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Compact Global Association based Adaptive Routing Framework for Personnel Behavior
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avior understanding under complex scenarios is a challenging task for computer vision. This paper
act model, which we refer to as CGARPN that incorporates with Global Association relevance and
estimation Network. Our framework firstly introduces CGAN backbone to facilitate the feature repre
g the kernel parameter space compared with typical algorithms, effectively lowering the calculation cap
The framework integrates the Global Association information between keypoints, and learns the correlation
nal feature parameters. ARPN introduced by our structure is established to sufficiently excavate the re
utcome concealed in the network, adaptively achieving remarkable performance by selecting compatible
Meanwhile, Parametric Content Similarity NMS (PCSNMS) is developed where detailed information on
iated. Comparative experiments (datasets on FLIC, MPII, etc.) with CNN-based counterparts have em

the effectiveness and competitiveness of the model in perspective of accuracy, memory consumption, and com
r model contributes to an efficient and feasible framework of human behavior apprehension.

daptive routing, global association fusion, compact pose estimation framework

on

and understanding of personnel behavior [1–
intelligence algorithms and technologies has
an important research hotspot in the domain
ision. Scholars mainly focus on the analysis
ely on direct analysis methods of 2D image [3–
ling constructed on 2D image sequences (3D

16] . Approaches of 2D sequences combined with
n has more expression of behavior information,
ing enormous amount of calculation. Hence it
ethods remaining the focus of many scholars
rms of those algorithms, human pose estimation
ignificant approach, that is, a way to acquire
and locations of human keypoints through image
ccordingly to capture the behavior characteristics
s further understanding the specic behavior.
he complexity of the scenes (such as variations in
owding, occlusion etc.), it is a very challenging
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task to precisely estimate the human posture in the w
rapid development of deep learning[4, 17, 18] ha
promoted the progress of intelligent science. Related
methods have also been widely used understanding
scenes in computer vision, with human pose estima
included. Among these processing algorithms, t
(Top-down) framework methods (detailed in Section
detect individual persons from the picture, obtaining
candidate boxes of interest regions, and then execute r
prediction on the relevant keypoints. They are very
from Bottom-up methods completing the procedure
checking the proposal boxes, which we will specify i
2.

There is another way to categorize pose estimation
based on the type of prediction outcome for the netw
called heatmap and regression. Heatmap-based ap
act as constructing a dense map depicting the prob
keypoint detection. Regression-based methods fun
direct prediction of keypoint locations with less proc
calculation, such as clustering and grouping. Both co
of methods have their own advantages. Accordingly,
combinations of ‘Top-down’, ‘Bottom-up’, ‘Heatm
‘Regression’ are presently still the concentration
researchers.

This paper ensues the design thought of the T
paradigm framework and optimizes a variety of

d to Future Generation Computer Systems Octob
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es the capacity of core parameters. The
f 1*1 Conv module and Depthwise 3*3 module
s high-dimensional feature extraction of images.
ional methods of keypoint prediction for human
take into account the prediction effect of local

pixel viewpoint , lacking the representation of
rrelation information between keypoints. This
es the relevance of high-dimensional feature
nd learns internal connectivity of the coordinates
between keypoints in an extent range through the
act Global Association Network) sub-module.
, in terms of the high-dimensional feature
tracted from images, similar feature expressions
attributes, such as the same sitting, standing
nning state, etc. These potential properties are
to the final keypoint prediction. That is to say

attributes play the same role in pose estimation.
nthesize the significant indication, we propose a
ng network module to adaptively select promising
g to the underground similar features, which can
re precise calculation of human keypoints.
o-stage human posture estimation framework,

human detection proposals will greatly influence
effect of the follow-up network. The traditional
m only emphasizes the factors of confidence
of overlapping areas concerning the elimination
boxes. These two indicators do not embody
of the actual content of the candidate images.
re exists some situation that the ratio of
rea is the same, some overlapping information
cted. The detailed representation and modeling
nt information are not built in. Therefore, we
rized the statistical expression of the proposals
the detector, and introduced a comprehensive
rion combining the parametric content similarity
(PCSNMS) with original IOU ratio. In summary,
ns are as follow:

uce a compact (referred as CGARPN) framework
and ARPN sub-structure incorporating global
levance of learning features, with advantages in
memory and computation expends for behavior
in complex scenarios.
nstrate our architecture is capable of adaptively
odeling geometrically statistical distributing

idden properties in intermediate parameters for
zation.
el develops PCS improved criterion excavating
rity to facilitate filtering the resembling outputs
rediction for more accuracy.

an advisable detection accuracy of human
the comparative experiments of datasets (FLIC,
CO [19–21]) in a variety of complex scenes.

quantitative analysis soundly validates the
nd combativeness of the work against advanced
posture understanding.

Over the past decade, human pose estimation has
one of the substantial research foundations in th
machine vision. Traditional methods [22–25] rely o
modeling and component relationship of graph mod
basis, estimating human posture through random f
other conventional methods. With the rapid develo
deep learning concerning neural network, CNN neura
model has been introduced into different territories
object recognition and detection, semantic understan
visual analysis etc. Various DNN models [4, 5, 17
41] have been developed to complete the task of huma
recognition, with even GAN-based and GCN-based m
forward recently[42–45]. We can classify these met
two series: Top-down and Bottom-up, which are i
with several delegates in Table 1. Otherwise, accordi
number of people appearing in the image, we roughly
algorithms into single person pose estimation and mu
pose estimation.

Table 1: Diverse typical models sorted by the processing stage wit
development of posture estimation structure.

Top-down Bottom-up

CPM[4] OpenPose[26]

CPN[46] Hourglass+Assiciation Embedding[1

Hourglass[33] HigherHRNet[11]

Simplebaseline[7] PersonLab[47]

HRNet[8] MultiPoseNet[48]

2.1. Single Person Pose Estimation

Single person pose estimation, as the name indicate
one person emerging in the image. Toshev et al.
proposed a DNN-based learning and prediction m
human keypoint calculation, which was famed as Dee
Tompson et al. [35] simultaneously tackled the pro
describing the spatial relationship information of the
in combination with DNN and graphical model.
al.[36] introduced the idea dividing several typical d
as to the model, and combined the auxiliary inform
the dependencies among adjacent paired points as to
the prediction accuracy. The CPM [4] (Convolutio
Machines) predicting model proposed by Wei et al. a
multi-level iterative refining processes, making the fr
unravel the gradient disappearance problem in the
process upon intermediate supervision. The Hourg
structure proposed by Newell et al. is more concise t
[4]. The structure of each Hourglass module, shap
‘Hourglass’, includes a Bottom-up process and a T
one to integrate multi-scale features for more repres
These research methods mainly focus on single per
recognition. Either there is only one person turni
the image or the approximate position of the person
determined antecedently.
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2.2. Multi Person Pose Estimation
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recognition tasks, more extensive scenarios are
complex backgrounds with multiple people. The
ve conducted in-depth research on the situation
mstances. As mentioned above, these methods
osed of Top-down [6–8, 46, 49] and Bottom-

methods. Top-down methods are also entitled
methods. First, Persons will be outlined by
tector, and then the keypoints are predicted by
son pose estimator depicted above. The CPN
ramid Network) [46] proposed by Chen et al. is
h two subnets called GlobalNet and RefineNet.
omplishes the work responsible for preliminary
iction and RefineNet is dedicated as further

ide the following stage. The whole structure is
Pyramid in FPN. Xiao et al. put forward a

e [7] framework, the skeleton of which resembles
rn in Hourglass [33]. Otherwise, the architecture

eliminating skip connections between different
modules. HRNet [8] proposed by Sun et al.

ature map parameters under various resolutions,
the traditional sequential network to a parallel

ains multiple resolution branches.
te side coin of Top-down is the Bottom-up.
thods predict directly on the original image, and
pedestrian the keypoints belong to through the
ribution algorithm. Newell et al. [10] developed
ethod based on Hourglass[33], which integrates
bedding and supports simultaneous End-to-End
detection and grouping tasks. Cheng et al.

s improved HRNet [8] by using the associated
chnology in the higher-resolution module. The
framework introduced by Cao et al. is established
sed on the CPM [4] model. The algorithm
uxiliary information in the geometric direction

unk and combines the graph matching algorithm
), learning and estimating the belonging object
int. We explicitly summarize the development of
orary alternatives for pose estimation in Table 2.
nse, Bottom-up methods are relatively inferior to
thods in terms of prediction accuracy.

evelopment with several distinct structures and catogories on
taset

s Method Structure Catogory AP

.[51] Mask-RCNN ResNet-50 Top-down 63.1

al.[10] Assoc. Embed. Hourglass Bottom-up 65.5

et al.[47] PersonLab ResNet Bottom-up 67.8

al.[52] HigherHRNet+ HRNet-W48 Bottom-up 70.5

l.[53] Integral ResNet-101 Top-down 67.8

l.[54] PointSetNet HRNet-W48 Top-down 68.7

l[55] RMPE SSTN Top-down 72.3

The attention mechanism in machine learning o
from cognitive science. Due to the constraints of inf
processing, human beings will selectively pay attentio
of all visible information ignoring anything else. The
mechanism is mainly sorted into spatial attention
channel attention models and spatial and channe
attention models. The most successful instance dom
machine translation in field of Natural Language P
[56–58]. In recent years, significant progress has been
in the domains of image object detection and re
[59, 60], recommendation system [61]. Vaswani et
abandoned the traditional encoder-decoder model c
with CNNs and RNNs, applying transformer for t
architecture. The framework model of Attention in
two structures: scaled-dot product attention and m
attention, which can improve the system parallel
and reduce the amount of computation without sacri
experimental results. Wang et al. developed NL
a simple generalized non-local operator to express
range relationship of time-series signals, pictures a
sequences, which has been widely used in many su
semantic segmentation models. The algorithm pro
advanced long-term dependency modeling method
cumulatively maps specific query contexts to query l
However, empirical results show that the global c
the network modeling is almost the same for differe
locations in the image. Cao et al. [64] created a ge
simplified framework of three-step based on query ind
formula, which not only maintains the accuracy o
[63], but also reduces the amount of parameter ca
Hu et al. [65] studied the architecture and designed
channel relationship to explicitly model the interdepe
between channels in the abstract feature layer (SENet
improve the representation ability of the network, fu
as a similar structure to NLNet.

This paper inherits Top-down algorithms impro
optimizing a variety of network structures, and propo
CGARPN framework model as an important method
posture estimation. The model has beneficial perform
the prediction effect and can accustom to a variety of
with complex backgrounds and diverse dynamic acti
will describe the details in the following section 3.

3. Proposed Method

The processing flow of the framework proposed in t
is illustrated in Figure 1. Computing framework of t
algorithm follows the Top-down method mentione
First, Figure 1(a) illustrates a large number of candid
obtained through the human detector processing the
picture captured in the real world. Over the archite
choose the Faster-CNN algorithm to get more accurat
Although these candidate boxes can accurately pro
boundaries of human proposals, they also accumul
redundant information. We introduce a novel Param

3
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rall architecture of our method. Firstly, projected input images acquired by human detectors with self-defined NMS are entered into the
models features extraction with compact structure and attention mechanism. The GA model can disclose what dependencies (region
bute to the activation positions with maximum likeli-hood in the hidden features. ARPN can adaptively choose different optimizatio
iate features with similar properties in postures.

arity NMS algorithm to filter the unnecessaries
3.3), obtaining better detection results upon

Then the detection box will be mapped by
ta augmentation to the unified standard image
ormalization operator, which is utilized as the
bsequent network (its standardized size is w× h),
igure 1(b). Secondly, we use self-defined deep
k structure CGARPN to learn the keypoints of
. The structure includes two main sub-processes.

deeply incorporates the high-dimensional global
ature information, and reduces the processing
acity through the retrenching and compression
nal residual network. In the following process,
oduced, functioning as the adaptive selection
paths by modeling geometrically the hidden

in features for optimization.
arning framework, there are commonly two

achieve the regression of connection points:
ion and heatmap regression. The heatmap
thod was embraced by many researchers lately,
mputational complexity is relatively larger.
r model, we adopt the direct prediction guideline,
e into account more revision and refinement in
b-models. In terms of the network terminal,
erform regression learning on the normalized
ues of keypoints to achieve the final prediction

We use P= (x1, y1, ..., xk, yk) to represent the
lue of keypoints, where k is the number of
example, k = 17 in MSCOCO dataset). We

owing formula (1) to calculate the network loss
the prediction and the groundtruth. In the

, Pi represents the coordinate vector predicted
ns on the training picture, and P∗ represents the
ation of the corresponding groundtruth. λi stands
tance coefficient of keypoints in the whole loss
hted sum of which is 1.

L1(Pi,P∗) =
k∑

i=1
λi[(xi−x∗i )2+((yi−y∗i )2]

(x∗s−x∗e)2+((y∗s−y∗e)2∑
i
λi = 1, 0 < λi < 1

(1)

y∗s) in the denominator of equation (1) accounts
ce coordinate position of left or right shoulder

keypoint, and (x∗e, y
∗
e) denotes the reference coordinate

of left or right elbow. We can judge the option by
situations such as the visibility, or calculate it by a
the distances. We follow the direct regression an
hyperbolic tangent function as the activation functio
back-end of the network.

3.1. CGAN Framework Structure

Due to the large scale and capacity for many t
pose estimation methods, the network structure propos
paper has been greatly improved on the conventional
as shown in Figure 2. We utilize the Residual netw
good performace of processing, as the backbone netwo
model. It has outstood as a milestone in the history
algorithms. Boosted from the SimpleBaseline struc
ResNet [66] block in the residual network is modifie
compact bottle neck block (CBB) for parameter com
is introduced and incorporated. The frontal section of
network has a Conv+Maxpool layer to extract the fe
the original image and then stream them into subsequ
structures.

In each CBB basic unit, the residual feature is ext
combining the 1 ∗ 1 Conv module and the Depthw
structure, and the BN algorithm module is utilized t
the intermediate results, resulting in removing the
shortcomings of over-fitting. The system selects ReL
subsequent activation function of BN layer.

Many researchers have carried out several resea
compressing the network model and reducing the
parameters, which include the network quantization
encoding, the low rank decomposition operations, and
pruning etc.

The Depthwise architecture in the CBB can
calculations quite different from the traditional co
calculation, decomposing into two phases, namely ‘d
convolution’ and ‘pointwise convolution’. Depthwise
convolution can efficiently lower the capacity of c
parameters through decoupling classical convolu
spatial and cross-channel convolution operations, just
the ratio δ of computational operations and the
parameters compared to standard convolution. The ra
be approximately computed by the

(
K2 + N

)
/
(
K2 ∗

4
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where K is the size of kernel size and N stands for output
channel dimensions.
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structure greatly suppresses the problem of
culation caused by the large scale of kernel
meter data in the traditional structure. It is
reducing the hardware constrains required for
age in the feature extraction stage.
rk scale and depth in the framework can be
e scale of the CBB structure shown in the Figure
mbles the structure hierarchy defined by the

sNet network. Following the compact backbone
introduce the context information that fuses

ationship between keypoints to meet the high-
xpression of features, similar to the combination
methods and attention mechanism.
ced the GA (Global Association) sub-model
global relevance of the feature map across

aints, integrating more information about the
e in long distance. This special operator
rks to construct informative features, despite
t additional resource burden on memory and

Otherwise, this is more likely to be a
l with the paradigm of Squeeze and Excitation
ich can accordingly re-quantify channel-wise
ses by apparently modelling interdependencies
nels. On the basis of the GA sub-model, the

and sigmoid modules can learn according to
res to obtain different weights accustoming to
ociation relationship of keypoints, with hidden
ternalized. There is an important scale ratio for

eping a balance between calculation burden and
Accordingly, the output of CGAN structure is

to the subsequent ARPN network structure.

Routing Optimization

revious structure compressing the parameter
ntroduce ARPN network structure to refine the
ucture (in Figure 3). Over this sub-model, the
module reduces the dimension of the previous
e compressed feature parameters can be obtained
g approaches, alternatively full connection high-
g. We use FA

i to represent the feature map vector
ayer obtained by the input image Ii(i = 1, 2, ..., n)
gh the Reduced FC module in Figure 3. The
, p) in Figure 3 shows different path selections
. In the initial learning stage, the algorithm only
h R1 for model training.
raining of this process, the parameters of the

model can be learned. There is the fact we
hat similar regression results are more consistent
properties, as well as the similarity of the
eters in the intermediate layer. We introduce a
ucture and process to adaptively select different
g to the hidden attribtues in features , which we
ptive Routing. Firstly, we cluster the features

n the intermediate stage. To be more generally

When choosing how to decide the size, our method
the superior value of clustering category as hyperpar
the sense of considering both the parameter capacity
consistent experimental effectiveness. In the actual c
the loss L2(FA

i ) of equation (2) is defined to describe th
loss of middle layer features in parameter space of this
represents the geometric center vector of n training ima
distribution normalized in (2) can be described as ra
maximum geometric feature diameter in the paramete

L2(FA
i ) =

∥∥∥FA
i − FA

C

∥∥∥2
2

arg maxi

∥∥∥FA
i − FA

C

∥∥∥2
2

In order to combine the feature prediction results
intrinsic correlation information of the feature layer
forward a weight related loss value as the distance
measure of the feature. Combining with equation (1
we let L(FA

i ) defined as the comprehensive loss val
which needs to be normalized in the later processing.

L(FA
i ) = µL1(Pi,P∗) + (1 − µ)L2(FA

i )

After clustering by EM algorithm, we can obtain
1, 2, .., p) as p cluster centers of the subclass corre
to different network paths respectively. Taking adv
these clustering centers and the parameters of GMM m
similarity between input image i and the center of s
can be calculated by formula (4).

S (FA
i ,F

j
C)=α exp

∥∥∥∥FA
i − F j

C

∥∥∥∥
2

2
+ (1 − α)p(F j

C|F

Meanwhile, we directly utilize the maximum of s
measure in equation (5) to acquire the best path
m. The above process is constructed with only R1
After the initial training on path R1, we duplicate the
parameters of the subsequent connection layers
paths of the network, and then carry out further tr
the refinement stage. The training phase focuse
follow-up structure of the framework, neglecting the
feature extraction part of the whole network, which
be changed. This process finds the network mod
the highest similarity corresponding to the input i
corresponding training. In the prediction stage,
suitable path is obtained according to the above a
to predict, so as to obtain more accurate keypoint p
results after optimization.

m = arg max
j

S (FA
i ,F

j
C)

3.3. Parametric Content Similarity NMS

We mentioned in Figure 1 that it was necessary to
the human boundary in the first stage through the
detector. Generally, various front-end methods will
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PCSNMS

Figure 4: PCSNMS sub stage of the framework with regard to the info of the cropped images by the first phase.

te redundant information. In order to eliminate
nt frames, NMS (Non Maximum Suppression)
required to filter them. Most of typical and

algorithms only utilize the confidence and the
U information of the frames as the selecting

g the measurement of the actual content between
Traditional criterions established on IOU value

ate the correlation of internal information of
on filtering, making it difficult to model more

o characterize and make use of the above
ve improved the antique NMS algorithm and
ameterized NMS algorithm for content similarity

It is applied to improve the performance of
deletion results alongside the stage of human
rithm (in Figure 4). The algorithm ensues

tructure of NMS algorithm and selects the best
me as a reference. The borders closest to the
will be eliminated by newly constructed criteria.
is repeated on the candidate boxes until the
posals are screened out.
many approaches (such as SIFT, HoG, etc.)
eature of images prone to rotation, shift, resizing.
s are capable of probing the similar features
this paper, the effective statistical information
as the representation of features with small

mputation. Let Hi = (h1, h2, ..., hv) denote the
stogram parameterization information over the
e of images (where v usually equals 256 on

ge), and the dimension for color images will
required. ds(Hi,H j) represents the statistical

distance between images (as shown in formula

ds(Hi,H j) =
∑

I

(H1(I) − H2(I))2

H1(I)
(6)

r the distance in formula (6) is , the higher the
een two images is. Like many metric methods,

this measurement standard has non-directional attrib
focuses on the actual content knowledge of the im
define deletion criteria functions matching with
information about the above contents as follows,

f (I s
i , I

s
j ) = 1[d(I s

i , I
s
j ) < γ]

If d(.) is less than γ, then f (.) equals to 1, indica
the resembling candidate boxes will be deleted. In
integrate the overlapping information IOU ratio of th
and the beneficial information of content similarity, w
a more instructive distance function d(.) in formula (8

d(I s
i , I

s
j ) = 1 − IoU(I s

i , I
s
j ) + βds(Hi,H j)

Here β is the weight factor between the overlapping
similarity distance. The factor introduced here can b
empirical way, rather than the traditional manual ass
which is more practical to be effect-oriented. In t
experiments, we use the superior results of Faster-C
bounding boxes of the ground truth to optimize and
hyper-parametric values involved in the above proces
the process of our proposed algorithm as below.

Table 3: Hyperparameters in our method

Symbols Interpretation

λi weighted ratio for i-th keypoint

µ ratio of L1, L2 which is used to be calculate

the metric for feature map vector

α coefficient balancing the feature vector distanc

and cluster center similarity

γ threshold for deleting the redundant proposals

β weight factor of IoU and similarity distance

measurement

On the methods proposed above, we us
hyperparameters to optimize our model so as to
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Algorithm 1 PCS (Parametric Content Similarity) NMS for
human detector
Input: B =

IoU
B sta
dete
S co
γ, β a
(7) a
IoU
for B

Begin:
1: P = {}
2: for n = 1
3: k ← a
4: R←
5: B ←
6: for bi

7: co
8: if
9:

10: en
11: end
12: end
13: return P
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{b1, b2, . . . , bN} , S = {s1, s2, . . . , sN}
= {o11, o12, . . . , oNN},γ, β
nds for the list of proposals with faster-RCNN

ction boxes
ntains corresponding detection scores with B
re the threshold and ratio respectively in formula
nd (8)
is the pairwise Intersection ratio of overlapping

to N do
rgmax S
bk, P ← P ∪ R
B ∪ R
in B do
mpute ds (R, bi) , d (R, bi) by IoU, β value
d (R, bi) < γ then

B ← B − bi , S ← S − si

dif

lts. We will specify more about the actual
d assignment of these parameters in the later
ction. Here, we supply the following Table 3
illustration of these parameters so that readers

instructed.

ts

Strategies and Details

ing the available data, we adopt augmenting the
ce the generalization ability of the model and
custom to the changes happening to the complex
samples. In the second stage of this framework,

ing the image into the framwork, we normalized
ages in the groundtruth and adjusted their sizes

6*192. Our data augmentation operations include
degrees), random scale transformation (0.7-1.3)

ping. Methods with poor effect on empirical data
enhancement and aspect ratio enhancement) are

he whole training process is executed on NVIDIA

ing process, we also adopt some skilled training
event falling into local optimal values. Our main

se Adam optimizer to update relevant parameters.
arning rate is set to 1e-3 (epoch = 1), which
e-4 (epoch =100) and 1e-5 (epoch=130) as the
rations increases. There are 160 epochs in a
. During the next round of training, we will adjust
te to 1e-3 again on the basis of the previous round

The whole training process is constructed w
procedures. The first procedure refers to the elementar
of the network without the ARPN module assembl
model requires the testing on the parameters of the GA
in CGAN to obtain the best downsampling coefficient
Pooling. In order to extract more sensitive informa
set the reduction factor r=2. The consequent pro
to calculate ARPN optimization using intermediat
map parameters, which accordingly obtains multiple
routes. We refined and learned the network param
the back-end without changing the front-end module
achieve more accurate results.

Concerning the configuration of hyperparameters,
the normalized κi, the importance degree coefficie
COCO data, as the assignment source for λi of key
shown in formula (10)). For the ARPN module,
performed grid division searching for the hyperparam
obtained the optimal values of µ and α as 0.1 and 0.4
many experimental tests. Over the independent exper
NMS, we optimized the parameters of PCSNMS, and
the best performance upon γ and β by depending on th
CNN algorithm and the groundtruth of the datase
ablation studies are demonstrated in Section 4.5.

In order to verify the effectiveness of the whole fr
we conducted quantitative tests and evaluations o
datasets: FLIC, MPII and MSCOCO. These datasets a
datasets about pose estimation in personnel monitorin
which can instrumentally measure the performance of
models.

MSCOCO dataset is a gigantic and abundant da
object detection, segmentation, image description,
detection, etc. The training, verification and testing
contain totally more than 200K images and 250K
marked by annotations including up to 17 keypoin
labeling results of about 150k instances in the da
utilized for public training and verification. These
captured images from diverse scenes, with congesti
change, occlusion and contacting included. We sel
MSCOCO dataset with 17 keypoints as the main d
training, so as to be more generally significant and co
with situations that there are fewer keypoints in
environments. As the testing set does not have a
marked keypoint annotation, we manually merged
divided the training and verification set on MSCO
construct a large subset of the dataset randomly
from the training and verification set for model trai
validating (about 140k instances, 130K for training
for validating), and compare thoroughly the predictio
on the datasets of FLIC, MPII and MSCOCO (8K r
selected instances) with other renowned counterparts.

4.2. Results on FLIC
FLIC dataset is composed of 5003 images (3987 fo

and 1016 for testing) extracted from 30 Hollywood
Images within it are obtained by running the most
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Figure 5: Results on FLIC with different PCK ratios.

Figure 6: Results on MPII with different PCK ratios.

r every ten frames. Human beings in the scene
clothes and present different body postures. For
10 joints are accurately labeled (a total of 11

analyzing the prediction accuracy of keypoints,
classical PCKh [20] (Percentage of Correct
aluation for experimental comparison. We

calculation method, given with details in the
ula (9).

PCKk
i =

∑
p δ
(

dpi

dde f
p
≤ Tk

)

∑
p 1

(9)

means the ith keypoint of the pth pedestrian
nd dpi stands for the Euclidean distance between
value and the groundtruth. dde f

p represents the
f the pth person, which varies from calculation

in different public datasets. Tk denotes
defined manually and used for evaluation for

lts over the distribution.
roduced and completed some typical algorithms

the performance on FLIC datasets, in which we
d torso size in the FLIC dataset as the coeffcient
rmalization as to formula (9). With different
K indicator will increase with the increase of
After a series of measurements on all examples,
the results of various typical models on the

resholds from 0 to 0.5, as shown in Figure 5
t’s important to note our results are competitive
P and 94.7AP on shoulder and wrist joints. The

ely measured experimental results expound that
tshines other models in the prediction results of
atistical perspectives. These results are observer-
mply with how others have assessed their output

n MPII
t comprises a set of 25K images captured from
YouTube platform, with a total of 40K instance
d, including 28K instances for training and 12K
e annotation information of the testing set is not

Table 4: Comparison of Performance on FLIC (PCK@0.5) with
classical models.

Method wrist elbow shoulder eye no

Sapp et al. [19] 60.5 75.6 70.3 69.5 65

Toshev et al. [5] 76.4 88.1 89.6 86.7 80

Carreira et al. [68] 83.9 90.2 93.1 88.4 87

Wei et al. [4] 92.5 90.7 92.9 90.5 89

Our model 94.3 92.2 94.7 92.1 90

disclosed to the public. We randomly selected 20K
in the training set as testing used for the effective co
of the experimental methods. Each instance in the MP
has 16-keypoint annotation information. We have ca
the corresponding configuration and annotation on th
images through prediction results, and part of the exp
effect is illustrated below in Figure 7.

Besides, we also utilize PCK index to evaluate th
of keypoint prediction, and are conducting com
experiments of diverse typical and classical metho
distance is normalized by head size in formular (9) f
The image collection contains challenging poses corre
to a large range of human activities, which can be
typical examples for behavior monitoring. The subse
training set we tested is well practicable to the real sce
comparison results of different methods are provided i
and Figure 6, which edifies performance in our method
detection precision peaking 87.2AP at shoulder loca
falling 83.1AP at ankle positions (PCK@0.5). We
reasonably demonstrate our model outweighs other m
many threshold scales.

4.4. Results on MSCOCO

MSCOCO integrates a dataset created by Micro
in content and including natural images and comm
pictures in life, and provides a large amount of a
information for pictures. There are five categories of a
in this dataset: object detection, key point detection,

9

http://mostwiedzy.pl


Journal Pre-proof

Table 5: Compari
methods mention

Method

Sapp et al. [

Toshev et al.

Carreira et al.
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Figure 7: Keypoint annotation configuration for the MPII dataset predicted by our model.

son of performance on MPII (PCK@0.5) with different famed
ed above.

shoulder wrist elbow ankle knee hip

19] 65.9 68.9 70.7 68.3 67.8 71.0

[5] 81.3 80.4 82.5 77.9 79.1 82.3

[68] 84.8 82.1 84.4 80.1 82.6 83.1

4] 85.5 83.5 84.1 82.5 82.3 84.7

l 87.2 84.7 86.0 83.1 84.7 86.9

panoramic segmentation, and image annotation.
s are mainly labeled for the 17 keypoints of
instance, which are represented by the keyword
the dictionary file specified by the JSON file.
CO dataset defines OKS (Object Keypoint

1] evaluating the similarity between keypoints,
mean Average Precision (AP) calculated based
hresholds as the main evaluation scale. The
peration for OKS is supplied below in formular

exp
(
−d2

i /2s2κ2i
)
δ (vi > 0)

]
/Σi [δ (vi > 0)] (10)

presents the Euclidean distance for ith keypoint,
ular (9). vi are the visibility flags of the ground

cates the object scale which can be computed

by relating area and κi is a per-keypont constant that
falloff. The OKS acts as the role analogous to the Io
into account more information about statistical distri
the keypoints. For example, AP50 means that points w
greater than 0.5 will be considered for computing.

We compare our CGARPN model with typical a
CNN-based ones related to both Top-down and B
paradigms (in Table 6) consisting of Simplebase
MultiPoseNet[48], CPN[46], CMU-Pose[9] and P
We perform relevant testing on 8K instances selec
the remaining of all samples mentioned above, a
marked results are illustrated in Figure 8. F
all-round comparative results (as shown in Table
can demonstrate our model achieves 74.3AP, o
outperforming CMU-Pose [9] (+13.6AP), Simpleba
(+1.4AP), MutliPoseNet[48](+7.8AP), and CPN[46](
It’s also very persuasive to note that our compact fr
is superior to other models concerning parameter
and computation difficulty, requires less parame
computation operations compared with CMU-Pose[9
26.1%), Simplebaseline[7] (50.4%, 41.3% ), MutliPos
(56.7%, 27.0% ), CPN[46] (59.1%, 50.3%), and P
(60.5%, 68.1% ). The average time of processing for o
is ∼33 frames per second. More details are uncovered
6.

4.5. Ablation Studies

In order to efficiently evaluate the detection effects o
proposed substructures in distinct scales and situat
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Table 6: Comparison of results with state-of-the-art CNN-based models on MSCOCO detection dataset. Our model achieves competitive performance with other
methods in view o
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f precision, memory consumption and computation complexity.

od Backbone Input Size #Params GFLOPs FPS AP AP50 AP75 APM

. [9] CPM+PAF 224*224 54.3M 56.4 18 60.7 80.3 65.3 58.6

as [48] ResNet-101 480*480 61.0M 54.5 19 66.5 83.4 74.7 63.5

t al. [7] ResNet-152 384*288 68.6M 35.6 16 72.9 88.1 80.5 70.8

al. [46] ResNet-Inception 384*288 58.8M 29.2 20 73.6 88.7 81.2 71.4

[69] HRNet-W32 384*288 57.2M 26.1 25 74.5 89.5 82.1 72.3

odel ResNet-152 256*192 34.6M 14.7 33 74.3 89.4 82.1 72.0

sponding ablation studies on alternatives, which
mbination of how several molecular modules are
s, the performance of the backbone network at
s is also illustrated.
several ablation experiments on the application

and PCSNMS modules. The backbone network
et-50. According to experimental results, as
ble 7, we can demonstrate that the network
cture effectively improves the detection AP by
red with that without it. Meanwhile, the CGA
ses AP by 7.1% and the detection performance
lso is fine-tuned by nearly 3%.

s of Ablation study on MSCOCO dataset with different
stands for the situation with our PCSNMS. w/o X means
in our pipeline.

s PCSNMS AP AP50 AP75 APM APL

AR + 67.3 84.1 75.8 64.3 77.5

AR + 61.4 81.5 65.9 59.2 68.3

R w/o 70.2 85.6 77.6 67.9 77.8

R + 72.1 87.3 79.6 69.8 79.8

related studies on the impact of various typical
in terms of detection performance on MSCOCO

experimental results elucidate that with the
twork scale, the detection accuracy is refined.

backbone obviously outperforms CGARPN-M
ARPN-S (+2.2 AP), as shown in Table 8.

for our CGARPN model configured by different backbones
les. CGARPN-x Stands for Small, Middle and Large, which
esNet-50, ResNet-101, and ResNet-152 respectively. The
192.

AP AP50 AP75 APM APL

-S 72.1 87.3 79.6 69.8 79.8

-M 73.8 88.8 81.4 71.5 81.3

-L 74.3 89.4 82.1 72.0 81.7

5. Conclusion

This paper explores a CGARPN network, a novel d
proposing CGAN and ARPN for pose estimatio
framework is established fusing several significant ad
conducive to the reasonable simplification of p
calculation capacity concerning CGAN. We also com
attention mechanism to elaborate global associ
intermediate parameters in CGAN, integrat
characteristics related geometrically and collab
ARPN structure is introduced to efficiently
determining the final prediction through dynam
adaptively. Additionally, PCSNMS is also proposed
redundant detection and improving the accuracy of th
hierarchy. Our qualitative analysis demonstrates o
behaviors that are vigorous and competitive for
estimation tasks ranging from complex environments.
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A  novel  compact  framework  with  CGAN  and  ARPN  fusion  structure
incorporating  global  association  relevance  of  learning  features  for  behavior
understanding in complex scenarios.
Capable of Adaptively routing by modeling geometrically statistical distributing
info  and  hidden  properties  in  intermediate  parameters  space  for  further
optimization.
Constructing PCS improved criterion excavating content similarity to facilitate
filtering the resembling outputs for proposals prediction during first stage of the
processing workflow.
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