ and |J′| ≤ |J|
(as |V1| ≤ |Z1|), would be a desired maximal independent set of T). Consequently, since
m = i(F) = i(F1 ∪ F2 ∪ F12) = |J1|+ |J2|+ |J12| and J = (V1 ∪ (J1 − Z1)) ∪ J2 ∪ J12 ∪U,
we finally have |J| = |V1|+ |J1| − |Z1|+ |J2|+ |J12|+ |U| = (|J1|+ |J2|+ |J12|) + (|U| −
|Z1|+ |V1|) = m + (|U| − |Z1|+ |V1|) ≥ m + 1. This completes the proof.

5. Open Problems

We know that i(G) ≤ αc(G) ≤ α(G) for every graph G and we have characterized the
trees T for which i(T) = αc(T) and the block graphs G for which αc(G) = α(G). In the
light of these we have unsolved problems:
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1. Characterize different classes of graphs G for which i(G) = αc(G) (αc(G) = α(G),
respectively).

2. Find lower and/or upper bounds for αc(G) for various classes of graphs G.
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